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Tooth Undercutting of Beveloid
Gears
A beveloid gear can be viewed as an involute gear of which the profile-shifted coeffi
linearly decreases from the heel to the toe. Therefore, tooth undercutting occurs
singular points appear on the tooth surfaces near the toe. When undercutting occur
gear tooth is comparatively weak. In this study, the conditions of tooth undercuttin
beveloid gears were derived and specific phenomena were also investigated by num
illustrated examples. In addition, according to the characteristics of tooth undercuttin
the beveloid gear tooth surface, two practicable methods were also proposed to avo
tooth undercutting of beveloid gears.@DOI: 10.1115/1.1414128#
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1 Introduction
Beveloid gears, also known as conical involute gears, can

viewed as involute gears with profile-shifted coefficient decre
ing from the heel to the toe. Therefore, undercutting occurs
singular points appear on the negative profile-shifting tooth n
the toe. Undercutting is an important aspect of gear design
manufacturing. It may cause weakness of gear strength, s
concentration and gear mismatch during gear meshing. When
dercutting occurs, the strength of the gear is comparatively w
resulting in a shortened service life of the gear set.

Beveloid gears have received considerable attention. In a
neering work, Merritt@1# and Beam@2# proposed the basic char
acteristics and potentials of beveloid gears. Mitome@3–11# pub-
lished the majority of the research on this subject. Th
investigations, however, focused largely on theoretical analy
manufacture, measurements and bearing tests of beveloid gea
complete mathematical model was not developed for beve
gear tooth contact simulations. This study not only develops
mathematical model of beveloid gear according to the taper h
bing method@3,7# but also determines the conditions of too
undercutting by adopting the method proposed by Litvin@12,13#.
Meanwhile, specific phenomena of undercutting on the beve
gear tooth are investigated by numerical illustrated examples.
cording to the results of undercutting analysis, two practica
methods that prevent the tooth undercutting of beveloid gears
also discussed in this study. One is the asymmetrical normal p
sure angles for helical beveloid gear, and the other is the beve
gear with varying working depth.

2 Mathematical Model of Beveloid Gears

2.1 Generation Concept. According to Merritt’s generation
concept@1#, a beveloid gear can be generated by a basic r
whose pitch plane intersects with the axis of the gear and form
angle equal to the generating cone angle. In practice, the m
conventional method of beveloid gear manufacturing is the ta
hobbing proposed by Mitome@3,7#. The imaginary rack cutter
which can be considered as the envelope generated by the h
the space, is used to simulate the generating process of bev
gears in this study.

2.2 Mathematical Model of Imaginary Rack Cutter. Fig-
ure 1 illustrates the normal section of the imaginary rack cut
The two straight edgesM0

( l )M2
( l ) andM0

(r )M2
(r ) can be represente

in coordinate systemSn(Xn ,Yn ,Zn) by
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H xn
~ i !

yn
~ i !

zn
~ i !
J 5H l ~ i ! cosan

~ i !2a

6~ l ~ i ! sinan
~ i !2a tanan

~ i !2b!

0
J ~ i 5 l and r !,

(1)

where superscripts ‘‘l’’ and ‘‘ r’’ denote the left and right side
straight edges which generate the left and right side active to
surfaces of the beveloid gear, respectively. The upper sign of
~1! indicates the left side straight edge, while the lower sign r
resents the right side straight edge. According to Fig. 1,l ( i )

5uM0
( i )M1

( i )W u represents the design parameter;an
( i ) denotes the

normal pressure angle, and symbolsPn andpn represent the gea
diametral pitch and circular pitch, respectively.

Similarly, the left and right side fillets on the normal section
the imaginary rack cutter, which generate the fillet surfaces of
gear, can be expressed in coordinate systemSn as follows:

H xn
~ i !

yn
~ i !

zn
~ i !
J 5H 2r cosu~ i !1r sinan

~ i !2a

6~r sinu~ i !2r cosan
~ i !2a tanan

~ i !2b!

0
J

~ i 5 l and r !, (2)

where 0<u ( i )<(90 deg2an
( i )) andu ( i ) represents the design pa

rameter that determines the coordinates of any point on this fi

n in

Fig. 1 The normal section imaginary rack cutter
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To obtain the imaginary rack cutter surface, the normal sect
of the imaginary rack cutter is attached to the planeXn2Yn and
translated along the lineOpOn with respect to the coordinate sys
temSp(Xp ,Yp ,Zp), as illustrated in Fig. 2. Herein,u5uOpOn

W u is
a design parameter of the imaginary rack cutter surface. The
file of the imaginary rack cutter can thus be traced out in coor
nate systemSp , and the planeYp2Zp can be regarded as th
pitch plane of the imaginary rack cutter. The angleb, which de-
termines the direction of tooth trace, is the helix angle on the pi
plane of imaginary rack cutter. In order to simulate the taper h
bing process, the coordinate systemSp is then set to form an
inclined angled with respect to the plane axode coordinate syst
Sc(Xc ,Yc ,Zc). The straight-edge surfaces of the imaginary ra
cutter rack cutter surface can thus be represented in coordi
systemSc as follows:

xc
~ i !5~ l ~ i ! cosan

~ i !2a!cosd1@7~ l ~ i ! sinan
~ i !

2a tanan
~ i !2b!sinb1u cosb#sind,

yc
~ i !56~ l ~ i ! sinan

~ i !2a tanan
~ i !2b!cosb1u sinb,

and

zc
~ i !52~ l ~ i ! cosan

~ i !2a!sind1@7~ l ~ i ! sinan
~ i !

2a tanan
~ i !2b!sinb1u cosb#cosd, (3)

wherei 5 l and r.
Meanwhile, the fillet surfaces of the imaginary rack cutter c

be represented in coordinate systemSc as follows:

xc
~ i !5~2r cosu~ i !1r sinan

~ i !2a!cosd1@7~r sinu~ i !

2r cosan
~ i !2a tanan

~ i !2b!sinb1u cosb#sind,

yc
~ i !56~r sinu~ i !2r cosan

~ i !2a tanan
~ i !2b!cosb1u sinb,

and

zc
~ i !52~2r cosu~ i !1r sinan

~ i !2a!sind1@7~r sinu~ i !

2r cosan
~ i !2a tanan

~ i !2b!sinb1u cosb#cosd, (4)

wherei 5 l and r.
Since the surface coordinates of imaginary rack cutter arel

and u for the straight-edge surfaces andu and u for the fillet
surfaces, the unit normal to the rack cutter surface can be re
sented by the subsequent equations:

nc5
Nc

uNcu
, (5)

where

Fig. 2 Relations among coordinate systems Sn, Sp and Sc
570 Õ Vol. 123, DECEMBER 2001
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Nc5
]Rc

]u
3

]Rc

]l
~ for the straight-edge surfaces!,

and

Nc5
]Rc

]u
3

]Rc

]u
~ for the fillet surfaces!.

Equations~3! and~5! result in the unit normal to the straight-edg
surfaces of imaginary rack cutter as follows:

nxc
~ i !52cosan

~ i ! sinb sind7sinan
~ i ! cosd,

nyc
~ i !5cosan

~ i ! cosb,

and

nzc
~ i !52cosan

~ i ! sinb cosd6sinan
~ i ! sind ~ i 5 l and r !. (6)

Equations~4! and~5! result in the unit normal to the fillet surface
of imaginary rack cutter as follows:

nxc
~ i !52sinb sind sinu~ i !7cosd cosu~ i !,

nyc
~ i !5cosb sinu~ i !,

and

nzc
~ i !52sinb cosd sinu~ i !1sind cosu~ i ! ~ i 5 l and r !. (7)

2.3 Mathematical Model of Beveloid Gear Tooth Surface.
Figure 3 schematically depicts the gear generation mechanism
the coordinate relationship between the plane axodep and the
gear axode. Herein,r 1 and P0 denote the pitch radius and pitc
point of the generated beveloid gear, andf1 represents the gea
rotation angle in the generating process. The coordinate sys
Sf(Xf ,Yf ,Zf) represents the fixed coordinate system, wh
S1(X1 ,Y1 ,Z1) is the coordinate system attached to the genera
gear, andSc is the plane axode coordinate system attached to
imaginary rack cutter. Based on the theory of gearing@12,13#, the
mathematical model of the generated tooth surface can be atta
by simultaneously considering the equation of meshing toge
with the locus of the imaginary rack cutter represented in g
coordinate systemS1 . The mathematical model of the bevelo
gear can be obtained and represented in coordinate systemS1 as
follows:

R15@M1c#Rc , (8)

Fig. 3 Coordinate relationship between the imaginary rack
and cutter generated gear
Transactions of the ASME
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and

Xc2xc

nxc
5

Yc2yc

nyc
5

Zc2zc

nzc
. (9)

Equation~8! is the locus of rack cutter surfaceRc represented in
coordinate systemS1 , and Eq. ~9! represents the equation o
meshing. Herein,Xc , Yc andZc are the coordinates of a point o
the instantaneous axis of gear rotation I-I, which is represente
coordinate systemSc ; nxc , nyc andnzc are the directional com-
ponents of the surface unit normalnc . Equations~6!–~9! yield the
generated tooth surface in coordinate systemS1 as follows:

H x1

y1

z1

J 5H xc cosf12yc sinf11r 1~cosf11f1 sinf1!

xc sinf11yc cosf11r 1~sinf12f1 cosf1!

zc

J ,

(10)

where

f15~ycnxc2xcnyc!/~r 1nxc!. (11)

Herein, Eq.~11! comes from Eq.~9!. Substituting Eqs.~3! and~6!
and Eqs.~4! and~7! into Eqs.~10! and~11! allow us to obtain the
mathematical model of the beveloid gear represented in coo
nate systemS1 .

3 Undercutting Analysis
Mathematically, the phenomenon of tooth undercutting is

appearance of singular points on the active tooth surface. To c
pute the singular points on the active tooth surface and determ
their corresponding parameters on the straight-edge surfac
imaginary rack cutter, this work adopts the method proposed
Litvin @12,13# which considered the relative velocity and equati
of meshing between the imaginary rack cutter and generated

3.1 Calculation of Relative Velocity. According to the gen-
eration mechanism mentioned above, the absolute velocities o
imaginary rack cutter and generated gear can be decomposed
two components: transfer velocityVtr and relative velocityVr .
Due to the continuity of contact between the cutter and gener
tooth surface, the absolute velocities of the imaginary rack cu
and generated gear are the same at the point of contact and c
related as

V~abs!5Vtr
~c!1Vr

~c!5Vtr
~1!1Vr

~1! , (12)

or

Vr
~1!5Vr

~c!1~Vtr
~c!2Vtr

~1!!5Vr
~c!1V~c1!, (13)

where subscript ‘‘r’’ represents the relative motion over the cutt
surface and subscript ‘‘tr’’ represents the transfer motion with th
imaginary rack cutter and generated gear. Superscript ‘‘c’’ repre-
sents the cutter and superscript ‘‘1’’ represents the generated
According to Fig. 3, the relative velocity between the imagina
rack cutter and generated gear can be represented inSc coordinate
system as follows:

Vc
~c1!5Vc

~c!2Vc
~1! , (14)

where

Vc
~1!5v13Rc1OcO13v1

5@v1~yc2r 1f1!# ic1@v1~2xc2r 1!# jc , (15)

and

Vc
~c!52v1r 1 jc . (16)

Herein,v1 is the angular velocity of the generated gear and can
obtained bydf1 /dt.

3.2 Conditions of Undercutting. The surface tangentT ex-
ists at any regular point on the active tooth surface, i.e.,TÞ0.
Journal of Mechanical Design
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Based on differential geometry, the tangent vectorT to the gener-
ated surface is collinear with its relative velocityVr

(1) . When un-
dercutting occurs, a singular point appears on the active to
surface and the tangent vector becomesT50 at this singular
point. Restated, the relative velocity at a singular point on
active tooth surface equals zero, that is

Vr
~1!5Vr

~c!1V~c1!50 (17)

Since the surface coordinates of imaginary rack cutter arel
andu for the straight-edge surface that generates the active t
surface of beveloid gears, Eq.~17! can be decomposed into thre
components alongXc-axis,Yc-axis andZc-axis as follows:

]xc

]l

dl

dt
1

]xc

]u

du

dt
52Vxc

~c1! , (18)

]yc

]l

dl

dt
1

]yc

]u

du

dt
52Vyc

~c1! , (19)

and

]zc

]l

dl

dt
1

]zc

]u

du

dt
52Vzc

~c1! . (20)

Recalling that either Eq.~9! or Eq. ~11! represent the equation o
meshing between the generated tooth surface and the imag
rack cutter. It is rewritten here for convenience:

f ~f1 ,l ,u!5~r 1f12yc!nxc1xcnyc50 (21)

Differentiation of the equation of meshing, i.e., Eq.~21!, yields

] f

]l

dl

dt
1

] f

]u

du

dt
52

] f

]f1

df1

dt
. (22)

Equations~18), (19!, ~20!, and~22! form a system of four linear
equations with two unknowndl /dt and du/dt which provide a
method for determining the conditions of gear undercutting. T
system of equations possesses a unique solution if the rank o
matrix

A5F ]Rc

]l

]Rc

]u
2Vc

~c1!

] f

]l

] f

]u
2

] f

]f1

df1

dt

G (23)

is equal to two. This yields the following three equality equation

D15U dxc

dl

dxc

du
2Vxc

~c1!

dyc

dl

dyc

du
2Vyc

~c1!

] f

]l

] f

]u
2

] f

]f1

df1

dt

U50, (24)

D25U dxc

dl

dxc

du
2Vxc

~c1!

dzc

dl

dzc

du
2Vzc

~c1!

] f

]l

] f

]u
2

] f

]f1

df1

dt

U50, (25)

and
DECEMBER 2001, Vol. 123 Õ 571
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D35U dyc

dl

dyc

du
2Vyc

~c1!

dzc

dl

dzc

du
2Vzc

~c1!

] f

]l

] f

]u
2

] f

]f1

df1

dt

U50. (26)

Equation~24!–~26! can be applied to determine the conditions
singularity, and the sufficient condition for singularity can be re
resented by

D1
21D2

21D3
25F~ l ,u,f1!50 (27)

Thus, the undercutting condition on the active tooth surface of
proposed beveloid gear can be calculated by applying the num
cal method with Eq.~27!. By applying the method mentione
above, undercutting conditions can be calculated and undercu
lines can be plotted on the beveloid gear tooth surfaces by ap
ing the computer graphical method. Illustrative examples are
sented to demonstrate the effectiveness of the proposed m
ematical model and undercutting analysis.

Fig. 4 Undercutting of straight beveloid gear

Table 1 Some major design parameters of beveloid gears
572 Õ Vol. 123, DECEMBER 2001
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Example 1: Tooth Undercutting of Straight Beveloid Gears.
Table 1 summarizes some major design parameters of the str
beveloid gear withb50 deg. Figure 4 shows the undercuttin
lines that were numerically solved by the developed compu
programs. Notably, a beveloid gear can be viewed as an invo
gear of which the profile-shifted coefficient linearly decreas
from heel to toe. Therefore, the tooth undercutting lines app
near the toe of the beveloid gear tooth surface where nega
profile-shifting becomes severe. Owing to the symmetry
straight beveloid gear teeth, the undercutting is symmetrical
both sides of the tooth surfaces.
Example 2: Tooth Undercutting of Helical Beveloid Gears.
Figure 5 illustrates the tooth undercutting of a helical bevel
gear. The major design parameters are chosen the same as
listed in Table 1. The helix angle on the pitch plane of the ima
nary rack cutter isb515 deg~right handed!. As illustrated in Fig.
5, the undercutting lines appear only on the right side of the to
surfaces. This phenomenon is due to the fact that the gear
different pressure angles for the left and right side tooth surfa
on the plane of rotation. The detail will be discussed in the n
section.

4 Tooth Profile Analysis on the Plane of Rotation
In 1983, Mitome proposed the parametric design of the b

eloid gear. That investigation also proposed the tooth undercut
condition of beveloid gears by the limitation of the base circle.
verify the accuracy of the proposed mathematical model and
dercutting analysis, the tooth profile on the plane of rotation
discussed hereinafter. Theoretically, a beveloid gear can be re
sented as an infinite succession of two-dimensional involute g
with profile-shifted coefficient linearly decreasing from heel
toe. To express the profile of the imaginary rack cutter on
plane of rotation~i.e. Xc2Yc plane!, the third item of Eq.~3! can
be adapted as follows:

u5@zc
~ i !1~ l ~ i ! cosan

~ i !2a!sind6~ l ~ i ! sinan
~ i !2a tanan

~ i !2b!

3sinb cosd#/~cosb cosd!, (28)

wherei 5 l and r.
Similarly, the third item of Eq.~4! can be adapted as follows:

Fig. 5 Undercutting of helical beveloid gear
Transactions of the ASME
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u5@zc
~ i !1~2r cosu~ i !1r sinan

~ i !2a!sind6~r sinu~ i !

2r cosan
~ i !2a tanan

~ i !2b!sinb cosd#/~cosb cosd!,

(29)

wherei 5 l and r.
Considering the first two items of Eq.~3! together with Eq.~28!

and the first two items of Eq.~4! together with Eq.~29!, the profile
of the two-dimensional imaginary rack cutter can be obtained
expressed on the plane of rotation by treatingzc as a constant. By
taking the arctangent to the slope of the straight edges of
two-dimensional imaginary rack cutter, the pressure angles on
plane of rotation can be obtained and expressed by:

a t
~ i !5tan21S 6cosan

~ i ! sinb sind1sinan
~ i ! cosd

cosan
~ i ! cosb D , (30)

wherei 5 l and r. Substituting the profile of the two-dimension
imaginary rack cutter into Eqs.~10! and~11! results in the profile
of the beveloid gear on the plane of rotation. According to
fundamentals of an involute gear, the base radius of the beve
gear can be expressed as:

r b
~ i !5r 1 cosa t

~ i ! , (31)

wherei 5 l and r. Therefore, the straight beveloid gear discuss
in Example 1 and helical beveloid gear obtained in Example 2
be analyzed and illustrated on the plane of rotation. By apply
Eq. ~30!, the left and right side pressure angles of the strai
beveloid gear on the plane of rotation area t

( l )5a t
(r )

518.882 deg, as shown in Fig. 6~a!. Thus, the profile of straigh
beveloid gear tooth on the plane of rotation is symmetrical, a
the base radius can be calculated asr b

( l )5r b
(r )559.1368mm. The

coordinates of some undercutting points on both sides of the t
surfaces are calculated and listed in Table 2. By calculating
distances from the gear axis~i.e. Z1-axis! to these undercutting
points, all undercutting points are found located on the base
inder with r b

( l )5r b
(r )559.1368mm. This result satisfies the funda

mentals of an involute gear and also verifies the accuracy of
proposed undercutting analysis. Observing the tooth profiles
the planes of rotation withZ1510mm and Z15210mm, as

Fig. 6 The profiles of rack cutter and generated beveloid gear
on the plane rotation; „a… straight beveloid gear, „b… helical bev-
eloid gear
Journal of Mechanical Design
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shown in Fig. 6~a!, the long addendum tooth with a positiv
profile-shifted coefficient and the short addendum tooth with
negative profile-shifted coefficient may appear near the heel
the toe, respectively. The demonstration of the loci of the ima
nary rack cutter and the generated tooth profile on the plan
rotation avail the understanding of undercutting phenomenon n
the toe.

Figure 6~b! illustrates the plane of rotation of the helical be
eloid gear as discussed in Example 2. According to our results
left and right side pressure angles of the helical beveloid gea
the plane of rotation area t

( l )524.024 deg anda t
(r )514.705 deg.

Therefore, the tooth profile is no longer symmetrical on the pla
of rotation, and the base radius of the left and right side to
surfaces of this helical beveloid gear can be calculated asr b

( l )

559.0997mm and r b
(r )562.5854mm, respectively. The coordi-

nates of some undercutting points on the right side tooth sur
are calculated and listed in Table 3~a!. By calculating the distances
from the gear axis to these undercutting points, we can find
all undercutting points are located on the base cylinder withr b

(r )

562.5854mm. The coordinates of undercutting points on the le
side tooth surface are also listed in Table 3~b!. Although all un-
dercutting points are located on the base cylinder withr b

( l )

559.0997mm, they only exist in the region of z1
<215.0801mm, which is out of the range of the face width~i.e.
210mm<x1<10mm! of the beveloid gear we discussed here
A comparison of the left and right side tooth surfaces on the pl
of rotation reveals that tooth undercutting occurs only on the ri

Table 2 Undercutting points of straight beveloid gears

Table 3 Undercutting points of helical beveloid gear
DECEMBER 2001, Vol. 123 Õ 573
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side tooth surface, which has a larger base radius caused
smaller pressure angle. Figure 7 presents the helical beveloid
tooth on the plane of rotation together with the base circles of
left and right side tooth surfaces, respectively. On the plane
rotation near the toe (Z15210mm), the right side active tooth
touches the base circle~i.e. radiusr b

(r )! and has a singular point o
it. However, the left side active tooth surface is located above
base circle~i.e. radiusr b

( l )!, and no singular point exists. Mean
while, since the tooth has a positive profile-shifted coefficient
the plane of rotation near the heel (Z1510mm), the entire active
tooth profile is located above the base circles of radiir b

( l ) andr b
(r ) ,

thus, no undercutting occurs on either side of the tooth surf
Figure 8 illustrates the enlargement of tooth undercutting as d
onstrated in Fig. 7. Notably, the undercutting point acquired
solving the singularity may be treated as the ‘‘theoretical und
cutting point.’’ After the generating process, part of the act
tooth may be cut by the generation line of the fillet region and
‘‘theoretical undercutting point’’ is no longer existent. As show
in Fig. 8, the ‘‘actual undercutting point,’’ which can be solved b
a numerical method, is the intersecting point of the genera
lines of active tooth and fillet.

Fig. 7 The tooth profile of helical beveloid gear „an
„ l …Äan

„r …

Ä20 deg … and base circles on the plane of rotation

Fig. 8 The theoretical and actual tooth undercutting points
574 Õ Vol. 123, DECEMBER 2001
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5 Undercutting Prevention
Referring to the fundamentals of an involute gear, some prin

pals, such as positive profile shifting, a higher pressure angl
larger number of gear teeth, the adoption of stub teeth, etc., w
suggested to prevent tooth undercutting. In this section, two p
ticable methods are proposed to prevent tooth undercutting
beveloid gears.

5.1 Helical Beveloid Gear with Asymmetrical Normal
Pressure Angles. According to the tooth profile of helical bev
eloid gear on the plane of rotation shown in Fig. 6~b! and Fig. 7,
tooth undercutting occurs only on the right side tooth surfa
which has a larger base radius caused by a smaller pressure a
By selecting a larger normal pressure angle for the right side
the imaginary rack cutter~Fig. 1!, e.g.,an

(r )530 deg, the right side
pressure angle on the plane of rotation thus becomesa t

(r )

525.175 deg. As illustrated in Fig. 9, the base radius of the ri
side tooth surface reduces tor b

(r )558.5588mm, which makes the
whole right side active tooth surface located above the base ci
and no singular point exists. Therefore, this helical beveloid g
with asymmetrical normal pressure angles~i.e. an

( l )520 deg and
an

(r )530 deg! not only prevent the tooth undercutting on the rig
side tooth surface, but also remain the advantage of small pres
angle, such as higher contact ratio and lower radial thrust, etc.
the left side tooth surface.

5.2 Beveloid Gear with Varying Working Depth. As men-
tioned above, the undercutting condition of a beveloid gear can
considered as the limitation of the base circle. Therefore, Mito
@10# proposed the straight beveloid gear with stub teeth to av
undercutting by reducing the cutting depth. Applying the propos
mathematical model, the beveloid gear with stub teeth can
acquired by choosing the parametera,1.0/Pn ~refer to Fig. 1!.
Though stub teeth prevent undercutting on the toe region,
active tooth profile in the central region of the tooth width whe
bearing contact located is also shortened. Thus, the contact
may decrease. In order to prevent tooth undercutting on the
and to maintain a full working tooth on the central region of t
tooth width, a new generating concept and a practicable hobb
method of novel type beveloid gear with varying working dep
from the toe to the heel is proposed. The mathematical mode
this novel type beveloid gear can be acquired by treatinga
5(1.01k u)/Pn in the proposed mathematical model. Herein, t
varying rate of tooth working depth is determined byk, which is a

Fig. 9 The tooth profile of helical beveloid gear „an
„ l …Ä20 deg,

an
„r …Ä30 deg … and base circles on the plane of rotation
Transactions of the ASME
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constant in unit (1/mm). A novel type beveloid gear with stub
teeth near the toe, full teeth in the central region and exten
teeth near the heel can be obtained by choosing an approp
value of k. Comparisons of the straight beveloid gear teeth w
full, stub and varying working depths are illustrated in Fig. 1
The bearing contacts are also plotted on the tooth surfaces.
novel type straight beveloid gear has stub teeth near the to
prevent undercutting, and full teeth in the central region of to
width to ensure the contact ratio. Though the extended tooth n
the heel may become a pointed tooth, the application of beve
gears does not become disfigured. Notably, the idea of vary

Fig. 10 Straight beveloid gear teeth with full, stub varying
working depths

Fig. 11 Schematic of varying depth hob cutter

Fig. 12 Schematic of inclining work-arbor taper hobbing
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working depth comes from the limitation of base circle. Therefo
this method is originally developed for the straight beveloid ge
whose base radii are the same for both sides of the tooth surfa
However, by choosing proper asymmetrical normal press
angles to letr b

( l )5r b
(r ) , this method is also applicable to the un

dercutting prevention of helical beveloid gears.
To cut this novel type beveloid gear, a novel type hob cut

with varying cutting depths was designed as illustrated in Fig.
The cutting depths of the hob cutter linearly increase from o
end to the other. Figure 12 schematically depicts the inclin
work-arbor taper hobbing@7# for the beveloid gear manufacture
The cutting cone angled is given by inclining the work-arbor with
respect to the feeding direction of the hob axis. As shown in F
13, by shifting the hob along its rotational axis during the tap
hobbing process, the novel beveloid gear with varying work
depth can be generated. Despite of rotating with angular velo
vh , the hob moves simultaneously in vertical and hob shifti
directions with velocitiesVv and Vh , respectively. Herein, the
setting angle of the hob cutter isG. The relation between the gea
blank and the axes of hobbing machines can be written as follo

v15
Nh

N1
vh1

2p

L1
Vv1

cosG

r 1
Vh , (32)

where v1 is the angular velocity of the gear blank;Nh is the
number of start of the hob cutter~i.e. number of the hob cutte
teeth!; N1 is the number of the generated gear teeth, andL1 is the
lead of the generated gear. Equation~32! shows the gear blank
rotation in terms of three independent variablesvh , Vv andVh .
By controlling these variables, the beveloid gear with varyi
working depth can be generated by CNC hobbing machines.

6 Conclusion
According to the developed mathematical model of bevel

gears, conditions of tooth undercutting have been derived. S
specific phenomena of undercutting on the beveloid gear to
surface were investigated. To prevent tooth undercutting of b
eloid gears, two practicable methods were also proposed. Th
sults of this study help designers and manufactures to design
choose the proper parameters for manufacturing the beve
gears without tooth undercutting.
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