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A Note on the Poor—Verdu Upper Bound for the Channel lower bounds (random coding and expurgating) i1 ?) and em-

Reliability Function ployed them to show thaf* (R) is convex and can be exactly deter-
mined via a simple expression at high rates ffddveyond some critical
Fady Alajaji Senior Member, IEEE rate). The determination df* () at low rates, which is conjectured
Po-Ning Chen Senior Member, IEEEand to be convex, is still an unsolved problem, even for the simple memo-
Ziad RachedStudent Member, IEEE ryless binary symmetric channel (BSC). In [5], Egarmin extended the

expressions of the random coding lower bound and the space parti-

) ) ) tioning upper bound foE*(R) for discrete finite-alphabet channels
Abstract—n an earlier work, Poor and Verdu established an upper \in modulo-additive irreducible Markov noise. He also proved that the
bound for the reliability function of arbitrary single-user discrete-time L - . .
channels with memory. They also conjectured that their bound is tight for WO bounds comudel asympt.ot|cally (W'th the block lengthat high
all coding rates. In this note, we demonstrate via a counterexample in- rates. In [7], Han derived an information-spectrum-based lower bound
volving memoryless binary erasure channels (BECs) that the Poor—Verdd for E*( R) for arbitrary (not necessarily, stationary, ergodic, etc.) chan-
upper bound is not 'tlght at low rates. We conclude by examining possible na|s with memory. In addition to the general upper bound provided by
improvements to this bound. Poor and Verdu, Cheet al.[3] derived another information-spectrum
Index Terms—Arbitrary channels with memory, binary erasure chan-  upper bound fo&*( ?) for arbitrary channels as a consequence to their
nels (BE(E)S)Bﬁ_han?elcodmg, channel reliability function, information spec- result providing a general expression for the asymptotic largest min-
t , t . . .
rum. prohafiity ot error imum distance of block codes.

I. INTRODUCTION Il. PRELIMINARIES
Consider an arbitrary inpX defined by a sequence of finite-dimen-  Definition 1 (Channel Block Code)An (n, M) code for channel
sional distributions [9] W™ with input alphabeft” and output alphabét is a pair of mappings
x 2 {xm=(x" L x) AL 2 .. M} = X" and )" —{l.2, ..., M}.
bl ? n n=1 -

Its average error probability is given by
Denote by

y 2 {Y"‘ _ (Yf"), Yé"))}il P.(n, M) Z > W"(y"[f(m)).

m=1 {y7: g(y™)#m}

the corresponding output induced Ayvia the channel
P goup Y Definition 2 (Channel Reliability Function [8]):For anyR > 0,

define the channel reliability functioA™(R) for a channeW as the

é[,/rn_ . pn 3 oo
W= = Py 7 = Vs largest scalat > 0 such that there exists a sequencé&af, ) codes

with
which is an arbitrary sequence ofdimensional conditional distribu-

tions from ™ to ", whereX” and) are the input and output alpha- 4 < liminf _V log, P.(n, M)
bets, respectively. We assume throughout #tias finite and thafy is n—eo
arbitrary. and
In [8], Poor and Verdu established an upper bound for the reliability R < liminf f log, M. Q)

n—oo

function E*(R) of W. They then conjectured that this bound is tight

for all code rates. However, no known proof could substantiate this

conjecture. In this work, we demonstrate via a counterexample th

their original upper bound formula is not necessarily tight at low rate%’

A possible improvement to this bound is then addressed. Definition 3: Fix R > 0. For an inputX and a channeW, the
Previous related work mainly involved the establishment of upptirge-deviation spectrum of the channel is defined as

and lower bounds fo£*(R). In [1], [4], [6], and [10] (cf. also the

references therein), the authors exami#&dR) for discrete memo- 7x(R) £ liminf —— 10002 Pr l ixown (X" Y")< R

ryless channels (DMCs). More specifically, they presented three upper n—oo

bounds (sphere packing, space partitioning, and straight line) and WRere

With this definition, we next derive a slightly different but equivalent
pressmn of the Poor—Verdu upper bound.
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Proof: Inequality (2) is actually given by [8, eq. (14)]; so we onlyThis is justified as follows. LedZ,, 2 |S(X™)|. We then observe that
need to prove equality (3). For ady” Pxn yn (2", y")
inz],?[,77z (l H I/ ) = lOgQ P\—

") Py (ym)
J— log2 Pr|— l)(n W n(’(” Yn) < R:| — log, Pxn vy (In ")

1 ’ Z\}n . Z . Py yn(am, ym)

< sup —; log, P1|: ixnwn (X" Y") < R:| anES(X™) p o
o / = log, My +log, X71;—;n(m ,,1/”2 "
which implies that for anyX stz T (@ y")

1 < log, M.
mx (R) < lim inf o0 _,_ log, Pr {_ ixnwn (XY < R} Hence by (4)

1 . [ n
Accordingly, we have Pr{; ixnwn (X" Y") < R}

1 777 Tn 1 A _
qup 7x(R) < liminf qup—llog)Pr|:1 ixnwn (X7 Y") < R:|. 2 Pl{l_zxnw P YT < ;logz Ay[n} =1
n

n—oo  xmn

for n infinitely often, which immediately gives thatx (R) = 0. Con-
On the other hand, the finite alphabet assumption ensures the existesgggiently, when maximizingx (1) over allX that are uniformly dis-
of X" such that tributed over their support, one only needs to consider tt6sgo-

lating (4); this justifies the upper bound formula in Corollary 1.
! log, Pr{l ignypn (f("'; Y") < R}

n
ll. L OOSENESS OFEpv (R) AT LOW RATES

In this section, we provide a counterexample in terms of a binary
X erasure channel (BEC) with crossover probabitity) < ¢ < 1),
wherel " is the channel output due to channel iniiit. LetX be the which proves the looseness Bfv (R) at low rates.
triangular-array process havidg" as itsn-dimensional marginal (for ~ Denote byX the input to the BEC, wher&™ is uniformly dis-

Xn

1
= sup—flogz Pr |:71\an(X" Y") < B:|

eachn). Then tributed over{0, 1}". Then for anys > 0
1. v, VN

suprx(R) > 74 (R) Pr{g“igmvn (X ;Y ) < R}

X

= PI‘{Q_S"’:S(”WH(}_(niY_'ﬂ) Z 2—77,'8-Fl}
<2 RE [Q_S'ifmwn(‘i’”?YN'”)] (Markov's inequality

_ 271~5-REn |:273~i)~(w,(4§'; f/):|

= liminfsup —— logo Pr 1 ixnwn (X" Y") < R:| .
n n

n—oo  xn

O

In the previous theorem, the range of the supremum operation in- R
cludesall possible inputsHowever, it is straightforward from the proof whereY ™ is the channel output due to the inpiit' . This implies
of the Poor—Verdu upper bound (e.g., [8, eg. (14)]) that one can place Epv(R) A sup  wx(R)

both auniformityrestriction and the asymptotic condition of (1) on the XeQ(R)
input to yield a (possibly) better bound. This is illustrated in the next > 1% (R)
corollary.

\%

= oub (_"”R —log, E [2‘-"""5(W(>?; V)D
Corollary 1: The channel reliability function satisfies i

= sg{]) (=sR—1log, [c+ (1—=)27"])
* A s
E(R) < Epv(R)= = 7 _
(R) > LPV (R) X;g{)]z) TX(R) Bl()gr) 1_ =+ (1 _ )log() %ﬁ,
= forO<R<1-= (5)
forany R > 0, where 0 for B> 1
k] — E.

/ o Observe that (5) iexactlythe space partitioning upper bousy... (R)
Q(R)é {X: EachX™ in X is uniformly distributed over its support for the BEC which is given by [1]

1 a ‘
S(X™), ar‘ldR<hm1ni l()g2 |S(X™) |} E‘m"‘(R) - bipigg

14+s
—sR —log, Z (Z Px 81//|(\1+q)(y|'77)> :|

yEY \relX
=sup [-sR —log, (¢ +27°(1 - 2))] .

Remark: An observation that upholds the result of the above corol-
lary is that for a channd¥ and any inpufX’ uniformly distributed over

its support and satisfying >0
Hence, the conjectured tightnesské#v (R) can be disproved via the
hnilnf - ]og2 [S(X™)| < R (4) looseness of the space partitioning upper bound. We then conclude
from [1, Theorem 10.7.3] that
the channel large deviation spectrum satisfies Epv(R) > E*(R)

7x(R) = 0. for0 < R < 1 — /= (see the Appendix).
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Remarks: sequencd) and the all-one sequendeof dimensionk (Ps.(0) =
« It can be shown by Cramer’s theorem [2] that for DMCs P (1) = 1/2). Then
) —5i 5 (X; V) A~ )
T (R) = 'iilg (_SR —log, E [2 xw )]> (6) hnnlmf — log2 S (X )‘ = hglllglif — log, /K1 = %

for a channel inpuf( uniformly distributed over its entire space.which implies thatX ¢ P(R, p)for0 < R < 1/k, and
The memoryless BEC, however, is indeed a peculiar channel for
which the space-partitioning upper boufi)..(R) is actually
equatl to (6). For example, in the case of the memoryless BSC,
(6) is numerically observed to be strictly less than..(R) (and

the straight-line bound); hence, the above simple technique that
is used to disprove the tightnessiofv ( R) at low rates certainly Observe that undeX , the BEC (when the very last term is excluded)

does not apply for the BSC. Furthermore, since (6) is equal {3 transformed into a DMC with transition probability described by
E,..(R) for the BEC, we also cannot use this technique to dis- .

prove the tightness aEpv (R) at high rates [sinc&,..(R) is Py k|xk( ‘0) — (1= )M vy l{ul (yk) _ 0} %
tight at high rates].

E}(rf{) 2 sup mx(R) > n4(R).
XeP(R,p)

and

One may ask that the loosenessify (R) at low rates may be Pyujxe (yk‘l) —(1— E)vl(yk)gkfvl(yk) . 1{”0 (yk) _ 0} ®)
due to the fact that in its formula, the range of the supremum op-

eration includes all the inputs i@( R), which may not be neces- )

sary. From the proofs of the Poor—Verd upper bound in [8] arfherevo(y"” ) and v1(y"), respectively, represent the number(o

Theorem 1, we can further restrict the condition on the input @1d1's in y*, and1{-} is the set indicator function. Sincg.. 5.
yield that for anyp > 0 only depends omo andv:, we can rewrite (7) and (8) as

(p) A k
/ < Vs —_— (2 v
E*(R) < EY)(R) Xeiu(g } mx(R) Pyajin (vo. 01]0) = <v0>/" 0ch . 1 v, = 0)

and
where

EY o
Pvzlj(k(’llo, vi]l) = < )ﬂ 1k, 1{vo =0}

v

P(R, p)é {X: X" is uniform over its suppo§(X ") and

R < lim 1nf ~ log, [S(X")| < R + p} wherey = (1 — ¢)/=. Therefore,

n—oo

1 n, x\rn
Clearly, E) (R) is no greater thalyv ( R) since the former in- PY’{; Lnwn (f Y ) < B}
volves an additional restriction on the choiceXf Also, note w
that the uniform input ovef0, 1}", which is used to disprove - Pr 1 Z ienr (X5 7H)
the tightness oF'vv (R), does not belong t& (R, p) for 0 < N '
R < 1 — p; hence, a possible improvement &y (R) may be 1
rendered fromEL) (R). We, however, can create another coun- T ixws (le Yi+1> < R}
terexample to show th:EI(J’\),(R) is still not tight at rates close to
zero. 1 ‘. NP
g Pl{i(‘ 1 k Zlf(kvvk (‘Xf7 be)
Claim: Consider a BEC with crossover probabilityand fixp > 0. v+ DE =
Thenfor0 < R < 1/k 1 ' 5 g
+ mtfawa‘ (XW-H? ¥ '.u+1) <R 9)
EX(R) > sup{—sR logz( +27° [1 51@])}
s>0

1 - ok, vk
R < Pr{(u)—kl)k ; Vikwh (XVL o ,) < R} (20)
wherek = [1/p].
Proof: Let X be block-wise independent with block sizgi.e., where (9) holds sincél /n) > 1/[(w+ 1)k], and (10) follows because

P, (27) = (H Pis (mgf_l)k +1)> x Py (2"t o (xi Vi +1) >0 with probability one

=1

A A . . . ) Accordingly,
wherew = |n/k], j = n — wk, Py, is thej-dimensional marginal of

Ps,andPx . is equally distributed over a set consisting of the all-zero

——log, Pr{— i mpyn (X’n Y") < B}
1This property actually holds for all memorylegsry (q > 2) erasure chan- 7 n

nels with input alphabeft0, 1, . .., ¢g—1}, output alphabe0, 1, ..., q—1, ¢}, w o
|: — log, Pr{ ZlX’vwk (va Yf) < kR} .
=1

—

and crossover probability. So the Poor—Verdd bound is also loose at low rates >
for this entire family of channels. -

| =

E
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The proof is completed by noting th{xif(”w()i'f; Yﬂ-“)}l:’:l is in- Further investigation of the tightness of (11) at low rates for the
dependent and identically distributed (i.i.d.), and hence we can apply BEC is an interesting future work.
Cramer’s theorem [2] to obtain

APPENDIX
1 .
Tx(R) > 31113{—53 = 7 logy < > > P (:EL) Lemma 1: For a BEC with crossover probability
> shexk ykeyk
—s X X s X Epa‘l‘(R) > ES](R)
i) i) )

for0 < R < 1 — /2, whereE, (R) represents a straight-line upper

_ R 1 ) 1 ps & bound for the channel reliability function.
IS T S i > P (y ) Proof: Firstrecall that for a BEC, the low-rate reliability function

k Yk .
yrey can be written as

k 1—s k
)+rie 1] )}
k  keup EL(B):?i[J Il}l);t()& —sR — slog, Z Px(i)Px(j)
1 1 = 17]6{0,1}
:§up —.s;]?—zlog2 3 Z Z N
vg=0 v1=0 s
LY o —o . < > W<klz'>I~V<ku>>
2w )T T ke{o.e.1}

s _1/s
ik vl _k — = su |:—sR—slo <1+C >:|
+ 5(1}]>N le l(vo = O):| SZIS g2 2

1—s
u"’oakl(m —0) Ir_l the Iimit asR — 0, the sphere-packing upper bouhg (R) coin-
cides withE,, (R) [1, p. 410]. Hence,

k o1k =
+ e 1(vg =0 /s
((M)l ( )> :|> } Er(0) = Er(0) = sup |:—510g2 <1 +2' ):| .
s2>0
1

Itis easy to check that s log, ([1 +='/*]/2) is increasing ins. There-

k fore
1 . 1({k I !
2€k + 2 : 9_s<' )[Irblz’:‘,k

vi=1 ,__l/s
k Er(0) = lim {—a‘log2 <1 +_V )}
() s [ (7
a1 27\ log, (—”Zl/s)
1y Py d k O = Jim - 1/s
_:L;IS{—.sR—zo&(: +2_3[1_5]>}'

=—log, V=

Based on the above claim, we can takg 0 to obtain where the last equality follows by I'Hopital’s rule [11].

1 Now [1, Theorem 10.7.3] indicates that any line segment between
lim EL”&(R) > lim sup{—sR — —log, (sk +27°[1 - L"])} a point on the sphere-packing upper bound and a point on the
f1o RLO0 50 k spacing partitioning upper bound is an upper bound for the channel

= —log, (), reliability. Construct the straight-line upper bound by taking the point
(0, —log, /=) from the sphere-packing upper bound and the point
which is strictly greater thatimg o E*(R) = —log,(<)/2. Conse- (1 — /2, E,..(1 — /2)) from the space partitioning upper bound

quently,Eg"),(R) is not tight at rates close to zero. E,.:(R). This straight-line upper bound should be of the form
» The previous remarks, together with the remark following
Corollary 1, indicate that when bounding the reliability function Ea(R) = RE;,.(Ro) — log, V2
of a channel by its large deviation spectrum, one should always — Rl Roe | -
consider the input whose normalized support size ultimately = tlog, (1-Ro)(1-2) —log, V2

achieves the considered code rate. Any small deviation of the

asymptotic normalized support size from the code rate coulg, < R < Ro, whereR, satisfiesEyar(Ro) = E.(Ro), which is

lead to a loose upper bound (at low rates). As a consequence,él;}gictlyﬂ0 — 1- /= TakingRo = 1 — \/ into the above equation,
best upper bound that can be readily obtained from the proof5ﬁ£|ds

the Poor—Verdu upper bound in [8] and Theorem 1 is

E'(R) < inf ERN(R). (11)  Ea(R)=R-log, - log, vz, for0< R<1— /-
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The proof is then completed by noting th&t.. (R) is strictly convex

in its domain, and hence is larger thAn (R) for 0< R<1—+/z. O :evei Z
eve
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We discuss mainly a Bethe tré& - on which each vertex has +
1 neighboring vertices. For simplicity, we investigate offly, . (see
Fig. 1) in this correspondence.

To index the vertices off’ s, », we first fix any one vertex as the
“root” and label it by0. A vertex is said to be on theth level if the

Strong Law of Large Numbers and Shannon-McMillan ~ path linking it to the root has edges.

Theorem for Markov Chain Fields on Trees We also discuss a rooted Cayley tiBe, » (i.e., a binary tree, see
Fig. 2). In a Cayley tre&¢ -, the root has only two neighbors and all
Weiguo Yang and Wen Liu other vertices have three neighbors just agifn.. When the context

permits,Is, . andZc, . are all denoted simply by'.
We denote byL;' the subgraph of" containing the vertices from

o AbStraCt_Wl‘la St‘;dy thef S”O”Qk 'aWhOf Ifar%e numbers and the , t |evel to themth level. In particular?™ 2 Ly is the subtree of
Shannon—McMillan theorem for Markov chain fields on trees. First, we . .
prove the strong law of large numbers for the frequencies of occurrence containing the_ vertices from I'evél(the root) to leve. )
of states and ordered couples of states for Markov chain fields on trees. W€ US&(r, j) to denote thgth vertex at thexth level. Thus(n, j)
Then, we prove the Shannon—-McMillan theorem with almost everywhere has neighborén + 1, 2j — 1), (n+ 1, 2j) and(n — 1, [j/2]), where
(a.e.) convergence for Markov chain fields on trees. We prove the results [] is the smallest integer not less than
on a Bethe tree and then just state the analogous results on a rooted We denote by B| the number of vertices in subgragh It is easy
Cayley tree. In the proof, a new technique for establishing the strong limit o
theorem in probability theory is applied to see that ifl" is a Bethe tred's, »

Index Terms—Bethe tree, Markov chain fields, random fields, rooted ‘T(") =3-2" -2 (@)
Cayley tree, Shannon—McMillan theorem, strong law of large numbers.

if T is a Cayley tred ¢, >
=2t 1, 2)

(n)
I. INTRODUCTION ‘T

Atreeis a grapkZ = {T', E'} which is connected and contains no Let 2 = {0, 1}*, F be the smallest Borel field containing all
circuits. Given any two vertices # 3 € T, let a3 be the unique cylinder setsif). Let X = { X, ¢+ € T'} be the stochastic process de-
path connectingr and3. Define the graph distanc&«, 3) to be the fined on the measurable spaée, F), that is, for anyw = {w(t), t €

number of edges contained in the path. T}, define
Xi(w) = w(t), telT. 3)
Let u be a probability measure on the measurable sfacer). We
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