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Professor, A beveloid gear can be viewed as an involute gear of which the profile-shifted coefficient
ASME Mem. linearly decreases from the heel to the toe. Therefore, tooth undercutting occurs and
singular points appear on the tooth surfaces near the toe. When undercutting occurs, the
Department of Mechanical Engineering gear tooth is comparatively weak. In this study, the conditions of tooth undercutting of
National Chiao Tung University beveloid gears were derived and specific phenomena were also investigated by numerical
Hsinchu, Taiwan 300, R.0.C. illustrated examples. In addition, according to the characteristics of tooth undercutting on

the beveloid gear tooth surface, two practicable methods were also proposed to avoid the
tooth undercutting of beveloid geardDOI: 10.1115/1.1414128

1 Introduction X /W cosal)—a

Beveloid gears, also known as conical involute gears, can bel yi b ={ + (/D sina’~atana"~b)} (i=I andr),
viewed as involute gears with profile-shifted coefficient decreas- | ,() 0
ing from the heel to the toe. Therefore, undercutting occurs and ™ " 1)

singular points appear on the negative profile-shifting tooth near . . .

the toe. Undercutting is an important aspect of gear design affere superscripts|® and “r” denote the left and right side

manufacturing. It may cause weakness of gear strength, stré§@ight edges which generate the left and right side active tooth

concentration and gear mismatch during gear meshing. When §HIfaces of the beveloid gear, respectively. The upper sign of Eq.

dercutting occurs, the strength of the gear is comparatively weak) indicates the left side straight edge, while the lower sign rep-

resulting in a shortened service life of the gear set. resents the right side straight edge. According to Fig/4)
Beveloid gears have received considerable attention. In a pie{M{’M{"| represents the design parameteaf) denotes the

neering work, Merritf1] and Bean{2] proposed the basic char-normal pressure angle, and symbBlsandp, represent the gear

acteristics and potentials of beveloid gears. MitdiBe11] pub- diametral pitch and circular pitch, respectively.

lished the majority of the research on this subject. These Similarly, the left and right side fillets on the normal section of

investigations, however, focused largely on theoretical analysése imaginary rack cutter, which generate the fillet surfaces of the

manufacture, measurements and bearing tests of beveloid geargeér, can be expressed in coordinate systgras follows:

complete mathematical model was not developed for beveloid

gear tooth contact simulations. This study not only develops the Xg) —pcost+p sin ay'-a _
mathematical model of beveloid gear according to the taper hob- { y{’t ={ +(psin6")—p cosa!’—atanal’—b)

bing method[3,7] but also determines the conditions of tooth 2 0

undercutting by adopting the method proposed by Lifi,13. "

Meanwhile, specific phenomena of undercutting on the beveloid (i=1 andr), 2

gear tooth are investigated by numerical illustrated examples. Ac- ()= 0 0 .
cording to the results of undercutting analysis, two practicabignere 0= 6’<(90 deg-ay’) and 6" represents the design pa-

methods that prevent the tooth undercutting of beveloid gears &R§neter that determines the coordinates of any point on this fillet.
also discussed in this study. One is the asymmetrical normal pres-

sure angles for helical beveloid gear, and the other is the beveloid

gear with varying working depth.

2 Mathematical Model of Beveloid Gears

2.1 Generation Concept. According to Merritt’s generation
concept[1], a beveloid gear can be generated by a basic rack
whose pitch plane intersects with the axis of the gear and forms an
angle equal to the generating cone angle. In practice, the most
conventional method of beveloid gear manufacturing is the taper
hobbing proposed by Mitomg3,7]. The imaginary rack cutter,
which can be considered as the envelope generated by the hob ir
the space, is used to simulate the generating process of beveloic
gears in this study.

2.2 Mathematical Model of Imaginary Rack Cutter. Fig-
ure 1 illustrates the normal section of the imaginary rack cutter. (C

The two straight edgedl’M{) andM{’M{’ can be represented

in coordinate systers,(X,,,Y,,Z,) by p\
*Corresponding author. 9(1)
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IR, R, ,
NC:W XV (for the straight-edge surfades
> X 0,0, d 4/
n = an
x 1 GO/ u
Re R (for the fillet surfaceks
=——X—(for the fillet surface
o) Zp B Zn ) Jdu a0
‘Pltch‘plane of Equations(3) and(5) result in the unit normal to the straight-edge
Z, _ imaginary rack  surfaces of imaginary rack cutter as follows:
B 0, cutter n{)=—cosa!’ sin B sin 65 sina!!’ coss,
s : )
0.,0, ¥ .~ Plane axode © n{)=cosal)’ cosp,

/ LY, and
nl=—cosal’ sinB coss+sina!’sins (i=1 andr). (6)

. . ) Equationg4) and(5) result in the unit normal to the fillet surfaces
Fig. 2 Relations among coordinate systems  S,, S, and S, of imaginary rack cutter as follows:

n{)= —sin g sin & sin #) ¥ cosé cose'",

To obtain the imaginary rack cutter surface, the normal section n§,'c):cos,8 sing,
of the imaginary rack cutter is attached to the plage-Y, and and
translated along the [in®,0,, with respect to the coordiéngte sys-— . .
temS,(X,,Y,.Z,), as illustrated in Fig. 2. Hereim=|0,0,| is  n{}=—singcosssind'+sinscosd (i=1 andr).  (7)
a design parameter of the imaginary rack cutter surface. The pro- ) .
file of the imaginary rack cutter can thus be traced out in coordi- 2-3 Mathematical Model of Beveloid Gear Tooth Surface.

nate systens,, and the plane¥,—Z, can be regarded as theFigure Ss_chematica_lly de_picts the gear generation mechanism and
pitch plane of the imaginary rack cutter. The anglewhich de- the coordinate rel_atlonshlp between the plane amda:nd th_e
termines the direction of tooth trace, is the helix angle on the pitéfar axode. Hereim,; and P, denote the pitch radius and pitch
plane of imaginary rack cutter. In order to simulate the taper hoBoint of the generated beveloid gear, apd represents the gear
bing process, the coordinate systép is then set to form an rotation angle in the generating process. The coordinate system
inclined angles with respect to the plane axode coordinate systefr(X.Yr.Z) represents the fixed coordinate system, while
Se(Xc,Yce,Z,). The straight-edge surfaces of the imaginary racﬁl(xl,Yl,Zl_) is the coordinate system attached to the generated
cutter rack cutter surface can thus be represented in coordin@g&r, ands. is the plane axode coordinate system attached to the

systemsS, as follows: imaginary rack cutter. Based on the theory of geafit®y13, the
: ) , o , mathematical model of the generated tooth surface can be attained
x)=(/ cosay —a)coss+[F (/" sinal by simultaneously considering the equation of meshing together
) . . with the locus of the imaginary rack cutter represented in gear
—atana,’—b)sing+ucosp]sing, coordinate systen$;. The mathematical model of the beveloid
y(ci): + (/0 sinaﬁ)—atanaﬂ)—b)cosﬁJru sing, ?oelgrwcsgn be obtained and represented in coordinate sy&tem
and
. _ , _ . Ri=[MRe, (8)
2=~ (/" cosa!)—a)sins+[F (/7 sinal’
—atana!—b)sin 8+ u cosB]coss, (3)
wherei=I andr. ‘Xc X}
Meanwhile, the fillet surfaces of the imaginary rack cutter ca i \
be represented in coordinate syst&mas follows:
| Dt o singd i g ~né1 Plane axod
x'=(—pcosd+psinall’—a)coss+[ F(p sin " 171 X anc axode n
0 (i) - - Z, I
—p cosa,’ —atana;,’—b)sin B+ u cosB]sin S, » »
p an an ) B B] j 0/' ~ Yc

y'==+(psing"—pcosal’—atana!’—b)cosp+using,

and
ZV=—(—pcoss+psinall’—a)sins+[F(p sing"
—pcosal —atana!’—b)sin B+ u cosBlcoss,  (4)

wherei=| andr.

Since the surface coordinates of imaginary rack cutter/are
and u for the straight-edge surfaces amdand u for the fillet
surfaces, the unit normal to the rack cutter surface can be rep
sented by the subsequent equations:

N Gear axode
nC_ |N | 1 (5)
¢ Fig. 3 Coordinate relationship between the imaginary rack
where and cutter generated gear
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and Based on differential geometry, the tangent vedtdo the gener-
X — v — 7 .- ated surface is collinear with its relative velock§” . When un-
Cc XC _ Cc yC C ZC

= (9) dercutting occurs, a singular point appears on the active tooth
Nye Nyc Nz surface and the tangent vector beconies0 at this singular

Equation(8) is the locus of rack cutter surfade. represented in POiNt. Restated, the relative velocity at a singular point on the
coordinate systens;, and Eq.(9) represents the equation ofactive tooth surface equals zero, that is

meshing. HereinX., Y. andZ, are the coordinates of a point on
the instantaneous axis of gear rotation I-I, which is represented in
coordinate systens;; n,., n,. andn,. are the directional com-
ponents of the surface unit normal. Equationg6)—(9) yield the
generated tooth surface in coordinate sys@®nas follows:

Vi =\le v =0 (17)

Since the surface coordinates of imaginary rack cutter/are
andu for the straight-edge surface that generates the active tooth
surface of beveloid gears, E(L.7) can be decomposed into three

X1 X; COS¢h1— Y SiNq+T11(COSh1+ b1 SiN 1) components alon¥.-axis, Y.-axis andZ.-axis as follows:
=14 XcSiN¢g1tY.COSPh+T1(SiN— Pp1 COSPy) ¢, )
)Z’l cSiNg1+YcCOShy j 1(Sing;— 1 COSPy oo d/ ax, du
1 c — —t—— =V (18)
(10) d/ dt = ou dt xe

h
where ay.ds  ady. du (c1)
b1=(YeNxe™XcNyo)/ (T 1Nyo)- (11) 7 at T ar. Ve o (19)
Herein, Eq.(11) comes from Eq(9). Substituting Eqs(3) and(6)
and Eqs(4) and(7) into Eqgs.(10) and(11) allow us to obtain the and
mathematical model of the beveloid gear represented in coordi-

nate systens, . 92,4/ oz du o)
o7 dt Toudt . Ve (20)
3 Undercutting Analysis Recalling that either Eq9) or Eq.(11) represent the equation of

Mathematically, the phenomenon of tooth undercutting is tH&eshing between the generated tooth surface and the imaginary
appearance of singular points on the active tooth surface. To coidck cutter. It is rewritten here for convenience:
pute the singular points on the active tooth surface and determine ‘
their corresponding parameters on the straight-edge surface of f(p1,/,u)=(r11=Yc)Nye T XcNyc=0 (21)
imaginary rack cutter, this work adopts the method proposed b o . . . .
Litvin [12,13 which considered the relative velocity and equati0||=_|)\'{fferem'""'“On of the equation of meshing, i.e., Eg1), yields

of meshing between the imaginary rack cutter and generated gear. )
of d7 of du of depy

3.1 Calculation of Relative Velocity. According to the gen- EyZAr TR T Tl el (22)
eration mechanism mentioned above, the absolute velocities of the o/ dtou dt ¢y dt

imaginary rack cutter and generated gear can_be decor_nposed if'&?:ations(lS), (19, (20), and (22) form a system of four linear
two components: transfer velocity,, and relative velocit, .  eqyations with two unknowd//dt and du/dt which provide a
Due to the continuity of contact between the cutter and generaiedinog for determining the conditions of gear undercutting. The

tooth surface, the absolute velocities of the imaginary rack cutlgfsiem of equations possesses a unique solution if the rank of the
and generated gear are the same at the point of contact and caf\Bgix

related as
VI = VP4 VIO = VP VY, (12) R Re e
or a/  du ¢ 23)
A=
ot of af d
VW=V 4 (Ve =P =Vie + vieD, (13) !

a/  du d¢, dt

where subscript f” represents the relative motion over the cutter

surface and subscriptir” represents the transfer motion with theis equal to two. This yields the following three equality equations:
imaginary rack cutter and generated gear. Superscaptepre-

sents the cutter and superscript “1” represents the generated gear. dx. dxg (c1)
According to Fig. 3, the relative velocity between the imaginary 4/ du ~Vie
rack cutter and generated gear can be representgddoordinate q ’ g
system as follows: A= d_ic d_yc _V(yccl> -0, (24)
V=V VY, 14) ¢ du
where ﬂ (?_f — i %
_ /"  du dpy dt
V=0 X R+ 0,0, X w;
. . d dx
=[wi(Ye= 1) Jic+[or(~%=T)]Jo,  (15) o oL v
and q q
Z 07
VO =—wiry . (16) o= G Vel | =0 (25)
Herein,w, is the angular velocity of the generated gear and can be of  of of d
obtained byd, /dt. Aot 9t ddy
a7/  du d¢y dt
3.2 Conditions of Undercutting. The surface tangerit ex-
ists at any regular point on the active tooth surface, Tet0. and
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Table 1 Some major design parameters of beveloid gears Undercutting Line

Normal module m, =5 (mm/teeth)
Fillet radius =03 mm
Normal pressure angle o’ =al” =20°
Cone angle S5=20°
Number of teeth N =25
Face width
(Thickness of gear blank) F =20 (mm) Enlargement 1:5

% % — (e
d7  du e
dz. dz
M=l G Vel | =o (26)
of  of of depy
3/  au dg, dt

Equation(24)—(26) can be applied to determine the conditions of
singularity, and the sufficient condition for singularity can be rep- Fig. 5 Undercutting of helical beveloid gear
resented by

A2+ A2+ A3=F(/,u,¢p1)=0 (27)

Thus, the undercutting condition on the active tooth surface of tlample 1: Tooth Undercutting of Straight Beveloid Gears
proposed beveloid gear can be calculated by applying the numérble 1 summarizes some major design parameters of the straight
cal method with Eq.27). By applying the method mentioned beveloid gear with8=0 deg. Figure 4 shows the undercutting
above, undercutting conditions can be calculated and undercuttliitgs that were numerically solved by the developed computer
lines can be plotted on the beveloid gear tooth surfaces by ap%ogram& Notably, a beveloid gear can be viewed as an involute

ing the computer graphical method. lllustrative examples are p -?T: k(l)(];evlv?clyc?oéh%l'hper?;‘lgr-:hItfktm?adt;ci?]ﬁhcrllzgtrczmteir?grglylind:scrsgsggr

sent?d lto dzn]onsératedthe tetffectlver|1e$s of the proposed m IEga_r the toe of the beveloid gear tooth surface where negative
ematical model and undercutiing analysis. profile-shifting becomes severe. Owing to the symmetry of
straight beveloid gear teeth, the undercutting is symmetrical on
both sides of the tooth surfaces.
Und ttine Li Example 2: Tooth Undercutting of Helical Beveloid Gears
ndercutting Line Figure 5 illustrates the tooth undercutting of a helical beveloid
gear. The major design parameters are chosen the same as those
listed in Table 1. The helix angle on the pitch plane of the imagi-
nary rack cutter igg= 15 deg(right handegl As illustrated in Fig.
5, the undercutting lines appear only on the right side of the tooth
surfaces. This phenomenon is due to the fact that the gear has
different pressure angles for the left and right side tooth surfaces
on the plane of rotation. The detail will be discussed in the next
section.

4 Tooth Profile Analysis on the Plane of Rotation

In 1983, Mitome proposed the parametric design of the bev-
Enlargement 1:5 eloid gear. That investigation also proposed the tooth undercutting
condition of beveloid gears by the limitation of the base circle. To
verify the accuracy of the proposed mathematical model and un-
dercutting analysis, the tooth profile on the plane of rotation is
discussed hereinafter. Theoretically, a beveloid gear can be repre-
sented as an infinite succession of two-dimensional involute gears
with profile-shifted coefficient linearly decreasing from heel to
toe. To express the profile of the imaginary rack cutter on the
plane of rotatior(i.e. X.— Y, plane, the third item of Eq(3) can
be adapted as follows:

u=[2"+ (/" cosal’ —a)sin 6+ (/1 sinal’—atana!’ - b)

X sin B cosés]/(cospB cosd), (28)
wherei=| andr.
Fig. 4 Undercutting of straight beveloid gear Similarly, the third item of Eq(4) can be adapted as follows:
572 / Vol. 123, DECEMBER 2001 Transactions of the ASME
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Rack cutter's profile on | Generated tooth profile on the plane of rotation Table 2 Undercutting points of straight beveloid gears

the planc of rotation [~ 70y heen | 7= -10 mm (The toe) (left and right side tooth surfaces)  unit : mm
o) =18.882° o =18.882° X, Y, A JX+ Y
/ 58.9985 | £4.0413 | -3.4706 59.1368

59.0111 | £3.8537 | -5.0669 59.1368
59.0230 | £3.6660 | -6.6632 59.1368
59.0344 | £3.4784 | -8.2594 59.1368
59.0452 | £3.2907 | -9.8557 59.1368

(@)
Rack cutter's profile on | Generated tooth profile on the plane of rotation

the plane of rotation | _ 16 ) (The heel) |z, =-10 mm (The toe)

o =24.024" o =14.705" shown in Fig. 6a), the long addendum tooth with a positive
- profile-shifted coefficient and the short addendum tooth with a
7 negative profile-shifted coefficient may appear near the heel and
the toe, respectively. The demonstration of the loci of the imagi-
nary rack cutter and the generated tooth profile on the plane of
rotation avail the understanding of undercutting phenomenon near
the toe.
Figure Gb) illustrates the plane of rotation of the helical bev-
(b} eloid gear as discussed in Example 2. According to our results, the
Fia. 6 The profiles of rack cutter and aenerated beveloid aear left and right side pressure angles of the helical beveloid gear on
ongthe plane[;otation; (a) straight bevgloid gear, (b) heligal bev- the plane of rotation arez_g')_:24.024 deg andxgr):_14.705 deg.
eloid gear Therefo_re, the tooth profile is no longer symmetncel on t_he plane
of rotation, and the base radius of the left and right side tooth

surfaces of this helical beveloid gear can be calculated{as

u=[z)+(—p cosé+p sinall’—a)sin 5= (p sin 6 =59.0997mm andr = 62.5854mm, respectively. The coordi-
_ _ nates of some undercutting points on the right side tooth surface

—-p Cosaﬂ)f a tanag')f b)sin B cosés]/(cosB coss), are calculated and listed in TabléR By calculating the distances
29) from the gear axis to these undercutting points, we can find that

all undercutting points are located on the base cylinder V\ﬁth
wherei=| andr. =62.5854mm. The coordinates of undercutting points on the left
Considering the first two items of E(B) together with Eq(28)  side tooth surface are also listed in Tabl®)3Although all un-
and the first two items of Ed4) together with Eq(29), the profile dercutting points are located on the base cylinder WigH
of the two-dimensional imaginary rack cutter can be obtained andsg ggg7m m, they only exist in the region ofz,
expressed on the plane of rotation by treatip@gs a constant. By 15.0801mm, which is out of the range of the face widthe.
taking the arctangent to the slope of the straight edges of the; gy m<x, <10mm) of the beveloid gear we discussed herein.
two-dimensional imaginary rack cutter, the pressure angles on @ mparison of the left and right side tooth surfaces on the plane
plane of rotation can be obtained and expressed by: of rotation reveals that tooth undercutting occurs only on the right

+cosa!! sinB sin 5+ sina!l’ coss

alV=tan! 7 . (30)
Cosay,’ cosp Table 3 Undercutting points of helical beveloid gear
wherei=I andr. Substituting the profile of the two-dimensional (a) right side tooth surface unit : mm
imaginary rack cutter into Eq$10) and(11) results in the profile —
of the beveloid gear on the plane of rotation. According to the X, ) Z, VX +Y

fundamentals of an involute gear, the base radius of the beveloid
gear can be expressed as. 62.3519 | 5.4010 | 3.0233 | 62.5854

(D=, cosall . (3 | 624553 | 4.0327 | 07037 | 62.5854

wherei=1| andr. Therefore, the straight beveloid gear discussed 62.5121 3.0280 -3.4367 62.5854
in Example 1 and helical beveloid gear obtained in Example 2 can _

be analyzed and illustrated on the plane of rotation. By applying 62.5609 1.7482 6.9152 62.5854
Eg. (30), the left and right side pressure angles of the straight | §2.5820 | 0.6506 -9.8967 62.5854
beveloid gear on the plane of rotation are’=qa"

=18.882 deg, as shown in Fig(é. Thus, the profile of straight (b) left side tooth surface unit : mm
beveloid gear tooth on the plane of rotation is symmetrical, and X, Y, Z, (————Xlz e

the base radius can be calculated fs=r{’=59.1368mm The
coordinates of some undercutting points on both sides of the tooth| 58.6894 | -6.9524 | -15.0801 59.0997
surfaces are calculated and listed in Table 2. By calculating the
distances from the gear axise. Z;-axis) to these undercutting 58.6752 | -7.0710 | -16.1445 59.0997
points, all undercutting points are found located on the base cyl- 58 6608 | -7.1896 | -17.2089 59.0997
inder withr ) =r{’=59.1368mm This result satisfies the funda- - : ;
mentals of an involute gear and also verifies the accuracy of the| 58.6461 | -7.3082 | -18.2733 59.0997
proposed undercutting analysis. Observing the tooth profiles on
the planes of rotation wittZ;=10mm and Z;=—-10mm, as 58.6275 | -7.4564 | -19.6039 59.0997
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z,=10 mm 5 Undercutting Prevention
(The heel) Referring to the fundamentals of an involute gear, some princi-
pals, such as positive profile shifting, a higher pressure angle, a
Undercutting larger number of gear teeth, the adoption of stub teeth, etc., were

suggested to prevent tooth undercutting. In this section, two prac-

Base ticable.methods are proposed to prevent tooth undercutting of
circle beveloid gears.
Basle \ (right) 5.1 Helical Beveloid Gear with Asymmetrical Normal
circle - - Pressure Angles. According to the tooth profile of helical bev-
(left) = eloid gear on the plane of rotation shown in Figb)6and Fig. 7,
I tooth undercutting occurs only on the right side tooth surface,
- rb(”= 62.5854 mm which has a larger base radius caused by a smaller pressure angle.
z,=-10mm By selecting a larger normal pressure angle for the right side of
o (The toe) l the imaginary rack cuttefig. 1), e.g.,a{"’=30 deg, the right side
¥, = 59.0997 mm =L pressure angle on the plane of rotation thus becoméé
f,E; =25.175deg. As illustrated in Fig. 9, the base radius of the right

side tooth surface reducesttf)) =58.5588mm, which makes the
(af)=0ay  whole right side active tooth surface located above the base circle,

and no singular point exists. Therefore, this helical beveloid gear

with asymmetrical normal pressure anglées. o{’=20deg and

. . . aﬁ]’)=30 deg not only prevent the tooth undercutting on the right
side tooth surface, which has a larger base radius caused byifs tooth surface, but also remain the advantage of small pressure

smaller pressure angle. Figure 7 presents the helical beveloid ggagle, such as higher contact ratio and lower radial thrust, etc., for
tooth on the plane of rotation together with the base circles of thgs |eft side tooth surface.

left and right side tooth surfaces, respectively. On the plane of _ _ ) _

rotation near the toeZ;=—10mm), the right side active tooth 5.2 Beveloid Gear with Varying Working Depth. As men-
touches the base circlee. radiusr{") and has a singular point on tioned above, the undercutting condition of a beveloid gear can be
it. However, the left side active tooth surface is located above t@nsidered as the limitation of the base circle. Therefore, Mitome
base circle(i.e. radiuer,')), and no singular point exists. Mean-[lo] proposed the straight beveloid gear with stub teeth to avoid

while, since the tooth has a positive profile-shifted coefficient Othndercutting by reducing the cutting depth. Applying the proposed
the plane of rotation near the heel,=10mm), the entire active mathematical model, the beveloid gear with stub teeth can be

S . . ) acquired by choosing the parametex 1.0/P,, (refer to Fig. 2.
tooth profile is located above the base circles of reffiiandr, Though stub teeth prevent undercutting on the toe region, the

thus, no undercutting occurs on either side of the tooth surfacg.; e tooth profile in the central region of the tooth width where
Figure 8 illustrates the enlargement of tooth undercutting as deflsaring contact located is also shortened. Thus, the contact ratio
onstrated in Fig. 7. Notably, the undercutting point acquired Byay gecrease. In order to prevent tooth undercutting on the toe
solving the singularity may be treated as the *theoretical undefy§ 1o maintain a full working tooth on the central region of the
cutting point.” After the generating process, part of the activg,oih width, a new generating concept and a practicable hobbing
tooth may be cut by the generation line of the fillet region and th&athod of novel type beveloid gear with varying working depth
“theoretical undercutting point” is no longer existent. As shownom the toe to the heel is proposed. The mathematical model of
in Fig. 8, the "actual undercutting point,” which can be solved byhis novel type beveloid gear can be acquired by treating

a numerical method, is the intersecting point of the generatian; o1 k u)/P, in the proposed mathematical model. Herein, the
lines of active tooth and fillet. varying rate of tooth working depth is determinedipyvhich is a

Fig. 7 The tooth profile of helical beveloid gear
=20deg) and base circles on the plane of rotation

z,=10 mm
(The heel)

Generation line of
active tooth region

Base
Actual undercuting point | . Base
Base circle circle :
(left) circle
ight)
| - o ) (rig
| - Theoretical - ? T
| undercuting point (The toe) 7,"=58.5588 mm
N o 7=59.0997 mm i
| Generation line e ==
of fillet region —~

Fig. 8 The theoretical and actual tooth undercutting points
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Fig. 9 The tooth profile of helical beveloid gear  (a!”=20 deg,
a(n')=30 deg) and base circles on the plane of rotation
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Full working depth Stub working depth Varying working depth Vertical feed

(a=10/Px) (a=0.75/P») (a=(1.0+0.0254)/Px)
Heel I, ‘
Hob - \}7
Full shifting ~—|_ \A
- r

Gy,

Extended

Stub Varying
Toe depth hob cutter

Fig. 13 The movement of hob cutter
Fig. 10 Straight beveloid gear teeth with full, stub varying
working depths . o .
working depth comes from the limitation of base circle. Therefore,

this method is originally developed for the straight beveloid gear,

whose base radii are the same for both sides of the tooth surfaces.

However, by choosing proper asymmetrical normal pressure

angles to ler’=r{", this method is also applicable to the un-
dercutting prevention of helical beveloid gears.

/ / / To cut this novel type beveloid gear, a novel type hob cutter
with varying cutting depths was designed as illustrated in Fig. 11.

The cutting depths of the hob cutter linearly increase from one
end to the other. Figure 12 schematically depicts the inclining
7 /— — work-arbor taper hobbing7] for the beveloid gear manufacture.

/— The cutting cone angléis given by inclining the work-arbor with
respect to the feeding direction of the hob axis. As shown in Fig.
Stub depth Full depth “Extended depth 13, by shifting the hob along its rotational axis during the taper
hobbing process, the novel beveloid gear with varying working
Fig. 11 Schematic of varying depth hob cutter depth can be generated. Despite of rotating with angular velocity
oy, the hob moves simultaneously in vertical and hob shifting
directions with velocitiesvV, andV,,, respectively. Herein, the
setting angle of the hob cutter I5 The relation between the gear
blank and the axes of hobbing machines can be written as follows:

_ Np Zvrv cosI’ v 30

wl—N—lwh+L—l U+T ho (32)
where w; is the angular velocity of the gear blankt, is the
number of start of the hob cuttér.e. number of the hob cutter
teeth; N, is the number of the generated gear teeth, lant the
lead of the generated gear. Equati@®®2) shows the gear blank
rotation in terms of three independent variabdgs, V, andV,,.
By controlling these variables, the beveloid gear with varying
working depth can be generated by CNC hobbing machines.

6 Conclusion

According to the developed mathematical model of beveloid
gears, conditions of tooth undercutting have been derived. Some
specific phenomena of undercutting on the beveloid gear tooth
surface were investigated. To prevent tooth undercutting of bev-
eloid gears, two practicable methods were also proposed. The re-
sults of this study help designers and manufactures to design and
choose the proper parameters for manufacturing the beveloid
constant in unit (Ihm). A novel type beveloid gear with stub gears without tooth undercutting.
teeth near the toe, full teeth in the central region and extended
teeth near the heel can be obtained by choosing an appropridknowledgment

value ofk. Comparisons of the straight beveloid gear teeth with The authors are grateful to the National Science Council of the

full, stub and varying working depths are illustrated in Fig. 10R 0.C. for the grant. Part of this work was performed under con-
The bearing contacts are also plotted on the tooth surfaces. Tfict No. NSC 89-2212-E-009-084.
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