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_ Abstract—in this letter, we present a trellis-based maximum- able to the noise level [9]. Nevertheless, the sequential decoding
likelihood soft-decision sequential decoding algorithm (MLSDA)  algorithm does not perform ML decoding and thereby is only

for binary convolutional codes. Simulation results show that, for (2, ; ; : :
1,6) and (2, 1, 16) codes antipodally transmitted over the AWGN suboptimaln its performancé.More improved versions of the

channel, the average computational effort required by the algo- S€quential decoding algorithm, such as the multiple stack algo-
rithm is several orders of magnitude less than that of the Viterbial-  rithm and the creeper algorithm, can be found in [7] and [9].
gorithm. Also shown via simulations upon the same system models  |n this work, we replace the Fano metric employed in the
is that, under moderate SNR, the algorithm is about four times ¢, nyentional sequential decoding algorithm by a metric defined
faster than the conventional sequential decoding algorithm (i.e., o . .
based on a variation of the Wagner rule [11]. This results in

stack algorithm with Fano metric) having comparable bit-error i . . .
probability. a new sequential decoding algorithm, which perfoiviis de-

: . . coding. By the nonnegativity of the new metric, the new sequen-
Index Terms—Coding, convolutional codes, decoding, max- | . . .
imum-likelihood, sequential decoding, soft-decision. tial decoding algorithm can be made to operate on a code trellis,
instead of a code tree on which the conventional sequential de-
coding algorithm operates. As a consequence, the worst-case
computational complexity of the new sequential decoding algo-
HE convolutional coding technique is designed to redu¢éhm, which is defined as th@aximurmumber of metric values
the probability of erroneous transmission over noisy conpossibly evaluated, equals the overall branch number of a trellis.
munication channels. A popular decoding algorithm for coNote that the constant computational effort of the Viterbi algo-
volutional codes is the Viterbi algorithm, which is known tdithm is exactly equal to the number of trellis branches. Simu-
be a maximum-likelihood (ML) decoder [9]. Although widelylation results show that, for binary (2, 1, 6) convolutional code
adopted in practice, the Viterbi algorithm suffers from a dentipodally transmitted over the AWGN channel, the average
coding complexity with constraint length tradeoff, which prenumber of metric values evaluated by the proposed algorithm
vents it from being applied to codes with long constraint lengtis several orders of magnitude less than that of the Viterbi algo-
This somewhat limits its attainable error probability, which deithm, when the length of the information bits is 40 and the SNR
creases exponentially with respect to the code constraint lengtr information bit (SNR) is greater than 3 dB.
Nowadays, the Viterbi algorithm is usually applied to codes with It needs to be pointed out that the computational effort of
constraint length no greater than 7. the sequential decoding algorithm is not only determined by the
In contrast to the limitation of the Viterbi algorithm, the comaverage number of metrics computed, but also decided by the
putational complexity of the sequential decoding algorithm Rost of searching and inserting of the stack elements. The latter
independent of the code constraint length, but becomes ad&st, however, can be made of the same order as the former one
[3]. It is therefore justified to consider the metric computation
of the sequential decoding algorithm as the key determinant of
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decoding algorithm for all SNRno smaller than 5 dB. This re- for somee* € E(s) satisfying
sult justifies the benefit of adopting the new metric to sequential

decoding in situation where short information block length is = =
concerned E 6j|(/)1| < E 6j|(/)j|, foralle € E(S) (2)
. j=0 §j=0

Of equal importance to the optimality of a decoder is the
consideration of performance degradation due to practical caffe therefore define a new metric as follows.
straint in implementation. The optimality of the new sequential Definition 1: For any path
decoding algorithm relies on the assumption of availability of
infinite stack space. This assumption, however, may not be fea-
sible due to the practical limitation on the system memory, a
the system performance is expected to degrade if a finite st
size constraint is applied. A further simulation indicates that the
system performance of the proposed algorithm remains almost
intact for a feasible stack size constraint.

Z(tn—1) = (L0, 1, , Ten_1)

£ ding at level in a trellis, define the metric associated with it

In—1

M (z(0n-1)) 2 D M(z;) 3)
=0

Il. MAXIMUM -LIKELIHOOD SOFT-DECISION SEQUENTIAL whereM(a:j)é(yj @ x;)|¢;| is the bit metric.
DECODING The path metric defined here is actually equivalent to that
The following definitions and notations are similar to thos@Ven in [3] and [5], which was originally defined over code
in [1] and [9]. trees of block codes.
Let C be a binary 4, k, m) convolutional code, where: It can be verified from the above definition that finding #fe

is the memory order defined as the maximum number of shitfl (2) is equivalent to finding the code pagtwith the smallest

register stages from the encoder input to the encoder output. faglric, since: = ybv € E(s). We thus propose to replace the

constraint length of” is commonly defined as + 1). Denote Fano metric in the conventional sequential decoding algorithm
by N2n(L + m) the codeword length of’, whereL is the by the new metric and establish a new sequential-type ML
length of the information bits. ’ decoder (cf. Theorem 1). For convenience, we will refer to

A trellis is a structure obtained from a code tree by mergirﬁﬂe new algorithm as the ML sequential decoding algorithm
the nodes in the same state. The state associated with a no ISSDA)' - i .
determined by the contents of theshift-register stages, where ©OWing to the nonnegativity of the new metric, the metric is
K is the total number of shift-register stages in an encoder. Fo_rpgndecreasmg along any path in atrellis (cf. Lemma 1). Accord-

binary (», k, m) convolutional code trellis, the number of statefndly, the MLSDA can be made to operate on a treII|§, instead
at levelsm through L is 2X, which implies that there are atof a code tree on which the conventional stack algorithm oper-

most2* nodes on these levels. Due to node merging theredtes. This is achieved by introducing a second stack. Note that
only one terminal node in a trellis. A codeword is representd® Fano metric along a path in a code tree could be locally de-

by a path from the origin node at level O to the terminal nodg©2sing in its value. o _
at level . + m). Throughout, we will refer to a path from the Equipped with the above definitions and notations, we are
origin node to the terminal node as a code path. now ready to present the MLSDA.

Let v=(vg,v1,...,un_1) be a binary codeword of am( The Trellis-Based MLSDA:
k, m) convolutional code. Denote a portion of codewerdly ~ Step 1. Load the Open Stack with the origin node whose
v(b)é(vo,vl, ...,u). Define the hard-decision sequenge= metric is assigned zero.

(yo,y1,---,yn—1) corresponding to the received vector= Step 2: .Compute the metrics of the successors of the top path
. N in the Open Stack and put the ending state and the
(70,71,...,7]\_1)3.3 . ) .
ending level of this top path into the Closed Stack.
A1, if ;<0 Delete the top path from the Open Stack.
Y= { 0’ othejrwise Step 3: Whenever any of the new paths (i.e., the successors
’ of the top path in the Open Stack in Step 2) metges
where with a path already in the Open Stack, eliminate
the one with higher metric value. If any of the new
6210 Pr(r;]0) W paths merges with a path already in the Closed Stack,
! Pr(r;|1)" discard the new path.

The syndrome of is then given bys=yH?*, whereH is the
parity-check matrix ofC. Denote byE(s) the collection of
all error patterns whose syndromesisThen we obtain by the
Wagner rule [11] (cf. Appendix) that the ML decoding output
for received vector- is equal to

*

t=yPe

Step 4: Insert the remaining new paths into the Open Stack
and reorder the Open Stack according to ascending
metric values.

If the top path in the Open Stack ends at the terminal
node in the trellis, the algorithm stops; otherwise go

to Step 2.

Step 5:

2By “merging,” we mean that the two paths have the same ending state and
ending level, or equivalently, they end at the same node in a trellis.
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As illustrated in the previous algorithm, ti¥pen Stackon- dally transmitted. Hence for the AWGN channel, the received
tains all paths having been explored by the MLSDA, which arector is given by
not the prefix of all other paths in the Open Stack. Apparently,
the Open Stackunctions in a similar fashion as the stack in the rp = (=D)"VE+ N

conventional sequential decoding algorithm. Tlesed Stack ¢4, o « j < N — 1, wheree is the signal energy per channel

stores the information of ending states and ending levels of thg gng {)\:}A’Bl are independent noise samples of a white
i i

paths, which had been the top paths of @gen Staclat some Gayssian process with single-sided noise power per Béytz

previous time. The SNR for the channel is therefore SRR/ Ny. In order to

We next prove the optimality of the MLSDA, i.e., the sequemgccount for the code redundancy for different code rates, we
tial-type searching in the above algorithm can locate the cog@f| use the SNR per information bit, i.e.,

path with the smallest metric. e
Lemma 1: The metric is a nondecreasing function along any SNRy, = K — N <i>
path in a trellis. o kL \ Nj
Prqof: The lemma follows directly from the nonnegativityin the following discussions.
of the bit met_”c' L . For the AWGN channel, we can also simplify the metric as-
The following lemma assures that the function in Step 3 W'gociated with a patt s,y to
not eliminate the ML codeword. "

Lemma 2: When a new path merges with an existing path in N fn—1
the Closed Stack, the metric value of the new path is greater than M (1)) 2> (w0 ® ))|rj]
or equal to that of the existing path. j=0

Proof: Suppose that a new paihy,,_;) merges with an \\hare
existing pathz,_,) in the Closed Stack. Then the new path _
Z(¢n—1) Must be generated from a pat@n_l), wheref < ¥, yi N { 1, ifr; < 0
which once coexisted witl ., 1) in the Open Stack at some 0, otherwise.
previous time. From Lemma 1, the metric value associated withag indicated in the algorithm, the computational efforts of

a path is no greater than that of any path generated from it. Alg: MLSDA are determined not only by the numbers of metrics
observe that any path in the Closed Stack was once the top p&fluated, but also by the cost of searching and reordering of
in the Open Stack and among all paths in the Open Stack, the stack elements. However, we can adopt a balanced-tree data
top path carries the smallest metric. The proofis then completsgucture [2] in the stack implementation so that the latter cost
by noting that becomes of comparable order to the former one. In addition,
one can further employ a hardware-based stack structure [8] and
attain constant complexity on insertion operation. It is therefore
justified to consider the metric computation of the MLSDA as
the key determinant of algorithmic complexity.
] . . . " We now turn to the empirical investigation of the average de-

TheorerTl 1:The MLSD.A IS an ML deCOd'T‘g algorithm. coding complexity. Two types of binary convolutional codes are

_Proof. Assumethab|sthef|rsttop_path m_the Qpen StaCkconsidered. One is a (2, 1, 6) code with generators 634, 564
ending at the tern_nnal_ node in the trellis. Obviousiys a code (octal) and the otheris a (2, 1, 16) code with generators 1632044,
path and the metric afis the smallestamong all paths currently) ;45734 (octal). The lengths of the information bits used in our
in the Open Stack. By Lemma 1, the metric value associatgghjations are 40, 100 and 200, respectively. For ease of nota-
with a path is no greater than that of any path generated frogns, we will respectively abbreviate the Viterbi algorithm and
it, which implies that the metric of any other code path (whicthe conventional sequential decoding algorithm as VA and SA in
should be the offspring of a path currently in the Open Stacie sequel; also, a number enclosed by parentheses that imme-
can not be smaller than the metricofConsequently has the  djately follows the acronym of an algorithm, such as MLSDA
smallest metric value among all code paths, which, from (240) and SA (200), specifically designates the length of the in-
validates the Theorem. B formation bits taken for the algorithm. Without loss of gener-

A similar argument to that given in Theorem 1 can be used &ity, we only count the metric operations up to le¥elFor all
derive the following corollary, which is useful when a truncategimulations, at least 10 word errors have been reported to ensure
decoder search length [9] is implemented. that there is no bias on the simulation results. We summarize the

Corollary 1: If z(,,_1) is the first top path in the Open Stacksimulation results in Tables | and Il and Figs. 1 and 2.
ending at level, thenx,_1) is the path with the smallest In Table I, we compare the average computational efforts of
metric among all paths ending at level the MLSDA with those of the VA and the SA. By the simulation
results, when SNRis greater than or equal to 3 dB, the MLSDA
has a much smaller average computational complexity than the
Viterbi algorithm. For example, the average computational effort

In this section, we examine the computational effort and tleg the MLSDA for binary (2, 1, 6) convolutional code is about

bit error rate (BER) of the MLSDA by simulations over thewo order of magnitude smaller than that of the Viterbi algorithm
AWGN channel. We assume that the binary codeword is antipghen SNR > 6 dB (cf. Table I). Indeed, when SNR> 6 dB,

M (2(tn-1)) 2 M ($(2n71)> > M (Z(n-1)) -

I1l. SIMULATION RESULTSOVER THE AWGN CHANNEL
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Fig. 1. BER of the MLSDA, the Viterbi algorithm (VA), and the stack algorithm (SA) for (2, 1, 6) code with information lengths 40 and 200.

1f - 3

i ML$DA and YA for (2,11, 6) code|with infol’ma.tion lepgth 40 [—e— ]

10-1 L SA for (2,1{16) code with informnation lepgth 100 |- - o -~ ]

. SA for (2,1]16) code with inforjnation length 200 |- - o+ .. ]

1072 & ]

10-8 [ \"\ ]

[ . o, ]

BER L ' -

1074 | - - .

1075 - =

I I R O N R e y

1078 > o
10-7

2 2.5 3 3.5 4 4.5 5 5.5 6
SNRy,

Fig. 2. BER of the MLSDA, the VA, and SA for (2, 1, 6) code and (2, 1, 16) code.
TABLE |

AVERAGE AND MAXIMUM NUMBERS OFMETRIC COMPUTATION FOR(2, 1, 6) QDE. VA(L), SA(L), AND MLSDA (L), RESPECTIVELY, REPRESENT THEVITERBI
ALGORITHM, THE STACK ALGORITHM WITH FANO METRIC, AND OUR PROPOSEDALGORITHM, APPLIED TO THECODE WITH INFORMATION LENGTH L

SNRy, Il 1 dB il 2 dB I 3 dB Il 4 dB I 5 dB il 6 dB Il 7 dB
max ave max ave max ave max ave max ave max ave max ave
VA(40) 4478 4478 4478 4478 4478 4478 4478 4478 4478 4478 4478 4478 4478 4478
SA(40) 17009 441 6511 204 8846 115 2328 89 3406 83 729 81 116 80
MLSDA (40) 4478 2124 4466 1133 4462 456 4226 178 2072 102 650 84 270 81
VA (200) 24958 24958 || 24958 | 24958 || 24958 | 24958 || 24958 | 24958 || 24958 | 24958 || 24958 | 24958 |[ 24958 | 24958
SA(200) 1130569 | 7685 68960 | 1037 14838 516 1572 426 1004 407 1340 402 438 401
MLSDA (200) 24958 21774 || 24926 | 18974 || 24916 | 14357 || 22240 | 7088 19734 | 1794 6682 556 1878 413
TABLE I

AVERAGE AND MAXIMUM NUMBERS OFMETRIC COMPUTATION FOR(2, 1, 16) @WDE. VA(L), SA(L), AND MLSDA (L), RESPECTIVELY, REPRESENT THEVITERBI
ALGORITHM, THE STACK ALGORITHM WITH FANO METRIC, AND OUR PROPOSEDALGORITHM, APPLIED TO THECODE WITH INFORMATION LENGTH L

SNRy, I 2 dB I 3 dB 1 4 dB T 5 dB 1 6 dB
max ave max ave ) max ave max ave max ave
VA(100) 11141118 | 11141118 11141118 | 11141118 || 11141118 | 11141118 11141118 | 11141118 11141118 | 11141118
SA(100) 1565327 8920 494199 677 616819 304 210884 217 45645 203
MLSDA (100) 9644668 1259192 5687634 158477 1618542 9334 284136 931 5952 285
VA(200) 24248318 | 24248318 || 24248318 | 24248318 || 24248318 | 24248318 || 24248318 | 24248318 || 24248318 | 24248318
SA(200) 1619241 9254 1002629 898 858849 489 156597 417 41778 404

the average number of metric values evaluated by the MLSe ML decoders, it is reasonable that they yield the same BER.
reduces t@* L, which is the smallest possible number of metriélso noted from Fig. 1 is that the MLSDA provides around a
values evaluated by any decoding algorithm. 1.5-dB advantage over the SABER = 10—, when both al-

In Fig. 1, we compare the BER of the MLSDA with those obgorithms employ the same information length 40. Even when
tained by the VA and the SA. Since both the MLSDA and the VAve extend the information length of the SA to 200, the MLSDA
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Fig. 3. BER of the MLSDA for (2, 1, 6) code with information length 40. OPENMAX is the upper limit on the size of the Open Stack.

with information length 40 still provides around a 0.5-dB adthe estimation of the channel SNR. More comprehensive com-
vantage aBER = 107, parison along this line between the Viterbi algorithm and the SA
As mentioned earlier, the comparison in computational cornan be found in [6].
plexity between the MLSDA and the SA should be performed The final issue that we touched on in this work is the consid-
under a fixed BER for both algorithms. Observe from Fig. 1 thatration of a feasible stack-size demand. In practice, one often
the MLSDA (40) has almost the same BER as the SA (200)eeds to restrict the stack size due to the limitation of the system
We then note from Table | that the average computational comemory. Such limitation on the stack size, although reducing
plexity of the SA (200) is at least four times larger than that dhe computational efforts, unavoidably degrade the system per-
the MLSDA (40) wherSNR;, > 5 dB. Since the memory spaceformance. Accordingly, investigation of the dependence of the
required by a path entry in the stack is proportional to the infosystem degradation, as well as the reduction of average compu-
mation length, the memory required by the SA (200) is about 2&tional complexity, on the maximum stack size allowable be-
times larger than that of the MLSDA (40). comes necessary.
Now by examining the simulations on both (2, 1, 6) and (2, The Trellis-Based MLSDA With Finite Stack-Size Con-
1, 16) codes (cf. Tables |- 1), we observe thatélveragecom-  straint:
putational complexity of the SA for (2, 1, 6) code and (2, 1, 16) Steps 1-4:

code are close to each other, while thaximunmcomputational These four steps are identical to the trellis-based

complexity grows as the code constraint length increase. The MLSDA without stack-size constraint.

former observation re-confirms that the average computationalStep 5:

complexity of the SA does not depend on the code constraint If the size of the Open Stack is larger than

length [9]; yet, the latter observation indicates that the SA for OPENMAX, discard the path with the maximum

code with large code constraint length may suffer a buffer over- metric in the Open Stack. Repeat this step until

flow. the size of the Open Stack is no larger than
Fig. 2 collects the results on the MLSDA (40) for (2, 1, 6) OPENMAX.

code and the SA (100) and the SA (200) for (2, 1, 16) code. TheStep 6:

three curves indicate that the MLSDA (40) for (2, 1, 6) code If the top path in the Open Stack ends at the terminal

provides around a 1.0—dB advantage over the other two SAs at node in the trellis, the algorithm stops; otherwise go

BER = 107S. to Step 2.

To summarize from the above simulations, the conventionalWe now use the binary (2, 1, 6) convolutional code with in-
sequential decoding algorithm usually requires long inform&rmation length 40 to examine the dependence of the MLSDA
tion block length to obtain a low BER, which unavoidably reperformance on stack size constraint. We set two different upper
sults in long decoding delay and large stack space demand.IByits (OPENMAX) on the size of the Open Stack, which are
adopting a new metric in sequential decoding, the MLSDA cd&12 and 256. The simulation results are depicted in Fig. 3. We
achieve the same performance by a shorter information bloménclude from this figure that the MLSDA performance remains
length; and hence, the decoding delay, as well as the stack spatmpst intact for a feasible stack size constraint of 512. For a
can be fairly reduced. In additional to the above observatiorssnaller stack size limit, such as 256, the BER of the MLSDA
we also found that the new metric adopted in the MLSDA doés still close to the ML performance. We close the discussion
notrely on the knowledge (i.e., SNR) of the channel, when codes the stack size constraint by remarking that since the largest
are transmitted over the AWGN channel. This somehow hirgize of the Closed Stack is the number of nodes in a trellis and
that the MLSDA and the Viterbi algorithm share a common ndt-stores only the information of ending states and ending levels
ture that their performances are not sensitive to the accuracyfaf each entry, the memory size that the Closed Stack requires
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tends to be small. Accordingly, to place restriction on the Clos¢herev™* satisfies

Stack size is unnecessary because the memory consumption of  ~-1 2 N1

the MLSDA is indeed mostly contributed by the Open Stack. Z (</)j — (—1)’”3’) < Z (¢; — (—1)¥)? 4)
J=0 j=0

IV. CONCLUSION for all v € C and¢;, is defined in (1). The condition in (4) can
In this work, we present an ML soft-decision sequentidl® rewritten as

decoding algorithm (MLSDA) for binary convolutional codes, ~—! 2 N7l o

where a new metric other than the traditional Fano metric is used (¢j - (=1 ") = Z (¢ — (=1)")

for sequential searching of codewords. By the nonnegativity of i=0 i=

the new metric, the path metric along any path in a code trellis Y=} Nl -

or code tree of a convolutional code is nondecreasing. Togetﬁérzz (=1 < D —(=1)" ¢,

with the fact that the code path with minimum path metric 7=° 7=0

exactly gives the ML codeword, the MLSDA turns out to be an 1 Y=} . . 1= N
ML decoding algorithm for any code length as contrary to tHe 5 Z [(_1)‘” - (=1 J} ¢; < 2 Z (=D = (=1)"]¢;
suboptimality (orasymptoticoptimality in code length) of the J=0 7=0
conventional sequential decoding algorithm that employs the .
Fano metric. Also, unlike the conventional sequential decodifg Z (45 ®v)l¢5] < Z (4 ® v;)|¢5]
algorithm which searches codewords on a code tree, the MLSDA’=? J=0

can be made to operate on a convolutional code trellis. As a resulty—~ . =

the trellis-based MLSDA has the same biterrorprobabilityastﬁéz ¢lejl < Z el ¢;l

Viterbi algorithm, but is with much smaller metric computational ’
complexity. We conclude from our simulations in Section lIwherey; andc; are defined as in Section Il. The alternative
that the computational complexity of the MLSDA is much lesexpression of the Wagner rule in (2) is then validated.

than that of the Viterbi algorithm, wheBINR,, is moderately

high. Under a comparable BER, the average computational ACKNOWLEDGMENT
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