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Abstract

This study employs genetic algorithms to solve clustering problems. Three models, SICM, STCM, CSPM, are de-
veloped according to different coding/decoding techniques. The effectiveness and efficiency of these models under
varying problem sizes are analyzed in comparison to a conventional statistics clustering method (the agglomerative
hierarchical clustering method). The results for small scale problems (10-50 objects) indicate that CSPM is the most
effective but least efficient method, STCM is second most effective and efficient, SICM is least effective because of its
long chromosome. The results for medium-to-large scale problems (50-200 objects) indicate that CSPM is still the most
effective method. Furthermore, we have applied CSPM to solve an exemplified p-Median problem. The good results
demonstrate that CSPM is usefully applicable. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Clustering, so-called set partitioning, is a basic
and widely applied methodology. Application
fields include statistics, mathematical program-
ming (such as location selecting, network parti-
tioning, routing, scheduling and assignment
problems, etc.) and computer science (including
pattern recognition, learning theory, image pro-
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cessing and computer graphics, etc.). Clustering is
mainly to group all objects into several mutually
exclusive clusters in order to achieve the maximum
or minimum of an objective function. Clustering is
rapidly becoming computationally intractable as
problem scale increases, because of the combina-
torial character of the method. Brucker [7] and
Welch [34] proved that, for specific objective
functions, clustering becomes an NP-hard problem
when the number of clusters exceeds 3. Even the
best algorithms developed for some specific
objective functions, exhibit complexities of
O(N*log N) or O(N?) [15], leaving much room
for improvement. The heuristic algorithms for
clustering can be divided into four categories:
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conventional statistics clustering, mathematical
programming, network programming, and genetic
algorithms (GAs). The algorithms for conven-
tional statistic clustering [3,14,18,25,33] include
agglomerative hierarchical clustering method and
K-means. The algorithms for mathematical pro-
gramming [8,11,17,27,28,30-32] range from dy-
namic programming, Lagrangian relaxation, linear
relaxation, column generation, branch-and-price
and Lipschitz continuous. The algorithms for the
network programming [2,12] include graph theo-
retic relaxations and network relaxation. The al-
gorithms for GAs are rapidly developed recently
[4,6,10,19,20,22-24,26] including group-numbers
encoding method (e.g. binary code, Boolean
matching code), group-separators encoding meth-
od and evolution program method.

While the aforementioned studies have pro-
posed ways to solve clustering problems, two main
research gaps still remain. First, the number of
clusters must be subjectively determined in ad-
vance. This number cannot be determined simul-
taneously by the model. Therefore, the above
studies involve a complex procedure that exhaus-
tively compares all the optimum clustering for
every given number of clusters, then determines
the number of clusters of best objective value.
Exceptions for this gap are the studies of Lozano
et al. [22] and Lunchian et al. [25] in which they
only solved the optimal number of clusters without
developing an explicit algorithm for the assign-
ment problem. Second, most of the non-GAs
based algorithms are limited in applications. They
are proposed under a specific form of the objective
function such as convex function, or proposed by
the assumption that the feasible set is a convex
hull, or proposed with the help of additional in-
formation such as the gradient of the objective
function.

GA:s, first proposed by Holland [16], are gen-
eral-purpose search algorithms that have the
characteristics of stochastic search, multi-points
search, direct search and parallel search. The re-
lated articles have proved the effectiveness and
efficiency of GAs in application to the combina-
torial optimization problems [5,9,13,21,29].
Directly using the fitness to evaluate the chromo-
somes, GAs can be applied to various objective

functions without a need for additional informa-
tion in the search. This study attempts to develop
coding/decoding techniques for GAs to solve si-
multaneously the optimal number of clusters and
the optimal clustering result in comparison to the
conventional statistic clustering method (the ag-
glomerative hierarchical clustering method).

2. Mathematical model of clustering

The mathematical model of clustering of given
number (m) of clusters is

[CA,]

Max F(X) (1)

subject to

> Xy =1 alli (2)
J

> Xj=m, (3)
J

)(i/ <)(11 all iaja (4)

)(ij = {07 1} all i?ja (5)

where X;; = 1 denotes that ith object is assigned to
Jjth cluster, X;; = 0 otherwise, i,j = {1,2,...,N},
N is the number of objects, m is the number of
clusters, F(X) is the objective function. In the
application field of statistics, F'(X) can be generally
defined as [30]:

FO)! = min [{d(S1) ., d(Su)} ©)

FX)" = max||{r(S;,$), 1<i<j<m}f|, (]
mEMm

FX) = max|{s($)),...,s(Su)},, (8)

where S; is ith cluster, i=1,...,m. P, is a clus-

tering result of m-clustering, P, = {Si,...,Su}. 7,
is a set of all possible clustering results of m-clus-
tering. F(X)? is the diameter function of clustering
and d(S;) = maxg, o,cs, du is the diameter of jth
cluster; F(X)" is the distance function of clustering
and r(S;,S;) = ming,cs, 0,cs, du 1s the distance or
discrimination between ith and jth clusters; F(X)"
is the split function of clustering and s(S;) =
ming,cs; 0,¢5; du 18 shortest distance between jth
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cluster with other clusters. || - ||, represents the /,-
norm. {-} represents the measure of a vector of
diameter or distance. O, O, are kth and /th ob-
jects, respectively.

The total number of feasible solutions of [CA,,]

is |7l = (1/m!) 2o(=1)"7 (7)/% [1]. There are a
total of 511 feasible solutions for 10 objects
(N =10) to be divided into 2 clusters (m = 2).
There are a total of 42,525 feasible solutions for 10
objects to be divided into 5 clusters.

If the number of clusters (m) is not given ex-
ogenously, then [CA,,], without the constraint (3),

becomes [CA], that is:

[CA]

Max F(X) 9)

subject to

> x;=1 alli, (10)
J

Xy <Xy alli,j, (11)

X; ={0,1} alli,j, (12)

As to the number m of feasible solutions of [CA] is
|7 = S°V_, |m,|. There are 52 feasible solutions at
N=5,113,608 at N = 10 and 1.99 x 107 at N = 15.
Obviously, the complexity of [CA] is exponential
to the problem size.

3. Genetic algorithms

Genetic algorithms are general-purpose search
algorithms that use principles inspired by natural
population genetics to evolve solutions to prob-
lems. The basic idea of genetic algorithms is to
maintain a population of chromosomes that rep-
resent candidate solutions. A chromosome is
composed of a series of genes that represent deci-
sion variables or parameters. Each member of the
population is evaluated and assigned a measure of
its fitness as a solution. There are three genetic
operators: selection, crossover and mutation [13]:

The first operator — selection — is to assign the
reproduction possibilities to chromosomes based
on their fitness. A Monte Carlo wheel is often
employed. That is, the higher fitness a chromo-
some is, the more possible it is selected.

The second operator — crossover — is to com-
bine the features of two parent structures to form
two offsprings. The simplest way to make a
crossover is to swap a corresponding segment of
the parents. One-point crossover, two-point
crossover and uniform crossover are often em-
ployed.

The last operator — mutation — is to alter one or
more genes of offsprings with a very low proba-
bility to avoid being trapped in a local optimum.
The resulting offspring is then evaluated and in-
serted back into the population. This process
continues until a predetermined criterion (e.g.
maximum number of generations, minimum value
of fitness improved between two adjacent genera-
tions or certain mature rate) is reached.

4. Problem formulation

The effectiveness and efficiency of GAs vary
with various coding/decoding techniques. This
study proposes three coding/decoding techniques
for GAs to solve clustering problems. They are
the simultaneously clustering method (SICM),
the stepwise clustering method (STCM) and the
cluster seed points method (CSPM). Then, these
models are compared with a conventional sta-
tistics clustering model — the agglomerative hi-
erarchical clustering method (AHCM). The
details of these four models are described as
follows.

4.1. Agglomerative hierarchical clustering method
(AHCM)

AHCM involves a series of successive merges.
Initially, there are as many clusters as objects.
These initial groups are merged according to their
degree of improvement in the objective values.
Eventually, all subgroups are fused into a single
cluster [33]. The following are the steps in AHCM
for grouping N objects in a maximizing problem
for example:

Step 0. Start with N clusters, each containing a sin-
gle object, that is, S,-(]) ={0;},i=1,...,N. An
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N x N symmetric matrix increments of an objec-
tive function MF = {AFy;, i,j=1,...,N, i #j},
where AFj; represents the incremental of objective
value in case that ith cluster and jth cluster are
fused into a single cluster. Let £ = 1.

Step 1. If AF,, =max{AF;, i,j=1,...,N —k,

i#j} and v>u, then let S* =sHUsH,
k)

(k+1) (k (k+1 (k) (k+1) (
S :S1>""7Su71>:Su717 Su1 = Surr
s —gW o sED = sW  and  SEY = @

Calculate the objective value F(X)* of the parti-
tion. Let k =k + 1.

Step 2. Repeat Step 1 until k=N —1. F(X)" =
max{FX)®, k=1,...,N —1}.

4.2. Simultaneously clustering method (SICM)

If there must be at least two objects to form a
cluster, the maximal number of clusters, K, is
equal to [N/2] ([] is the Gauss sign). Then, there
are altogether N x K decision variables of prob-
lem [CA], as shown in Table 1. If there are more
than two variables with value of 1 in the same
column, it means that they mutually form a
cluster. However, if X, is encoded as a gene, it
will cause the length of chromosome be too long
(for instance, the number of decision variables for
10 objects is 50, for 20 objects is 200, and for 60
objects is 1800) and will result in an insufficiency
of computer memory. In addition, it will be dif-
ficult to handle the constraints if one and only
one variable equals 1 and else equals 0 in the
same row.

In order to deal with the problem, SICM uses a
coding/decoding technique to replace each row of
the decision variable matrix with a shorter gene

Table 1
Relationship between N objects and K clusters

Object Clusters

1 2 k K
1 Xu X2 Xk Xix
Xo1 Xn Xok Xok
i Xi X Xir Xix
N X D.¢%) KXk Xnk

Table 2
Matching rules for gene strings, integers, and clusters
Gene strings Integers Clusters
000 0 1
001 1 2
010 2 3
011 3 4
100 4 5
101 5 6
110 6 7
111 7 8

string. Take 17 objects for example, there are at
most 8 partition sets (8 = [17/2]). Because each
object is likely to be assigned to any set, these
clusters require three genes to represent them, as
shown in Table 2.

Replacement of each row with these three genes
not only curtails the length of chromosomes (four
genes can represent the problem of 33 objects, five
genes can represent the problem of 65 objects) but
also avoids the problem that an object might be
assigned to several clusters or be unassigned. Table
3 illustrates a feasible clustering result for these 17
objects. The chromosome of Table 3 is composed
of 51 genes (000001011000101101010000001000
000011011000000101010). Every three genes of the
chromosome are then decoded into an integer of
0-7 sequentially, representing the cluster into
which each object is assigned according to the
matching rules stated in Table 2. After being de-
coded, the chromosome represents that five clus-
ters are formed. The clusters consist of 6,2,2,3,3
objects, respectively.

4.3. Stepwise clustering method (STCM )

STCM successively solves the optimal binary
clustering of a cluster until the objective value
cannot be further improved. An initial single
cluster containing all objects is divided into two
subgroups such that the objective function is op-
timized at this stage. Through each binary clus-
tering process, a cluster is divided into two
subgroups. A cluster is called fathomed when it
cannot be further binary clustered to improve the
objective value. This concept is similar to that of
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Table 3
Relationship between objects and clusters (17 objects for example)
Objects Clusters Encoding
1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0 000
2 0 1 0 0 0 0 0 0 001
3 0 0 0 1 0 0 0 0 011
4 1 0 0 0 0 0 0 0 000
5 0 0 0 0 0 1 0 0 101
6 0 0 0 0 0 1 0 0 101
7 0 0 1 0 0 0 0 0 010
8 1 0 0 0 0 0 0 0 000
9 0 1 0 0 0 0 0 0 001
10 1 0 0 0 0 0 0 0 000
11 1 0 0 0 0 0 0 0 000
12 0 0 0 1 0 0 0 0 011
13 0 0 0 1 0 0 0 0 011
14 1 0 0 0 0 0 0 0 000
15 1 0 0 0 0 0 0 0 000
16 0 0 0 0 0 1 0 0 101
17 0 0 1 0 0 0 0 0 010
Subtotal 6 2 2 3 0 3 0 0

§=8"={0]i=1,....N}

o sigeo ) - 5"=olx=00esy s =5"={0,

X, =1,0,e8"}

Stage 1 L= . : — .
© S ={0|X,=0,0,e5"} ! s =8 :{o,‘x, =1,0,e8"}

Stage 2

0,e8}

Fig. 1. Framework of STCM.

branch-and-bound. When all clusters are fath- The following are the algorithms for STCM under
omed, STCM has attained the optimal clustering. the depth first principal, which fathoms individual
The framework of the model is depicted by Fig. 1. branch one at a time.
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Step 0. Let S©) stand for the cluster containing all
objects. The problem of optimally dividing S
into two subgroups, namely S and $©, can be
formulated as the following 0-1 mathematical pro-
gramming;:

MP©®

(0)
Max F(X) (13)
subject to X; ={0,1} i=1,...,]|S9], (14)

where X; =1 denotes that ith object of S© is
grouped in the cluster S, X; = 0 denotes that ith
object of S© is grouped in the cluster S©. X;
is encoded as the gene of chromosomes (the
length of chromosomes is |S<°>|) then GAs are
employed to solve MP®) by maximizing F (X )(0> to
attain the optimal binary clustering: SO —
{0i|X* =1, 0,59} and SO ={0,|X* =0,
0, €80} .

Step 1. Let S = §© and renumber the objects of
S Formulate the optimal binary clustering prob-
lem of §(1> as MP", which is also solved by GAs.
F(X )“) is the objective value of optimal binary
clustering of SV under the assumption that the

other cluster (S()) remaining unchanged. The clus-
tering result is: SV = {0;| X7 =1, O, € Sv} and
={0:|X; =0, O € Sm} Three clusters are
formed, they are: S©, §O) and SO F(X )(1)* is the
objective value of these three clusters.
Step 2. Let S@ =801 and solve MPY by
GAs. _
Step 3. Repeat Step 2 until S® = @, then this
branch is fathomed. There is a total of k + 1 clus-
ters, that is S©, S0, . .. S *=1) and S® can no
longer be divided in the followmg steps. F( ) is
the optimal objective value of these k + 1 clusters.
Step 4. Choose one of the remaining branches to
be binarily clustered by repeating Steps 2 and 3 un-
til it is fathomed.
Step 5. If all branches are fathomed, then stop.
The clusters formed are the optimal clustering re-
sult of STCM. Otherwise, go to Step 4.

In comparison to SICM, the coding/decoding
of STCM are much simpler because the length of

chromosome can be largely curtailed and can be
further reduced in the evolutions of optimization
stages. Consider N objects for instance, let
|IS®| = N denote N objects in set S, the length of

the chromosome at the stage 0 is N. If |§(°)| = Lo,
the length of the chromosome at the stage 1 is

N — Ly If |§<‘)| = L, the length of chromosome at
the stage 2 can be further shortened as
N — Ly — L,, and so forth.

4.4. Cluster seed points method (CSPM)

CSPM first employs GAs to select the most
suitable cluster seeds from all objects, then as-
signs the rest of the objects to each cluster ac-
cording to their similarity to the cluster seed or
to their degree of improvement of the objective
function. The number of cluster seeds represents
the number of clusters and the characteristics of
these cluster seeds determine the clustering re-
sult. The framework of CSPM is depicted by
Fig. 2.

The following are the steps of the assignment
algorithm in Fig. 2.

Step 0. Let k = 1 and S be a set of all objects, that
is, S ={0,...,0x}. CP, is a set of cluster seeds,
that is, CP,, = {cy,...,cn}. NP is a set of non clus-

ter seeds, that is, NP=S-CP, S = {c;},
j=1....,m.

Step 1. Let Oy denote kth object of NP. If

k k

F(s,....8%, s u{O}, SO, 8 =
Max{F(S¥, ..., S(+)1, sP U0y, sY, ... 8w,
then Oy is assigned to jth cluster.

Step 2. Let Y =¥V U{0:} and k=k+ 1. If

k<N-m+ 1 return to Step 1, otherwise termi-
nate.

Once the clustering result, P,, is obtained, the
objective value F(X) which represents the fitness of
this set of cluster seeds is also determined. How-
ever, CSPM employs GAs to search for the opti-
mal cluster seeds by encoding variables X; as genes
to represent related objects, where X; = 1 denotes
that the ith object is chosen as a cluster seed, and
X; = 0 otherwise.
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GAs >—>

{0i=1,...,N}

&>

Compute l Yes No l
F(X)
CP,={0,|X;, =10, €8 *
n =10 f NP=1{0]X, =0.0, 5}
Assignment
Algorithm
P, ={Si=1...m[|JS, =S}
i=1
Fig. 2. Framework of CSPM.
5. Computational experiments L L e e ¢ @
$ 4 * *
095 o @ o’:‘”"‘o kS
. . *
5.1. Experimental design 08 :: . RN . o
N . * . : * ;‘o
. TR %

A random number generator is using to gen- w6 |2 :,0 ¢ . D d
erate 200 two-dimensional objects (@; and b o [ %40 % LA . !
bj,i=1,...,200) as shown in Fig. 3. All objects l toet e IR .
with coordinate of (a;, b;) are uniformly distributed ' ¢ "w s RN : M : o, ¢
within the square formed by four corners of which Il R O o s

. *
coordinates are (0,0), (0,1), (1,0) and (1,1), re- 02T e "’ o . ‘:‘ . "‘
spectively. In order to analyze the effectiveness and 01 R, T e, e,

. . 4
efficiency of four models under varying problem 0 He R A

sizes, we choose the first 50 objects merely in
testing of small problems (10-50 objects) and use
all the objects to be involved in testing of medium-
to-large problems (50-200 objects).

Generally, minimizing the sum of squared er-
rors is chosen as the objective function for clus-
tering problems. However, it is only applicable to
problems in which the number of clusters is
specified. Employing this objective function to
solve the optimal number of clusters will opti-
mally result in N clusters such that the sum of

Fig. 3. Distribution of 200 two-dimensional objects.

squared errors is 0. Nevertheless, in this study,
the objective function is to maximize the ratio of
between-clusters variability to within-clusters
variability, to determine simultaneously the opti-
mal number of clusters and the optimal result of
clustering [15].
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X S| (=) + (-5 ]

Py (@ = @)+ (b - B

where a; = (1/}’lk) lnil a;, Bk = (l/l’lk) E:il b,—7
a= /NN, a, b=1/N)SY, bi-n is the
number of objects in the kth cluster, that is,
ng = |Sk|. In order to avoid clusters with only one
object, a penalty of J x M (J is the number of one-
object clusters; M is a big number) is added to the
objective value.

The mechanism of genetic algorithms in these
three models is tested according to the following:
population of each generation=100, roulette
wheel selecting, two points crossover at a rate of
1.00 and gene mutation at a rate of 0.01. The
stopping rule is preset as mature rate reaching
80%. That is, GAs will continue to evolve until
there are over 80% chromosomes with the same
fitness in an epoch. Due to the stochastic charac-
teristics of GAs, the following empirical compari-
son of our proposed methods are analyzed using
hypothesis test on the results obtained from 30
different executions.

5.2. The results

5.2.1. Small scale problems (N < 50)

Table 4 and Fig. 4 summarize the objective
values solved by AHCM, SICM, STCM and
CSPM under various problem sizes. The objective
values solved by SICM are all significantly (at 5%
level of significance) inferior to those of AHCM,
showing the ineffectiveness of SICM. At N = 10,
20 and 30, the objective values solved by STCM
are not significantly different from those of
AHCM, but at N = 40 and 50 STCM shows more
effective than AHCM. The objective values solved
by CSPM are not significantly different from those
of AHCM at N = 10 and 20, but CSPM demon-
strates more effective than AHCM at N = 30, 40
and 50. For further comparison between STCM
and CSPM, we test the null hypothesis Hy: 5 = F;
against alternative hypothesis H;: /> < F; at
N =10, 20, 30, 40 and 50, respectively. Their
corresponding Z values are 0.00, 0.69, 13.45, 16.70
and 11.17, indicating that CSPM is significantly
more effective than STCM at N = 30, 40 and 50.
The testing results show that CSPM is the most
effective method, followed by STCM, and SICM is
the least effective due to its long chromosome (five
times that of CSPM) which leads to the need to
search a larger feasible space.

Table 4
Effectiveness of four methods (N < 50)*
Number AHCM SICM STCM CSPM
of objects F 2 OF, B oF B, OF;
(Fi/F) (21) (R/F) (Z,) (B/F) (%)
10 13.06 12.45 0.73 13.06 0.00 13.06 0.00
(0.95) (~4.63) (1.00) (0.00) (1.00) (0.00)
20 26.95 11.38 4.49 26.77 0.69 26.87 0.36
(0.42) (~18.97%) (0.99) (-1.43) (1.00) (-1.28)
30 28.70 13.83 3.83 28.82 2.81 36.40 1.28
(0.48) (=21.25%) (1.00) (0.22) (1.27) (32.90%)
40 37.10 11.55 4.44 38.72 2.88 48.99 1.75
0.31) (-31.55%) (1.04) (3.08%) (1.32) (37.20%)
50 38.24 14.81 4.50 51.18 4.47 61.01 1.81
(0.39) (~28.53%) (1.34) (15.86") (1.60) (68.98%)

(1) F stands for the objective value of AHCM. (2) F; and JF; represent the means and standard deviations of objective values solved by
SICM, STCM and CSPM with 30 different executions, i = 1,2,3. (3) Effectiveness index of the ith method is defined as F/F.
(4) Z; = (F; — F)/(3F;/+/30) which follows Normal distribution (0,1). (5)* denotes that the null hypothesis test (Hy: £; = F) is rejected

at the 5% level of significance.
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70.00
—e— AHCM
H X
60.00 [l —m— sicm
s0.00 || A STCM A
—%— CSPM /

FX) 40.00 /(A//_’_Q

30.00 /.4/"

10.00
0.00
0 10 20 30 40 50 60
Number of Observations
Fig. 4. Effectiveness of four methods (N < 50).
Table 5
Efficiencies of four methods (N < 50)*
Number of objects AHCM SICM STCM CSPM
SS ss 88y ss, 388, 88, 8S;
(85/SS1) (Z1) (88/5855) () (85/5S5) (Z3)
10 172 1987 1193 2917 418 11,372 1724
(0.09) (9.06) (0.06) (36.08) (0.02) (36.08)
20 1347 7383 2506 7533 1020 133,743 42,927
0.18) (16.08) (0.18) (17.06) 0.01) (17.06)
30 4521 12,963 3538 14,323 2018 511,915 220,156
(0.35) (20.02) (0.32) (12.74) 0.01) (12.74)
40 10,696 33,020 10,250 20,970 1776 1,257,755 454,935
0.32) (17.62) 0.51) (15.14) (0.01) (15.14)
50 20,871 68,033 17,141 28,080 2143 2,226,590 633,469
0.31) (21.73) (0.74) (19.25) 0.01) (19.25)

(1) SS stands for the number of solutions searched by AHCM. (2) SS; and JSS; represent the means and standard deviations of the
number of solutions searched by SICM, STCM and CSPM with 30 different executions, i = 1,2,3. (3) Efficiency index of the ith
method is defined as SS/SS.. (4) Z; = (SS; — SS)/(6SS;/+/30) which follows Normal distribution (0,1). (5) * denotes that the null hy-

pothesis test (Hy: SS; = SS) is rejected at the 5% level of significance.

Table 5 summarizes the number of solutions
searched until the ‘“optimal solution” being ob-
tained by four methods under various problem
sizes. Obviously, AHCM, which has the least
number of solutions searched, is the most efficient
method. Further comparison between SICM and
STCM is made by a two-tailed test of
H,: SS; =SS, against H,: SS, #SS,. The Z val-
ues at N =10, 20, 30, 40 and 50 are 4.03, 0.30,
1.83, —6.34 and -12.67, respectively, implicitly
showing that SICM is more efficient than STCM
at N = 10, not significantly different from STCM
at N = 20 and 30, and less efficient than STCM at

N =40 and 50. Similarly, the results of two-tailed
tests of Hy: SS; =SS5 against H,: SS; # SS; and
Hy: SS, = SS; against H,: SS, # SS; have shown
that CSPM is the least efficient method.

Fig. 5 shows an optimal clustering result of
CSPM at N =50. The figure shows that, by
maximizing the ratio of between-clusters variabil-
ity to within-cluster variability, these 50 objects
have been divided into 11 clusters. Each cluster
contains 2-8 objects. Since the objects in the same
clusters are adjacent to each other and no object is
obviously grouped into a wrong cluster, the result
of clustering appears to be good.
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Fig. 5. Optimal clustering result of CSPM (N = 50).

5.2.2. Medium-to-large scale problems (50< N
200)

If SICM were applied to larger scale problems,
the length of the chromosome would be too long,
saturating the computer memory. Thus we only
analyze the clustering results of AHCM, STCM
and CSPM, illustrated in Fig. 6. It shows obvi-
ously that CSPM is the most effective, especially
for the larger scale problems. AHCM is slightly
more effective than STCM. It shows that STCM

A

is more effective than AHCM for small scale
problems (N = 50), but less effective than AHCM
for medium-to-large scale problems (50=
N £200).

6. Applications

CSPM can be applied to problems of p-Median
because of not only its effectiveness, but also its
search procedure (cluster seed points are chosen
first, and the rest of the objects are assigned later).
A p-Median problem is chosen as an example to
examine the applicability of this method.

6.1. Problem statement

There are 25 districts uniformly distributed in a
square area. Each link that connects two adjacent
districts is 1 km long. We consider setting up
several public facilities, such as hospitals, schools
or fire departments in some districts to serve all
districts. More facilities represent a higher total
set-up cost. However, if facilities are insufficient or
set up in the wrong place, the total cost of incon-
venience across all districts using the facilities will
increase. Thus the problem of optimal locations

350
—*— AHCM
_ 0,
300 1 STCM-L95%
—&— STCM-Mean _
""" STCM-U95% y
250 CSPM-L95%
B CSPM-Mean Y
200 Horooc CSPM-U95% -
F(X) / /‘//Q
150 /4/ B
100 2
50 /
0 T T T T
0 50 100 150 200 250

Number of Observations

Fig. 6. Means and 95% upper/lower confidence intervals of STCM and CSPM 50 < N <200.
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and serviceable areas of facilities can be formu-
lated as follows:

sC]
MinZ=a) X;+8) > (la—a|+1bi=b))X,
J i

(16)
subject to
> X =1 all, (17)
J
X, <X; allij, i=1,...,25, (18)

X;={0,1} allij, i=1,...,25 j=1,...,25 (19)

where Z represents the total cost function, « is the
set-up cost of a public facilities (dollars/facility), f
is the unit distance cost for a district to access its
public facility (dollars/kilometer), (a;, b;) is the
coordinate of ith district, X;; = 1 denotes that jth
district has a public facility, X;; =0 otherwise.
X;; =1 denotes that ith district uses the public
facility located at jth district, X;; = 0 otherwise.
The mechanism of GAs follows the set-ups in
Section 5.1.
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Fig. 7. The optimal design at « = 0.5.

6.2. The results

Without a loss of generality, let § = 1 dollars/
km. Figs. 7-14 show the optimal designs of CSPM
according to different set-up costs (), ranging
from 0.5 to 15 dollars/facility, respectively. In
these figures, a circle denotes a district, a shad-
owed circle indicates that a public facility has been
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Fig. 8. The optimal design at o = 1.
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Fig. 9. The optimal design at o = 2.
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Fig. 11. The optimal design at o = 4.

set up in that district, and the districts connected
with links are all served by the same public facility.
At o = 0.5 dollars/facility, the optimal number of
facilities is 25, that is, each district has one public
facility and the total distance cost is 0 (Fig. 7). At
o =3 dollars/facility, the optimal number of
facilities is 6 and total distance cost is 22 dollars

Kilometer

Kilometer

Fig. 12. The optimal design at o = 5.

Kilometer

Kilometer

Fig. 13. The optimal design at « = 10.

(Fig. 10). At o« = 15 dollars/facility, the optimal
number of facilities is only one and the total dis-
tance cost reaches 60 dollars (Fig. 14). Fig. 15
further illustrates that while the set-up cost of a
facility increases, the optimal number of facilities
decreases and the total distance cost increases.
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Fig. 14. The optimal design at « = 15.
6.3. Concluding remarks

This study discusses the effectiveness and effi-
ciency of solving clustering problems by employing
GAs. Varying the techniques of coding/decoding,
we proposed SICM, STCM and CSPM models
and tested them with 200 two-dimensional objects.
The results from small scale problems (10-50 ob-
jects) show that CSPM is most effective but least
efficient, STCM is second most effective and effi-
cient, and SICM is least effective because of its
long chromosome required. The results from me-

dium-to-large problems (50-200 objects) indicate
that CSPM is still the most effective method.
AHCM is slightly more effective than STCM. Both
results show that CSPM can solve clustering
problems effectively. CSPM can be easily applied
to problems of p-Median or location selection
because of its effectiveness and its search procedure
(cluster seed points is chosen first, and the rest of
the objects are assigned later). CSPM is highly
applicable as evidenced by the reasonable results
of the application to an exemplified p-Median
problem.

Since the search space for CSPM is propor-
tional to 2¥ (search space for N =10 is
210 =1024, N =100 is 2! =1.27 x 10%), the
larger the scale of the problem is, the less effec-
tiveness of CSRM would be anticipated. Future
studies can examine the feasibility of employing a
hybrid GA model (combining other heuristic al-
gorithms, such as simulated annealing) to further
enhance its effectiveness and efficiency. The clus-
tering problems solved by GAs using personal
computers, however, involves the storage of a
certain population of chromosomes, which is
likely to cause an insufficiency of computer
memory as the problem scale gets larger (say
N > 200). Therefore, reducing the storage re-
quirements is worthy of further investigation.
Future studies can also be conducted by com-
paring the effectiveness and efficiency of our
proposed methods with the GA based algorithms
mentioned in the references.

30 70
—=— Number of facilities
25 1 —e— Total distance cost 60
50
20
40
Facilities 15 Dollars
r 30
10 A
20
5 10
0 0

Fig. 15. Optimal number of facilities and total distance costs vs. facility set-up cost.
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