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Abstract

This study investigates the bu!er allocation strategy of a #ow-shop-type production system that possesses
a given total amount of bu!ers and "nite bu!er capacity for each workstation as well as general interarrival
and service times in order to optimize such system performances as minimizing work-in-process, cycle time
and blocking probability, maximizing throughput, or their combinations. In theory, the bu!er allocation
problem is in itself a di$cult NP-hard combinatorial optimization problem, it is made even more di$cult by
the fact that the objective function is not obtainable in closed form for interrelating the integer decision
variables (i.e., bu!er sizes) and the performancemeasures of the system. Therefore, the purpose of this paper is
to present an e!ective design methodology for bu!er allocation in the production system. Our design
methodology uses a dynamic programming process along with the embedded approximate analytic proced-
ure for computing system performance measures under a certain allocation strategy. Numerical experiments
show that our design methodology can quickly and quite precisely seek out the optimal or sub-optimal
allocation strategy for most production system patterns.

Scope and purpose

Bu!er allocation is an important, yet intriguingly di$cult issue in physical layout and location planning
for production systems with "nite #oor space. Adequate allocation and placement of available bu!ers among
workstations could help to reduce work-in-process, alleviate production system's congestion and even
blocking, and smooth products manufacturing #ow. In view of the problem complexity, we focus on
#ow-shop-type production systems with general arrival and service patterns as well as "nite bu!er capacity.
The #ow-shop-type lines, which usually involve with product-based layout, play an important role in mass
production type of manufacturing process organization such as transfer line, batch #ow line, etc. The purpose
of this paper is to present a design methodology with heuristic search and imbedded analytic algorithm of
system performances for obtaining the optimal or sub-optimal bu!er allocation strategy. Successful use of
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this design methodology would improve the production e$ciency and e!ectiveness of #ow-shop-type
production systems. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Bu!er allocation is one of the most important, yet intriguingly di$cult problems in the design of
production systems since it must be coupled with an e!ective way of computing system perfor-
mance measures and a discrete optimization procedure for allocating bu!ers to the queues of each
workstation in the system in order to achieve such system performances as minimizing WIP, cycle
time and blocking probability, maximizing throughput, or their combinations. In theory, the bu!er
allocation problem is in itself a di$cult NP-hard combinatorial optimization problem, it is made
even more di$cult by the fact that the objective function is not obtainable in closed form for
interrelating the integer decision variables (i.e. bu!er sizes) and the performance measures of the
system. In view of the vast di$culty involved in solving our described problem, we present an
e!ective design methodology for bu!er allocation in a #ow-shop-type production system that
possesses a given amount of bu!ers and "nite bu!er capacity for each workstation as well as
general interarrival and service times.
In recent years, there have been substantial e!orts devoted to the design of bu!er in production

system. A summary of these studies is as follows. Reiman [1] analyzed the allocation strategy under
light tra$c density. Venkat [2] solved the bu!er allocation strategy assuming that queuing
networks posed exponential distributed service time and Poisson arrival process. Conway et al. [3]
demonstrated how to employ the simulation experiments to study the bu!er allocation problems.
Hillier et al. [4] has performed rather comprehensive studies to characterize the optimal bu!er
allocation pattern, and numerical results for lines with up to nine workstations were provided. So
[5] carried out the allocation strategy with minimal work-in-process through the use of enumer-
ation method.
Some researchers have taken advantage of the heuristic search method. Kubat and Sumita [6],

and Jafari and Shantikumar [7] used dynamic programming to determine bu!er allocation of
tandem production system with M/M/1/K queues. Hillier and So [8], Smith and Daskalaki [9],
and Smith and Chikhale [10] applied other heuristic search techniques to "nd bu!er allocation of
series/general assembly/transfer lines withM/M/1/K andM/E

�
/1/K queues. Hillier and So found

that bu!ers increase progressively in downstream workstations in a balanced facility when both
throughput and work-in-process are jointly considered. McClain and Moodie [11] also agreed to
their conclusion. Besides, they further found that whether production lines are balanced or
unbalanced under parts successively arriving, as a general rule, turned up the incremental attribute.
Singh and Smith [12] have exploited Powell's unconstrained optimization procedure (Powell [13])
along with the embedded expansion method (Kerbache and Smith [14,15]) to capture bu!er
allocation for series, merge and split, and general con"gurations with M/M/C/K queues.
In the course of searching, it is necessary to have an analytic approach for evaluating system

performances under a given bu!er allocation strategy. Generally speaking, the approximate
procedure can be classi"ed into two categories. One is according to the notion of analyzing
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successive pairs of adjacent queues as suggested by Brandwajn and Jow [16], and Gershwin [17].
The other is employed in this paper and summarized as follows.

(1) The queueing network with blocking is decomposed into individual queues with modi"ed
service and arrival process. The service process is revised to re#ect the additional delay that
a part might undergo due to blocking.

(2) The queue bu!er is also modi"ed for one particular blocking mechanism.
(3) Each queue is then analyzed in isolation.

Most of the approximate algorithms proposed for exponential service times such as those by
Shanthikumar [18], Altiok [19], Boxma and Konheim [20], Perrors and Altiok [21], and Perros
and Snyder [22]. Altiok [23] considered tandem con"gurations with general service times, but he
assumed that the arrival process to each decomposed queue is a Poisson process. Kerbache and
Smith [15] analyzed open "nite queueing networks with general service times assuming that the
arrival process is renewal. The methods presented by Harrison and Pich [24] and Shi [25] are
a QNA version; i.e., two-moment approximation (see Whitt [26,27]), for handling queueing
networks with blocking. Shi extended from Bronshtein [28] and assumed that wherever blocking
occurs, arriving customers simply get lost.
In this paper, we present an approximate algorithm for analyzing the performance of open

tandem queueing networks with blocking and general interarrival and service times. This algo-
rithm is an extension of the algorithms proposed by Altiok [19,29], Perrors and Altiok [21], and
Perrors and Snyder [22], where the arrival process to each decomposed queue was assumed to be
Poisson. However, because of the blocking e!ect, this assumption is generally not true. Jun and
Perrors [30] reported on an approximation, which is abbreviated as JP approach, that each arrival
process is assumed to be renewal and approximated by a Coxian distribution (see Altiok [29], and
Yao and Buzacott [31]). Also, the parameters of these distributions are approximated iteratively.
Their method had been validated by solving performance measures of open tandem queueing
network with "nite bu!er, general service times and Poisson arrival process. In this paper, we revise
the JP approach to deal with exogenous renewal arrival process. To this end, our algorithm
primarily di!ers from the JP approach in that the arrival process at each "nite queue is assumed to
be a Coxian distribution in the three basic steps of the JP approach.
The rest of the paper is organized as follows. First, in Section 2, we outline the underlying nature

of the #ow-shop-type production system under study and summarize the approximate algorithm
for solving performance measures of the system. Then, in Section 3, we describe the search
procedure of forward recursive dynamic programming algorithm for "nding out the bu!er
allocation strategy in detail. Some numerical cases are presented in Section 3.2, where we compare
the results of the search procedure with the output obtained from exhaustive enumeration. Brief
concluding remarks are presented in Section 4.

2. The approximate algorithm for performance evaluation

2.1. The tandem queueing network model

First of all, we outline our system patterns as shown in Fig. 1. The fundamental properties of the
#ow-shop-type production system are assumed as follows.
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Fig. 1. The model of a #ow-shop-type production system.

(1) The system in our model consists of a number of queues arranged in tandem. A part gets into
the system via the "rst queue, #ows through and is processed by all queues in turn, and "nally
departs from the system by way of the last queue.

(2) The total factory area that can be used to set up the bu!er capacities is "xed and "nite. As
a result, bu!er capacity (including the one in service) of all queues in the system are restricted in
size, and thus the blocking phenomenon exists.

(3) Parts arrive the system from outside according to a renewal process, that is, the interarrival
times of parts are independently and identically distributed random variables with an arbitrary
probability distribution. In addition, we also assume that the arrival process to each queue is
renewal. Parts arriving during the period that the bu!er capacity of the "rst queue is full are
lost.

(4) Each queue has a single server with general service time distribution. Moreover, the service
times and interarrival times are mutually independent. In addition, service disciplines are on
a "rst-come-"rst-served basis for all queues.

(5) Once the operation of a part is "nished at the ith queue, the part goes directly to the (i#1)th
queue, where it enters into service immediately if the server is free; otherwise, it joins the queue
if there is a place in the bu!er capacity. If there is no place in the queue of the (i#1)th queue,
the part has to wait at the ith queue, which therefore becomes blocked. During this time, the ith
queue remains idle and it cannot serve any other parts that might be waiting in its queue.
Obviously, blocking of the last queue is not feasible in this model.

2.2. The approximate algorithm

Asmentioned, we revise the JP approach to evaluate the performances of the system described in
Section 2.1. The primary characteristics of our algorithm are summarized as follows.

(1) The network decomposition is exploited. That is, the system of tandem queues is decomposed
into individual queues and then each queue is analyzed in isolation. Finally, one can obtain
performance measures of the whole system by an integrated process.

(2) The Coxian distribution with two phases (denoted by Cox-2) is used to approximate general
service time and interarrival time distribution whose squared coe$cient of variation (c�) is
greater than 0.5. That is, a part in queue i "rst goes through service (arrival) phase 1 with mean
1/�

��
(1/�M

��
); after completing this service (arrival), it leaves (arrives at) the service facility with

probability 1!�
�
(1!��

�
), while with probability �

�
(��

�
), it receives an additional phase

2 service (arrival) with mean 1/�
��
(1/�M

��
).

(3) The parameters of the service and the arrival processes are computed and amended approxim-
ately using an iterative scheme.
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First, we de"ne the following notations to facilitate description of the analytic procedure.

M total number of queues
�M (�M

�
, �M

�
, �� ) parameters of the Cox-2 exogenous interarrival time distribution to the system

�M
�
(�M

��
, �M

��
, ��

�
) parameters of the Cox-2 e!ective interarrival time distribution at queue i

�
�
(�

��
, �

��
, �

�
) parameters of the Cox-2 overall interarrival time distribution at queue i

N
�

bu!er capacity of queue i (including the one in service)
�
�
(�

��
, �

��
, �

�
) parameters of the Cox-2 original service time distribution at queue i

�
�
(�

��
, �

��
, �

�
) parameters of theCox-2 e!ective service time distribution at queue i (including the
blocking delay)

p
�
(n) probability that there are n parts in queue i (including the one in service) at any

time
p
�
(n, j, k) probability that there are n parts in queue i (including the one in service), the

arrival process is in phase j ( j"1, 2), and the service process is in phase
k (k"1, 2) at any time

q
�
(n) probability that an arriving part "nds n parts in queue i (including the one in

service)
q
�
(n, j) probability that the server is in phase j ( j"1, 2) and there are n parts in queue

i (including the one in service) immediately before an arrival
q
�
(n, j, k) probability that the arrival process is in phase j (j"1, 2), the service process is in

phase k (k"1, 2), and there are n parts in queue i (including the one in service)
immediately before an arrival

r
�
(n) probability that a departing part leaves n parts in queue i

w
���

conditional probability that the ith server is at the jth phase of service, given that
queue i has N

�
parts, i.e., queue i is full

�
�

conditional probability that upon service completion at the queue i, the queue
i#1 is full, i.e., it contains N

���
parts including the one in service

SH
�
(s) Laplace transform of the pdf (s

�
(t)) of the original service time at queue i

BH
�
(s) Laplace transform of the pdf (b

�
(t)) of the e!ective service time at queue i (including

the blocking delay)
DH

�
(s) Laplace transform of the pdf (d

�
(t)) of the interdeparture time from queue i

AH
�
(s) Laplace transform of the pdf (a

�
(t)) of the e!ective interarrival time at queue i in

starting step
EH
�
(s) Laplace transform of the pdf (e

�
(t)) of the e!ective interarrival time at queue i in

backward adjustment step and forward adjustment step
OH

�
(s) Laplace transform of the pdf (o

�
(t)) of the overall interarrival time at queue i

Next, we will describe the approximate algorithm in detail. The analytic procedure of algorithm
consists of four basic steps, i.e., preparation step, starting step, backward adjustment step, and
forward adjustment step.

Preparation step
(1) Get the "rst three moments m�

��
, m�

��
, m�

��
;i"1, 2,2, M of the original service time for each

queue, and then convert the computed results into the parameters 	
�
(�

��
, �

��
, �

�
);

i"1, 2,2, M of Cox-2 distribution (refer to Appendix A).
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(2) Get the "rst three moments m�
�
, m�

�
, m�

�
of the interarrival time to the "rst queue.

(3) Except the "rst queue, add one "ctitious bu!er to every queue so as to accommodate the
blocked part, i.e., N

�
#1; i"2, 3,2, M.

Starting step
(1) The "rst three moments m�

��
, m�

��
, m�

��
of the e!ective interarrival time for all queues are

m�
�
, m�

�
, m�

�
.

(2) Because of the network structure, the last queue could not get blocked. Thus, we start
with the Mth queue and proceed backward to queue 1. BH

�
(s)"SH

�
(s) and

�
�
(�

��
, �

��
, �

�
)"�

�
(�

��
, �

��
, �

�
) evidently make sense for queue M. So, we can ana-

lyzeMth queue as a Cox-2/Cox-2/1/N
�

#1 queue and compute the queue-length distribution
p
�
(n), p

�
(n, j, k) and q

�
(n), q

�
(n, j) and q

�
(n, j, k) (refer to Appendix A). As for the other

queues, because they may get blocked, it is necessary to add probable blocking delay time to
the original service time. Laplace transform of the e!ective service time is then obtained as
follows (see Jun and Perros [30])

BH
�
(s)"(1!�

���
)SH

�
(s)#�

����SH
�
(s)H�w�����

BH
���
(s)#w

���� �

�
�����

s#�
�����

��,
i"M!1,M!2,2, 1, (1)

where

SH
�
(s)"(1!�

�
)

�
��

s#�
��

#�
�

�
��

s#�
��

�
��

s#�
��

, (2)

BH
���
(s)"(1!�

���
)

�
�����

s#�
�����

#�
���

�
�����

s#�
�����

�
�����

s#�
�����

. (3)

The quantities �
�
and w

�����
are calculated approximately from queue-length distribution of the ith

queue. In particular, the quantity w
�����

can be obtained as follows:

w
�����

"q
���
(N

���
, j)/q

���
(N

���
); j"1, 2. (4)

The probability �
�
can be solved using Little's formula on the "ctitious position, i.e., N

���
#1

in (i#1)th queue as follows:

(1/m�
�
)�

��w������
1

�
�����

#

�
���

�
�����

�#w
�����

1
�

�����
�"p

���
(N

���
#1). (5)

The quantity within bracket in the above expression is the remaining service time of the (i#1)th
server at the instance when the ith server gets blocked. Therefore, the "rst three moments of the
e!ective service time are computed as follows:

m�
��

"!lim
�	�

dBH
�
(s)

ds
, m�

��
"lim

�	�

d�BH
�
(s)

ds�
, m�

��
"!lim

�	�

d�BH
�
(s)

ds�
. (6)
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Fig. 2. The blocking and e!ective service time.

The computed results are then converted into the parameters �
�
(�

��
, �

��
, �

�
); i"M!1,

M!2,2, 1 of Cox-2 distribution (refer to Appendix A). Fig. 2 shows the concept of blocking and
e!ective service time.
(3) To guarantee a throughput 1/m�

�
, we need to know in advance the "rst three moments

m

��
, m


��
, m


��
of o

�
(t) rather than the "rst three moments m�

��
, m�

��
, m�

��
of a

�
(t).

Through the relationship between AH
�
(s) and OH

�
(s) (see Kuehn [31]):

AH
�
(s)"

(1!q
�
(N

�
#1))OH

�
(s)

1!q
�
(N

�
#1)OH

�
(s)
, (7)

m

��
, m


��
, m


��
can be expressed as follows

m

��

"(1!q
�
(N

�
#1))m�

��
,

m

��

"(1!q
�
(N

�
#1))(m�

��
!2Hq

�
(N

�
#1)(m�

��
)�),

m

��

"(1!q
�
(N

�
#1))�(m�

��
!6Hq

�
(N

�
#1)m�

��
m�

��
#6q

�
(N

�
#1)�(m�

��
)�),

i"M, M!1,2, 2. (8)

Note that the three momentsm

��
, m


��
, m


��
are a function of q

�
(N

�
#1), which is unknown. This can

be obtained by solving the "xed-point problem, 1/m

��

"(1/m�
��
)/(l!q

�
(N

�
#1)). As for the "rst

queue, the m

��
, m


��
, m


��
are set equal to m�

��
, m�

��
, m�

��
. Then the computed results are converted

into the parameters �
�
(�

��
, �

��
, �

�
) of Cox-2 distribution (refer to Appendix A).

(4) Working backwards and following the same procedure as inMth queue, we can analyze queue
i; i"M!1,2, 2, in isolation as a Cox-2/Cox-2/1/N

�
#1 queue, and the "rst queue is

analyzed as aCox-2/Cox-2/1/N
�
with�

�
(�

��
, �

��
, �

�
) and�

�
(�

��
, �

��
, �

�
) in order to obtain the

queue-length distribution p
�
(n), p

�
(n, j, k) and q

�
(n), q

�
(n, j) and q

�
(n, j, k).

Backward adjustment step

(1) In this step, the analysis of the network proceeds from queue 1 to queueM. The purpose of this
step is to revise the parameters of the arrival process, so that the e!ective service time is kept
constant.

(2) Because the e!ective and overall interarrival time does not change at the "rst queue, we do not
analyze queue 1 in backward adjustment step.
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(3) Let us consider queue i; i"2, 3,2, M. In order to characterize its arrival process, we must
know d

���
(t), the pdf of the interdeparture time from the upstream queue. Assuming that

successive e!ective services are independent of each other, we can obtain its Laplace transform
as follows (see Jun and Perros [30]):

DH
�
(s)"


��
OH

�
(s)BH

�
(s)#


��

�
��

s#�
��

BH
�
(s)#(1!


��
!


��
)BH

�
(s), i"1,2,M!1, (9)

where

OH
�
(s)"(1!�

�
)

�
��

s#�
��

#�
�

�
��

s#�
��

�
��

s#�
��

, (10)

where 

��
is the probability that an arrival is in phase j of the arrival process and a departing part

leaves queue i empty, j"1, 2.
We can use following equations to calculate 


��
:



��

"

1
G

�

[(1!�
�
)�

��
p
�
(1, 1, 1)#�

��
p
�
(1, 1, 2)],



��

"

1
G

�

[(1!�
�
)�

��
p
�
(1, 2, 1)#�

��
p
�
(1, 2, 2)],

G
�
"(1!�

�
)�

��

����
�
���

�
�
���

p
�
(n, k, 1)#�

��

����
�
���

�
�
���

p
�
(n, k, 2). (11)

DH
�
(s) is in fact equal to EH

���
(s), the Laplace transform of the e!ective interarrival time at queue

i#1. From EH
���
(s), we can obtain the "rst three moments of e

���
(t): m


�����
, m


�����
, m


�����
via the

transformation similar to (6). However, we need to know the overall arrival process o
���
(t). Taking

the same procedure as (8), we can obtain the "rst three moments of o
���
(t): m


�����
, m


�����
, m


�����
.

Once again, the computed results are converted into the parameters �
�
(�

��
, �

��
, �

�
) of Cox-2

distribution (refer to Appendix A).
(4) Working forward, we can analyze each queue i; i"2, 3,2, M, in isolation as a Cox-2/Cox-

2/1/N
�
#1 queue with �

�
(�

��
, �

��
, �

�
) and �

�
(�

��
, �

��
, �

�
) in order to obtain the queue-length

distribution p
�
(n).

Forward adjustment step

(1) The step also proceeds forward from queueM to queue 1 as the starting step. The objective in
this step is to re-calculate the e!ective service time at each queue.

(2) Queue M is not analyzed in this step since it cannot be blocked. The analysis, therefore,
proceeds from queue M!1 to queue 1.

(3) Except for replacing a
�
(t) obtained in starting step with e

�
(t) obtained in backward adjustment

step, other analytic procedures are identical to the starting step.
(4) Working backwards, we can analyze queue i; i"M!1,M!2,2, 2, in isolation as a Cox-

2/Cox-2/1/N
�
#1 queue with �

�
(�

��
, �

��
, �

�
) and �

�
(�

��
, �

��
, �

�
) in order to obtain the queue-

length distribution p
�
(n). The "rst queue is analyzed as a Cox-2/Cox-2/1/N

�
.
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Fig. 3. The analytic procedure of the approximate algorithm.

In addition, note that each queue in all steps is analyzed numerically using an iterative scheme,
which is developed by Yao and Buzacott [32] to solve the queue-length distribution p

�
(n) and

p
�
(n, i, j) of Cox-2/Cox-2/c/N queue.
Then, as shown in Fig. 3, the analytical process progresses repeatedly between forward adjust-

ment step and backward adjustment step until the maximal di!erence of queue-length distribution
obtained from both steps is less than a default value. It should be noted that after the procedure
stops, the actual probability p

�
(N

�
), i"2, 3,2, M, is obtained as the sum of p

�
(N

�
) and p

�
(N

�
#1).

Then, we can resolve some of the performance measures through the steady-state queue-length
distribution and Little's formula.
Finally, by integrating the measures of individual queues, we can calculate the performance

measures of the whole production system such as WIP, cycle time, throughput, and so on as
follows:

WIP"

�
�
���

¸
�
"

�
�
���

��

�
���

kp
�
(k), (12)

Cycle time"
�
�
���

=
�
"

�
�
���
�

¸
�

(1/m

��
)�, (13)

Throughput"(1/m�
�
)(1!p

�
(N

�
)). (14)

The complete approximate algorithm is summarized in Appendix A.

2.3. Numerical examples

In this section, the approximate procedure discussed in Section 2.2 was employed to analyze
various tandem con"gurations. To examine the level of precision, the approximate results were
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Table 1
(1/m�

�
, c�

�
)"(2.5, 2), 1/m�

��
"(4, 3, 4), c�

���
"(2, 2, 2),

N
�
"(4, 5, 3)

Approximate Simulation Relative err.

¸
�

1.570 1.620 0.0309
¸
�

2.409 2.482 0.0294
¸
�

0.962 0.977 0.0154
Throughput 2.062 2.026 !0.0178

Table 2
(1/m�

�
, c�

�
)"(3, 2), 1/m�

��
"(4, 3, 4), c�

���
"(2, 2, 2), N

�
"

(4, 5, 3)

Approximate Simulation Relative err.

¸
�

1.941 2.043 0.0499
¸
�

2.830 2.891 0.0211
1.062 1.043 !0.0182

Throughput 2.254 2.145 !0.0508

Table 3
(1/m�

�
, c�

�
)"(3.5, 2), 1/m�

��
"(4, 3, 4), c�

���
"(2, 2, 2),

N
�
"(4, 5, 3)

Approximate Simulation Relative err.

2.250 2.353 0.0438
3.129 3.243 0.0352
1.124 1.125 0.0009

Throughput 2.391 2.263 !0.0566

Table 4
(1/m�

�
, c�

�
)"(2, 2), 1/m�

��
"(4, 3, 4, 3, 4), c�

���
"(2, 2, 2, 2, 2),

N
�
"(4, 5, 3, 5, 4)

Approximate Simulation Relative err.

1.190 1.250 0.0480
1.991 2.129 0.0648
0.984 1.037 0.0511
1.661 1.730 0.0399
0.883 0.868 !0.0184

Throughput 1.779 1.747 !0.0183

compared with the simulation results obtained from six numerical experiments. Simulation models
were created and simulation outputs of system-length and throughput were obtained by using the
PROMODEL package under the same system conditions and inputs.
Tables 1}3, Tables 4}5, and Table 6 give results for three-queue, "ve-queue, and seven-queue

networks, respectively. Each table gives the approximate results, the simulation results, and the
observed relative error. Due to space considerations, we only give the mean system-length ¸

�
for

each queue i, and throughput. From these comparisons, the average relative errors of the proposed
algorithm were found to be about 4% for throughput, and not exceeding 8% for mean system-
length. Moreover, the approximations still give an acceptable result as the number of queues or
arrival rate increases. As for cycle time, since system-time is highly correlated with system-length
according to Little's formula, it implies that their scale of errors would be pretty close. From this,
we are con"dent that the algorithm presented in this paper should give good approximate when it
is used to solve the �GI/G/1/N queueing network in tandem.

3. Herhuric search process for bu4er allocation

3.1. Heuristic search process

We primarily employed the forward recursive dynamic programming algorithm to obtain the
bu!er allocation strategy. Dynamic programming typically solves the problem in stages, with each
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Table 5
(1/m�

�
, c�

�
)"(2.5, 2), 1/m�

��
"(4, 3, 4, 3, 4), c�

���
"(2, 2, 2, 2, 2),

N
�
"(4, 5, 3, 5, 4)

Approximate Simulation Relative err.

1.649 1.750 0.0577
2.655 2.787 0.0474
1.238 1.283 0.0351
2.087 2.116 0.0137
1.051 1.036 !0.0145

Throughput 2.024 1.956 !0.0348

Table 6
(1/m�

�
, c�

�
)"(2.5, 2), 1/m�

��
"(4, 3, 4, 3, 4, 3, 4), c�

���
"(2, 2,

2, 2, 2, 2, 2), N
�
"(4, 5, 6, 3, 6, 5, 4)

Approximate Simulation Relative err.

1.589 1.719 0.0756
2.442 2.653 0.0795
2.454 2.661 0.0778
1.602 1.648 0.0279
1.789 1.848 0.0319
2.181 2.118 !0.0298
1.073 1.032 !0.0397

Throughput 2.0508 1.9643 !0.0440

stage involving exactly one optimizing variable. The computations at the di!erent stages are linked
through recursive computations in a manner that yields a feasible optimal solution to the entire
problem.
To facilitate exposition, we de"ne the following additional notations:

K total number of bu!ers that can be allocated
NM

�
(X)"�N

�
,N

�
,2,N

�
� the certain bu!er allocation strategy for the "rst j workstations, and

X"��
���

N
�

F
�
(NM

�
(X)) the measure of lth kind of performance generated by the "rst j work-

stations that can be system throughput, WIP, and cycle time, when the
allocation strategy is NM

�
(X)

f
��
(N

�
) the measure of lth kind of performance generated by the jth worksta-

tions that can be throughput, WIP, and cycle time, when it is assigned
N

�
bu!er capacities

Z
�
(X, NM

�
(X)) the multi-objective non-linear function for the "rst j workstations

Z
�
(F

�
(NM

�
(X),F

�
(NM

�
(X),2,F

�
(NM

�
(X))

g
�
(N

�
) the formulation of performance for the jth workstation when it is

assigned N
�
bu!er capacities

g
�
( f

��
(N

�
), f

��
(N

�
),2, f

��
(N

�
))

Let the number of workstations represent stage, and the number of bu!ers, which have already
been allocated, represent state. The type of mathematical programming problem can be written as
follows:

ZH
�
(K, NM H

�
(K))"Extremize Z

�
(K, NM

�
(K))

subject to:
�
�
���

N
�
"K,

N
�
*0, i"1, 2,2, M.

(15)
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In addition, the following formula summarizes the nature of the forwardly recursive dynamic
programming algorithm:

�
best performance

for the stages

1, 2,2, i#1 given

state x
���

�"
Max or Min

over all feasible

alternatives of

stage i#1

given x
���

��
performance of

the feasible

alternative for

stage i#1 �#�
best performance

for stage 1, 2,2, i

given its state x
�
��,

(16)

where x
���

is the amount of bu!ers allocated to stage 1, 2,2, i#1, x
�
the amount of bu!ers

allocated to stage 1, 2,2, i; x
���

the amount of bu!ers allocated to given alternative of stage i#1.
Taking an example by minimization, we illustrate derivative process of the optimal solution as

follows.

(1) The "rst two workstations

ZH
�
(x

�
, NH

�
(x

�
))"Min[g

�
(x

�
)#g

�
(x

�
!x

�
)], x

�
"0, 1,2, K, x

�
"0, 1, 2,2, x

�
. (17)

(2) The 3rd workstation to (M!1)th workstation

ZH
�
(x

�
, NM H

�
(x

�
))"Min[ZH

���
(x

���
, NM H

���
(x

���
))#g

�
(x

�
!x

���
)],

x
�
"0, 1,2,K, x

���
"0, 1,2, x

�
, i"3, 4,2, M!1. (18)

(3) The Mth workstation.
Since all available bu!ers have to be allocated exhaustively and disposed of entirely, so

ZH
�
(K, NM H

�
(K))"Min[ZH

���
(x

���
, NM H

���
(x

���
))#g

�
(K!x

���
)], x

���
"0, 1,2,K.

(19)

Following the above dynamic programming process (as shown in Fig. 4), we could derive the
optimal or sub-optimal bu!er allocation strategy.

3.2. Numerical experiments

Sets of experiments were performed so as to validate the integration of the approximate
algorithm and DP and to illustrate the e$cacy of the design methodology. To this end, the results
produced by our heuristic algorithm were compared with the results obtained by the enumerative
method. Both methods were based on the approximate algorithm in which we have already
justi"ed in Section 2.
For simpli"cation and demonstration purpose, the objective function was set to be

ZH
�
(K, NM H

�
(K))"Maximize Z

�
(K, NM

�
(K)), (20)
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Fig. 4. The search process of dynamic programming along with the embedded approximate analytic procedure of system
performance.

whereZ
�
(K, NM

�
(K))"F

�������	��
(NM

�
(K)) for the six examples described in Section 2.3. The search

results of the optimal allocation strategy by heuristic algorithm and enumerative method
were shown in Table 7. Though there were some discrepancy between the two strategies
obtained, it is clear that the di!erences of system throughput under the two strategies were trivial
for the most part. In our view, sacri"cing slight precision is worthwhile saving much search time. In
particular, it is more evident when the total available bu!er capacity or number of workstations
gets larger.
Nevertheless, the methodology might be further improved through a re"ned technique to

enhance solution quality, if necessary. Among other things, a partial reason behind the di!erence
between heuristic algorithm and enumerative method is the dependence of arrival processes
between workstations such that in the search process of DP, the feasible optimal solution of the
previous stage is not necessarily included in the optimal solution of the rear stage. To reduce the
e!ect of dependence, we can reserve more than one of the optimal and sub-optimal solutions in the
previous stage so as to increase the possibility that the real optimal solution is included in the rear
stage. Table 7 shows the results and the improvement of throughput when we reserved two
solutions in these experiments. Of course, this is a tradeo! between solution quality and computa-
tional e$ciency (search time). We suggest that the manufacturing system should adopt the methods
of enhancing solution quality when the space, which is available for allocation, is not su$cient and
is di$cult for enlarging, and blocking is very likely to happen in the manufacturing line. In the
meantime, a more e!ective bu!er allocation strategy might help to reduce the incidence of
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blocking. On the other hand, one should pursue computational e$ciency rather solution quality if
the space is su$cient.

4. Conclusion remarks

In this paper, we study the bu!er allocation strategy of the #ow-shop-type production system
that possesses a given total amount of the bu!ers and "nite bu!er capacity for each workstation as
well as general interarrival and service times. We hope to attain such system performances as
minimizing work-in-process, cycle time and blocking probability, maximizing throughput, or their
combinations according to the allocation strategy thus obtained. To this end, we present a design
methodology that performs the bu!er allocation using a dynamic programming process along with
the embedded approximate analytic procedure for computing performance measures under a
certain bu!er allocation strategy. Although our methodology cannot overcome completely
the dependent problem, the numerical experiments demonstrate the e!ectiveness of this design
methodology. As a result, we are con"dent that using the design methodology presented by our
paper could determine the bu!er allocation quickly and quite precisely.
For future research, our developed heuristic algorithm could be generalized to cope with bu!er

allocation strategy under arbitrary con"guration; i.e., job-shop-type production system (see Altiok
and Perros [33]). Other extension involves treating bu!er allocation strategy under multi-server
queues with tandem or arbitrary network con"guration.

Appendix A

A.1. Coxian-2 distribution (adapted from Jun and Perros [30])

Consider a Coxian distribution with two phases, denoted by Cox-2, and having parameters
(


�
, 


�
, �). Its Laplace transform is as follows:

f H(s)"(1!�)


�

s#

�

#�


�

s#

�



�

s#

�

. (A.1)

The "rst moments of a Cox-2, m
�
,m

�
, and m

�
, can be derived by following equations:

m
�
"

1


�

#

�


�

, m
�
"2�

1

�
�

#

�


�


�

#

�

�
�
�, m

�
"6�

1

�
�

#

�

�
�


�

#

�


�

�
�

#

�

�
�
�. (A.2)

For a general distribution with a squared coe$cient of variation c�'0.5, given its "rst three
moments m

�
, m

�
, and m

�
, the Cox-2 parameters can be determined through the following

equations according to di!erent conditions:

(1) c�'1.0 and m
�
/m�

�
'1.5(c�#1)�;

u"(6m
�
m

�
!2m

�
)/(3m�

�
!2m

�
m

�
),

v"(12m�
�
!6m

�
)/(3m�

�
!2m

�
m

�
),



�
, 


�
"�

�
[u$(u�!4v)���], �"


�
(m

�
!1/


�
). (A.3)

M.-G. Huang et al. / Computers & Operations Research 29 (2002) 103}121 117



(2) c�'1.0 and m
�
/m�

�
)1.5(c�#1)�;



�
"2/m

�
, 


�
"1/(m

�
c�), �"1/(2c�). (A.4)

(3) 0.5(c�)1.0;



�
"1/(m

�
c�), 


�
"2/(m

�
), �"2(1!c�). (A.5)

A.2. Arrival-epoch probabilities of a C
�
/C

�
/1/N queue (adapted from Jun and Perros [30])

The probability q(n) and the probability q(n, j) can be obtained as follows:

q(n, 1)"q(n, 1, 1)#q(n, 2, 1), q(n, 2)"q(n, 1, 2)#q(n, 2, 2),

q(n)"q(n, 1)#q(n, 2). (A.6)

Consider a C
�
/C

�
/1/N queueing system with arrival Cox-2 parameters ar"(a

�
, a

�
, �), the

probability q(n, j, k) can be expressed in terms of the time-average probabilities p(n, j, k) as follows

q(n, 1, k)"(1!�)a
�
p(n, 1, k)/H, k"1,2,

q(n, 2, k)"a
�
p(n, 2, k)/H, k"1, 2, (A.7)

where

H"(1!�)a
�

�
�
���

�
�
���

p(n, 1, k)#a
�

�
�
���

�
�
���

p(n, 2, k). (A.8)

Approximate algorithm for tandem queueing network model

Preparation step
0. Get m�

��
, m�

��
, m�

��
;i"1, 2,2, M, and obtain SH

�
(s) and �

�
(�

��
, �

��
, �

�
); i"1, 2,2, M.

1. Get m�
�
, m�

�
, m�

�
.

2. Except for queue 1, add one "ctitious bu!er to each queue.

Starting step
0. Get m�

��
, m�

��
, m�

��
; i"1, 2,2, M.

1. Set i"M.
2. Obtain BH

�
(s) and �

�
(�

��
, �

��
, �

�
).

3. Obtain OH
�
(s) and m


��
, m


��
, m


��
, and compute �

�
(�

��
, �

��
, �

�
).

4. Analyze queue i as a Cox-2/Cox-2/1/N
�
#1 queue and compute

p	�

�
(n), p	�


�
(n, j, k); n"0, 1,2,N

�
#1; j"1, 2; k"1, 2,

q	�

�
(n), q	�


�
(n, j), q	�


�
(n, j, k); n"0, 1,2,N

�
#1; j"1, 2; k"1, 2, w

���
, j"1, 2, and �

���
.

5. Set i"i!1.
6. If i"1, analyze queue 1 as a Cox-2/Cox-2/1/N

�
queue, compute p	�


�
(n); n"0, 1,2,N

�
, and go

to backward adjustment step. Otherwise, go to 2.
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Backward adjustment step
0. Set i"1.
1. Obtain DH

�
(s), EH

���
(s), and OH

���
(s).

2. Calculate m

�����

, m

�����

, m

�����

and obtain �
���
(�

�����
, �

�����
, �

���
).

3. Keep �
���
(�

�����
, �

�����
, �

���
) constant.

4. Analyze queue i as a Cox-2/Cox-2/1/N
���

#1 queue and compute

p	�

���
(n), p	�


���
(n, j, k); n"0, 1,2,N

���
#1; j"1, 2; k"1, 2,

and

q	�

���
(n), q�


���
(n, j), q	�


���
(n, j, k); n"0, 1,2,N

���
#1; j"1, 2; k"1, 2.

5. If i"M!1, go to forward adjustment step. Otherwise, set i"i#1 and go to 1.

Forward adjustment step
0. Use the same procedure as in the starting step, except replace a

�
(t) with e

�
(t).

1. Analyze queue i as a Cox-2/Cox-2/1/N
�
#1 queue and compute

p	�

�
(n), p	�


�
(n, j, k); n"0, 1,2,N

�
#1; j"1, 2; k"1, 2,

and

q	�

�
(n), q	�


�
(n, j), q	�


�
(n, j, k); n"0, 1,2,N

�
#1; j"1, 2; k"1, 2.

For queue 1, analyze it as a Cox-2/Cox-2/1/N
�
queue, compute p	�


�
(n); n"0, 1,2,N

�
.

2. Test for convergence. If

Max
�

�p	�

�
(n)!p	�


�
(n)�(�, i"1, 2,2,M, (A.9)

then go to 3. Otherwise, go back to backward adjustment step.
3. The actual probability p

�
(N

�
), i*2, is obtained by summing p

�
(N

�
) and p

�
(N

�
#1).

4. Calculate ¸
�
and =

�
; i"1, 2,2,M

5. Obtain WIP, Cycle time, and Throughput.
6. Stop.
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