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Abstract—In this letter, we present a trellis-based maximum-
likelihood soft-decision sequential decoding algorithm (MLSDA)
for binary convolutional codes. Simulation results show that, for (2,
1, 6) and (2, 1, 16) codes antipodally transmitted over the AWGN
channel, the average computational effort required by the algo-
rithm is several orders of magnitude less than that of the Viterbi al-
gorithm. Also shown via simulations upon the same system models
is that, under moderate SNR, the algorithm is about four times
faster than the conventional sequential decoding algorithm (i.e.,
stack algorithm with Fano metric) having comparable bit-error
probability.

Index Terms—Coding, convolutional codes, decoding, max-
imum-likelihood, sequential decoding, soft-decision.

I. INTRODUCTION

T HE convolutional coding technique is designed to reduce
the probability of erroneous transmission over noisy com-

munication channels. A popular decoding algorithm for con-
volutional codes is the Viterbi algorithm, which is known to
be a maximum-likelihood (ML) decoder [9]. Although widely
adopted in practice, the Viterbi algorithm suffers from a de-
coding complexity with constraint length tradeoff, which pre-
vents it from being applied to codes with long constraint length.
This somewhat limits its attainable error probability, which de-
creases exponentially with respect to the code constraint length.
Nowadays, the Viterbi algorithm is usually applied to codes with
constraint length no greater than 7.

In contrast to the limitation of the Viterbi algorithm, the com-
putational complexity of the sequential decoding algorithm is
independent of the code constraint length, but becomes adapt-
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able to the noise level [9]. Nevertheless, the sequential decoding
algorithm does not perform ML decoding and thereby is only
suboptimalin its performance.1 More improved versions of the
sequential decoding algorithm, such as the multiple stack algo-
rithm and the creeper algorithm, can be found in [7] and [9].

In this work, we replace the Fano metric employed in the
conventional sequential decoding algorithm by a metric defined
based on a variation of the Wagner rule [11]. This results in
a new sequential decoding algorithm, which performsML de-
coding. By the nonnegativity of the new metric, the new sequen-
tial decoding algorithm can be made to operate on a code trellis,
instead of a code tree on which the conventional sequential de-
coding algorithm operates. As a consequence, the worst-case
computational complexity of the new sequential decoding algo-
rithm, which is defined as themaximumnumber of metric values
possibly evaluated, equals the overall branch number of a trellis.
Note that the constant computational effort of the Viterbi algo-
rithm is exactly equal to the number of trellis branches. Simu-
lation results show that, for binary (2, 1, 6) convolutional code
antipodally transmitted over the AWGN channel, the average
number of metric values evaluated by the proposed algorithm
is several orders of magnitude less than that of the Viterbi algo-
rithm, when the length of the information bits is 40 and the SNR
per information bit (SNR) is greater than 3 dB.

It needs to be pointed out that the computational effort of
the sequential decoding algorithm is not only determined by the
average number of metrics computed, but also decided by the
cost of searching and inserting of the stack elements. The latter
cost, however, can be made of the same order as the former one
[3]. It is therefore justified to consider the metric computation
of the sequential decoding algorithm as the key determinant of
algorithmic complexity.

We also compare the new ML sequential decoding algorithm
with the conventional one, i.e., the stack algorithm with Fano
metric. A fair comparison in computational efforts should be
proceeded under the premise that both algorithms yield (al-
most) the same error probability. By simulation results, we ob-
tain that for binary (2, 1, 6) code, the average number of metric
values evaluated by the conventional sequential decoding algo-
rithm is four times larger than that of the new ML sequential

1When the codeword length is sufficiently large, e.g., 1000 bits, the sequen-
tial decoding algorithm can actually achieve the performance of an ML decoder
below cutoff rate [7], [9]. However, what concerns us in this work is the situa-
tion where the codeword length is prohibitively small, such as 80 bits in length,
which, to some extent, is more feasible in practice.
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decoding algorithm for all SNRno smaller than 5 dB. This re-
sult justifies the benefit of adopting the new metric to sequential
decoding in situation where short information block length is
concerned.

Of equal importance to the optimality of a decoder is the
consideration of performance degradation due to practical con-
straint in implementation. The optimality of the new sequential
decoding algorithm relies on the assumption of availability of
infinite stack space. This assumption, however, may not be fea-
sible due to the practical limitation on the system memory, and
the system performance is expected to degrade if a finite stack
size constraint is applied. A further simulation indicates that the
system performance of the proposed algorithm remains almost
intact for a feasible stack size constraint.

II. M AXIMUM -LIKELIHOOD SOFT-DECISION SEQUENTIAL

DECODING

The following definitions and notations are similar to those
in [1] and [9].

Let be a binary ( , , ) convolutional code, where
is the memory order defined as the maximum number of shift-
register stages from the encoder input to the encoder output. The
constraint length of is commonly defined as ( ). Denote
by the codeword length of , where is the
length of the information bits.

A trellis is a structure obtained from a code tree by merging
the nodes in the same state. The state associated with a node is
determined by the contents of theshift-register stages, where

is the total number of shift-register stages in an encoder. For a
binary ( , , ) convolutional code trellis, the number of states
at levels through is , which implies that there are at
most nodes on these levels. Due to node merging, there is
only one terminal node in a trellis. A codeword is represented
by a path from the origin node at level 0 to the terminal node
at level ( ). Throughout, we will refer to a path from the
origin node to the terminal node as a code path.

Let be a binary codeword of an (,
, ) convolutional code. Denote a portion of codewordby

Define the hard-decision sequence
corresponding to the received vector
as

if
otherwise

where

(1)

The syndrome of is then given by , where is the
parity-check matrix of . Denote by the collection of
all error patterns whose syndrome is. Then we obtain by the
Wagner rule [11] (cf. Appendix) that the ML decoding output
for received vector is equal to

for some satisfying

for all (2)

We therefore define a new metric as follows.
Definition 1: For any path

ending at level in a trellis, define the metric associated with it
as

(3)

where is the bit metric.
The path metric defined here is actually equivalent to that

given in [3] and [5], which was originally defined over code
trees of block codes.

It can be verified from the above definition that finding the
in (2) is equivalent to finding the code pathwith the smallest
metric, since . We thus propose to replace the
Fano metric in the conventional sequential decoding algorithm
by the new metric and establish a new sequential-type ML
decoder (cf. Theorem 1). For convenience, we will refer to
the new algorithm as the ML sequential decoding algorithm
(MLSDA).

Owing to the nonnegativity of the new metric, the metric is
nondecreasing along any path in a trellis (cf. Lemma 1). Accord-
ingly, the MLSDA can be made to operate on a trellis, instead
of a code tree on which the conventional stack algorithm oper-
ates. This is achieved by introducing a second stack. Note that
the Fano metric along a path in a code tree could be locally de-
creasing in its value.

Equipped with the above definitions and notations, we are
now ready to present the MLSDA.

The Trellis-Based MLSDA:

Step 1: Load the Open Stack with the origin node whose
metric is assigned zero.

Step 2: Compute the metrics of the successors of the top path
in the Open Stack and put the ending state and the
ending level of this top path into the Closed Stack.
Delete the top path from the Open Stack.

Step 3: Whenever any of the new paths (i.e., the successors
of the top path in the Open Stack in Step 2) merges2

with a path already in the Open Stack, eliminate
the one with higher metric value. If any of the new
paths merges with a path already in the Closed Stack,
discard the new path.

Step 4: Insert the remaining new paths into the Open Stack
and reorder the Open Stack according to ascending
metric values.

Step 5: If the top path in the Open Stack ends at the terminal
node in the trellis, the algorithm stops; otherwise go
to Step 2.

2By “merging,” we mean that the two paths have the same ending state and
ending level, or equivalently, they end at the same node in a trellis.
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As illustrated in the previous algorithm, theOpen Stackcon-
tains all paths having been explored by the MLSDA, which are
not the prefix of all other paths in the Open Stack. Apparently,
theOpen Stackfunctions in a similar fashion as the stack in the
conventional sequential decoding algorithm. TheClosed Stack
stores the information of ending states and ending levels of the
paths, which had been the top paths of theOpen Stackat some
previous time.

We next prove the optimality of the MLSDA, i.e., the sequen-
tial-type searching in the above algorithm can locate the code
path with the smallest metric.

Lemma 1: The metric is a nondecreasing function along any
path in a trellis.

Proof: The lemma follows directly from the nonnegativity
of the bit metric.

The following lemma assures that the function in Step 3 will
not eliminate the ML codeword.

Lemma 2: When a new path merges with an existing path in
the Closed Stack, the metric value of the new path is greater than
or equal to that of the existing path.

Proof: Suppose that a new path merges with an
existing path in the Closed Stack. Then the new path

must be generated from a path , where ,
which once coexisted with in the Open Stack at some
previous time. From Lemma 1, the metric value associated with
a path is no greater than that of any path generated from it. Also
observe that any path in the Closed Stack was once the top path
in the Open Stack and among all paths in the Open Stack, the
top path carries the smallest metric. The proof is then completed
by noting that

Theorem 1: The MLSDA is an ML decoding algorithm.
Proof: Assume that is the first top path in the Open Stack

ending at the terminal node in the trellis. Obviously,is a code
path and the metric of is the smallest among all paths currently
in the Open Stack. By Lemma 1, the metric value associated
with a path is no greater than that of any path generated from
it, which implies that the metric of any other code path (which
should be the offspring of a path currently in the Open Stack)
can not be smaller than the metric of. Consequently, has the
smallest metric value among all code paths, which, from (2),
validates the Theorem.

A similar argument to that given in Theorem 1 can be used to
derive the following corollary, which is useful when a truncated
decoder search length [9] is implemented.

Corollary 1: If is the first top path in the Open Stack
ending at level , then is the path with the smallest
metric among all paths ending at level.

III. SIMULATION RESULTSOVER THE AWGN CHANNEL

In this section, we examine the computational effort and the
bit error rate (BER) of the MLSDA by simulations over the
AWGN channel. We assume that the binary codeword is antipo-

dally transmitted. Hence for the AWGN channel, the received
vector is given by

for , where is the signal energy per channel
bit and are independent noise samples of a white
Gaussian process with single-sided noise power per hertz.
The SNR for the channel is therefore SNR . In order to
account for the code redundancy for different code rates, we
will use the SNR per information bit, i.e.,

in the following discussions.
For the AWGN channel, we can also simplify the metric as-

sociated with a path to

where

if
otherwise.

As indicated in the algorithm, the computational efforts of
the MLSDA are determined not only by the numbers of metrics
evaluated, but also by the cost of searching and reordering of
the stack elements. However, we can adopt a balanced-tree data
structure [2] in the stack implementation so that the latter cost
becomes of comparable order to the former one. In addition,
one can further employ a hardware-based stack structure [8] and
attain constant complexity on insertion operation. It is therefore
justified to consider the metric computation of the MLSDA as
the key determinant of algorithmic complexity.

We now turn to the empirical investigation of the average de-
coding complexity. Two types of binary convolutional codes are
considered. One is a (2, 1, 6) code with generators 634, 564
(octal) and the other is a (2, 1, 16) code with generators 1632044,
1 145 734 (octal). The lengths of the information bits used in our
simulations are 40, 100 and 200, respectively. For ease of nota-
tions, we will respectively abbreviate the Viterbi algorithm and
the conventional sequential decoding algorithm as VA and SA in
the sequel; also, a number enclosed by parentheses that imme-
diately follows the acronym of an algorithm, such as MLSDA
(40) and SA (200), specifically designates the length of the in-
formation bits taken for the algorithm. Without loss of gener-
ality, we only count the metric operations up to level. For all
simulations, at least 10 word errors have been reported to ensure
that there is no bias on the simulation results. We summarize the
simulation results in Tables I and II and Figs. 1 and 2.

In Table I, we compare the average computational efforts of
the MLSDA with those of the VA and the SA. By the simulation
results, when SNRis greater than or equal to 3 dB, the MLSDA
has a much smaller average computational complexity than the
Viterbi algorithm. For example, the average computational effort
of the MLSDA for binary (2, 1, 6) convolutional code is about
two order of magnitude smaller than that of the Viterbi algorithm
when SNR dB (cf. Table I). Indeed, when SNR dB,
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Fig. 1. BER of the MLSDA, the Viterbi algorithm (VA), and the stack algorithm (SA) for (2, 1, 6) code with information lengths 40 and 200.

Fig. 2. BER of the MLSDA, the VA, and SA for (2, 1, 6) code and (2, 1, 16) code.

TABLE I
AVERAGE AND MAXIMUM NUMBERS OFMETRIC COMPUTATION FOR(2, 1, 6) CODE. VA(L), SA(L), AND MLSDA (L), RESPECTIVELY, REPRESENT THEVITERBI

ALGORITHM, THE STACK ALGORITHM WITH FANO METRIC, AND OUR PROPOSEDALGORITHM, APPLIED TO THECODE WITH INFORMATION LENGTHL

TABLE II
AVERAGE AND MAXIMUM NUMBERS OFMETRIC COMPUTATION FOR(2, 1, 16) CODE. VA(L), SA(L), AND MLSDA (L), RESPECTIVELY, REPRESENT THEVITERBI

ALGORITHM, THE STACK ALGORITHM WITH FANO METRIC, AND OUR PROPOSEDALGORITHM, APPLIED TO THECODE WITH INFORMATION LENGTHL

the average number of metric values evaluated by the MLSDA
reduces to , which is the smallest possible number of metric
values evaluated by any decoding algorithm.

In Fig. 1, we compare the BER of the MLSDA with those ob-
tained by the VA and the SA. Since both the MLSDA and the VA

are ML decoders, it is reasonable that they yield the same BER.
Also noted from Fig. 1 is that the MLSDA provides around a
1.5-dB advantage over the SA at , when both al-
gorithms employ the same information length 40. Even when
we extend the information length of the SA to 200, the MLSDA
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Fig. 3. BER of the MLSDA for (2, 1, 6) code with information length 40. OPENMAX is the upper limit on the size of the Open Stack.

with information length 40 still provides around a 0.5-dB ad-
vantage at .

As mentioned earlier, the comparison in computational com-
plexity between the MLSDA and the SA should be performed
under a fixed BER for both algorithms. Observe from Fig. 1 that
the MLSDA (40) has almost the same BER as the SA (200).
We then note from Table I that the average computational com-
plexity of the SA (200) is at least four times larger than that of
the MLSDA (40) when . Since the memory space
required by a path entry in the stack is proportional to the infor-
mation length, the memory required by the SA (200) is about 20
times larger than that of the MLSDA (40).

Now by examining the simulations on both (2, 1, 6) and (2,
1, 16) codes (cf. Tables I– II), we observe that theaveragecom-
putational complexity of the SA for (2, 1, 6) code and (2, 1, 16)
code are close to each other, while themaximumcomputational
complexity grows as the code constraint length increase. The
former observation re-confirms that the average computational
complexity of the SA does not depend on the code constraint
length [9]; yet, the latter observation indicates that the SA for
code with large code constraint length may suffer a buffer over-
flow.

Fig. 2 collects the results on the MLSDA (40) for (2, 1, 6)
code and the SA (100) and the SA (200) for (2, 1, 16) code. The
three curves indicate that the MLSDA (40) for (2, 1, 6) code
provides around a 1.0–dB advantage over the other two SAs at

.
To summarize from the above simulations, the conventional

sequential decoding algorithm usually requires long informa-
tion block length to obtain a low BER, which unavoidably re-
sults in long decoding delay and large stack space demand. By
adopting a new metric in sequential decoding, the MLSDA can
achieve the same performance by a shorter information block
length; and hence, the decoding delay, as well as the stack space,
can be fairly reduced. In additional to the above observations,
we also found that the new metric adopted in the MLSDA does
not rely on the knowledge (i.e., SNR) of the channel, when codes
are transmitted over the AWGN channel. This somehow hints
that the MLSDA and the Viterbi algorithm share a common na-
ture that their performances are not sensitive to the accuracy of

the estimation of the channel SNR. More comprehensive com-
parison along this line between the Viterbi algorithm and the SA
can be found in [6].

The final issue that we touched on in this work is the consid-
eration of a feasible stack-size demand. In practice, one often
needs to restrict the stack size due to the limitation of the system
memory. Such limitation on the stack size, although reducing
the computational efforts, unavoidably degrade the system per-
formance. Accordingly, investigation of the dependence of the
system degradation, as well as the reduction of average compu-
tational complexity, on the maximum stack size allowable be-
comes necessary.

The Trellis-Based MLSDA With Finite Stack-Size Con-
straint:

Steps 1–4:
These four steps are identical to the trellis-based
MLSDA without stack-size constraint.

Step 5:
If the size of the Open Stack is larger than
OPENMAX, discard the path with the maximum
metric in the Open Stack. Repeat this step until
the size of the Open Stack is no larger than
OPENMAX.

Step 6:
If the top path in the Open Stack ends at the terminal
node in the trellis, the algorithm stops; otherwise go
to Step 2.

We now use the binary (2, 1, 6) convolutional code with in-
formation length 40 to examine the dependence of the MLSDA
performance on stack size constraint. We set two different upper
limits (OPENMAX) on the size of the Open Stack, which are
512 and 256. The simulation results are depicted in Fig. 3. We
conclude from this figure that the MLSDA performance remains
almost intact for a feasible stack size constraint of 512. For a
smaller stack size limit, such as 256, the BER of the MLSDA
is still close to the ML performance. We close the discussion
on the stack size constraint by remarking that since the largest
size of the Closed Stack is the number of nodes in a trellis and
it stores only the information of ending states and ending levels
for each entry, the memory size that the Closed Stack requires
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tends to be small. Accordingly, to place restriction on the Close
Stack size is unnecessary because the memory consumption of
the MLSDA is indeed mostly contributed by the Open Stack.

IV. CONCLUSION

In this work, we present an ML soft-decision sequential
decoding algorithm (MLSDA) for binary convolutional codes,
where a new metric other than the traditional Fano metric is used
for sequential searching of codewords. By the nonnegativity of
the new metric, the path metric along any path in a code trellis
or code tree of a convolutional code is nondecreasing. Together
with the fact that the code path with minimum path metric
exactly gives the ML codeword, the MLSDA turns out to be an
ML decoding algorithm for any code length as contrary to the
suboptimality (orasymptoticoptimality in code length) of the
conventional sequential decoding algorithm that employs the
Fano metric. Also, unlike the conventional sequential decoding
algorithm which searches codewords on a code tree, the MLSDA
can bemade tooperateona convolutional code trellis. As a result,
the trellis-based MLSDA has the same bit error probability as the
Viterbi algorithm, but is with much smaller metric computational
complexity. We conclude from our simulations in Section III
that the computational complexity of the MLSDA is much less
than that of the Viterbi algorithm, when is moderately
high. Under a comparable BER, the average computational
complexity of the stack algorithm with Fano metric is also four
times larger than that of the MLSDA for no less than 5 dB.
These results, to some extent, justify the benefit of adopting the
new metric to the sequential decoding.

Due to the real-time demand (or memory constraint) in prac-
tical applications, the decoding system may need to force the
decision on the information bit after a fixed delay, which is often
referred to as truncated decoder search length or survivor trun-
cation. It is shown in [4] that the performance degradation of
the Viterbi algorithm due to survivor truncation is almost negli-
gible, if the fixed delay is taken at leave five times of the code
memory size. By Corollary 1, the MLSDA can also be applied
to the situation of truncated decoder search length, where the
best state decoding [10] is taken instead. It will be testified in
an upcoming work that the MLSDA behaves similarly in perfor-
mance degradation to the Viterbi algorithm, when the best state
decoding is considered.

APPENDIX

VARIATION OF WAGNER RULE

From [9] (also [11]), the ML decoding outputfor a binary
convolutional code transmitted over a time-discrete memory-
less channel can be given by

where satisfies

(4)

for all and is defined in (1). The condition in (4) can
be rewritten as

where and are defined as in Section II. The alternative
expression of the Wagner rule in (2) is then validated.
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