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Abstract
The structural, optical and mechanical properties of orthorhombic ternary
nitride crystals have been analysed theoretically with first-principles
calculation. Our results indicate that these nitrides possess fairly large
optical bandgap (4–6 eV), second-order nonlinear optical susceptibility (13–
18 pm V−1), and bulk modulus 170–370 GPa. Therefore these materials could
be useful for optical and protective coating applications. Our analysis with
the band-by-band and atomic species projection techniques not only yields
useful information about material properties, but also provides deep insight
into the fundamental understanding of the mechanical and optical properties of
orthorhombic ternary nitrides.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nitrogen, like carbon, has an inclination to form multiple bonds, which distinguishes it from
the other group VB elements. The properties of the numerous covalent nitrides vary greatly
depending on the element with which nitrogen is combined. For example, the optical bandgap
of compound semiconductors formed from group III elements and nitrogen varies from 6.5 eV
for AlN to 2 eV for InN. Therefore group III–N alloys can be used to fabricate optical active
devices with output wavelengths covering from the red to the ultraviolet [1]. Nitrides of a
number of metals can also form hard and highly stable refractory materials with very high
melting points. These materials recently have attracted significant interest for their potentials
as protective or wear resistant coating layers.

The chemistry of nitrogen in many aspects of the structure of alloys is still not well
understood [2]. Orthorhombic ternary nitrides are relatively new ceramic materials with
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Figure 1. The crystal structure of orthorhombic ternary nitride
MgGeN2 with Pna21 symmetry.

potentially interesting thermal, mechanical and optical properties [3]. These crystals are
therefore of technological and scientific importance. However to fully realize their potential,
sufficient understanding in these ternary nitrides is essential. Electronic structure calculations
can provide much insight into materials with existing and possibly new structures.

In this paper, theoretical studies on the electronic structures, mechanical and optical
properties of orthorhombic ternary nitrides with first-principles calculation are presented. We
do not intend to produce most accurate values for comparing with experimental results since no
such data are currently available. Instead we aim at improving the fundamental understanding
of the mechanical and optical properties of orthorhombic ternary nitrides.

2. Method

The crystal structure of an orthorhombic ternary nitride ABN2 is shown in figure 1. The unit
cell has Pna21 symmetry [3]. The metal atoms A, B and the two crystallographically different
N atoms occupy the general positions (x, y, z; x̄, ȳ, z + 1/2; x + 1/2, ȳ + 1/2, z; x̄ + 1/2,
y + 1/2, z + 1/2). Both metal atoms are tetrahedrally coordinated by N and vice versa both N
atoms are tetrahedrally coordinated by the two metal atoms. This crystal structure with lattice
constants a, b and c can also be deduced from a hexagonal structure (a′ = b′, c′) in which
a ≈ √

3a′, b ≈ 2a′ and c = c′ ≈ √
8/3a′.

The calculations were performed using the ab initio plane-wave-pseudopotential
approach within the framework of density-functional theory (DFT) implemented in CASTEP
software [4]. The summation over the Brillouin zone (BZ) was carried out with a k-point
sampling using a Monkhorst–Pack grid [5]. A kinetic-energy cutoff of 550 eV and 18 k

special points and 96 bands were used to ensure the convergence in the calculations of optical
properties. In order to save computation time, the size of the special point set was reduced to
eight k points (3 × 3 × 3 mesh) for the calculations of the equilibrium lattice constants and
mechanical properties. We found that the smaller set of k points causes less than 2% difference
in the equilibrium lattice constants.
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2.1. Calculations of structural properties

The equilibrium lattice constants and fractional atomic coordinates are determined from the
total-energy minimization procedure. We carried out the relaxation of the lattice parameters and
atomic positions within constraints imposed by the space-group symmetry elements. Energy–
volume relations were obtained by varying unit-cell volumes and the results were fitted to the
Murnaghan equation of state [6]

Etot(V ) = B0V

B ′
0

[(
V0

V

)B ′
0 1

B ′
0 − 1

+ 1

]
+ E0. (1)

From the fit, an estimate of the static bulk modulus at zero pressure B0, and the first-order
pressure derivative of the bulk modulus B ′

0 can be obtained. This procedure has proved to be
quite reliable in the computational design of advanced materials.

In this work, we derive the phonon frequencies of ABN2 with the Hellmann–Feynman
(HF) forces and the direct method [7]. The calculations start from building a 1×1×1 supercell
with an optimized geometry. For this configuration, the maximal magnitude of the HF forces
does not exceed 0.001 eV Å−1. The HF forces are then calculated for displaced atoms, one
at a time. We have displaced atoms A, B, N(1) and N(2) along x, y, and z directions by an
amplitude of 0.03 Å. Each displaced configuration generated 3 × 16 = 48 components of HF
forces and a total of 576 components have been used to construct the dynamical matrix and
deduce the phonon frequencies [8].

2.2. Calculations of electronic properties

To understand the nature of optical transitions and other relevant effects on the calculated
optical properties, we study the local densities of states and other electronic properties of these
nitride crystals.

Let �nk(�r) be the self-consistent wave function of the crystal at the nth band and kth point
in the BZ; we can decompose �nk(�r) into a summation over the atomic orbitals {�(i)

lm(�r)} of
each atomic species i by

�nk(�r) =
∑

i∈{atoms}

∑
l

m=+l∑
m=−l

C
(i)
nk,lm�

(i)
lm(�r) (2)

whereC(i)
nk,lm = ∫

V0
�nk(�r)�(i)∗

lm (�r) dV . The lth orbital of theα species contributes to�nk(�r)by

a fraction of h(α)nk,l [9]

h
(α)
nk,l =

(∑
i∈{α}

m=+l∑
m=−l

C
(i)
nk,lmC

(i)∗
nk,lm

)( ∑
i∈{α,β,γ,...}

∑
l

m=+l∑
m=−l

C
(i)
nk,lmC

(i)∗
nk,lm

)−1

. (3)

An atom projection concept was then employed for resolving interesting components from the
total density of states (TDOS)

LDOS(α ,E) =
∑
n

∑
k

∑
l

h
(α)
nk,l δ(E − Enk)

PDOS(α l, E) =
∑
n

∑
k

h
(α)
nk,l δ(E − Enk).

(4)

The partial density states (PDOS) and local density of states (LDOS) can be used to provide
valuable insight into the formation of the energy bandgap and the nature of transitions from
which the linear and nonlinear optical properties originate.
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2.3. Calculations of linear and nonlinear optical properties

In a crystalline solid, the most important optical transitions do not change the momentum or
the spin of the electrons involved in the transition. In terms of an energy band structure this
means that one has to consider optical excitations from an occupied to unoccupied state of the
same spin for each k vector in the BZ.

The linear optical properties of a dielectric crystalline material can therefore be described
with a dielectric function of εij (�q, ω) at �q = 0. When the incident photon energy is higher
than the bandgap Eg , the material can attenuate the photon flux. The absorption coefficient
αij (ω) is related to the imaginary part of the dielectric function by [10]

Im εij (ω) = λn(ω)

2π
αij (ω) = 8π2h̄2e2

m2V

∑
k

∑
cv

(fc − fv)
pi
cv(k)p

j
vc(k)

E2
vc

δ[Ecv(k) − h̄ω]

= 5.2324 × 103

V (Å3)

∑
k

∑
cv

pi
cv(k,Å−1)p

j
vc(k,Å−1)

E2
vc

δ[Ecv(k, eV) − h̄ω]. (5)

Here fc represents the Fermi distribution of the conduction band c; pi
cv(

�k,Å−1) denotes the
momentum matrix element (MME, in unit of Å−1) from the conduction band c to the valence
band v at the k point of the BZ. The real part of the dielectric function was obtained from the
imaginary part with Kramer–Kronig transformation.

For the second-order nonlinear optical response, the theoretical description is much
more complex [11]. However, it is fairly easy to derive the NLO susceptibility at the zero
frequency limits

χ
(2)
ijk (0) = 1

V

(
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m

)3∑
k

∑
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1
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2
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(6)

where D
ijk

nml = Im [pi
nm(p

j

mlp
k
ln + pk

mlp
j

ln]/2. We are interested in decomposing χ
(2)
ijk (0) into

various contributions from atomic species or orbitals. This can be properly done by calculating
the contribution from the αth species as [12]

χ
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V
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2
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]
. (7)

Equation (7) is very similar to equation (4) except that the second-order nonlinear optical
strengths serve as the weighting factor. We shall use this equation to yield insight into the
underlying mechanism of NLO susceptibility.

3. Results

3.1. Crystal structure and lattice dynamical properties

The calculated atomic positions of six orthorhombic ternary nitride crystals are summarized
in table 1. The tetrahedral coordination of the N atoms is distorted with the presence of two
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Table 1. Calculated fractional atomic coordinates of the orthorhombic ternary nitrides.

Nitride crystal Fractional coordinates Fractional coordinates Fractional coordinates
ABN2 (Pna21) of metal A of metal B of species N

BeCN2 Be (0.088, 0.677, 0.000) C (0.057, 0.130, −0.007) N1 (0.058, 0.100, 0.345)
N 2(0.124, 0.659, 0.390)

MgCN2 Mg (0.088, 0.677, 0.000) C (0.046, 0.125, 0.002) N 1 (0.035, 0.061, 0.330)
N2 (0.117, 0.670, 0.444)

BeSiN2 Be (0.086, 0.656, 0.003) Si (0.078, 0.129, −0.007) N1 (0.083, 0.126, 0.372)
N2 (0.096, 0.633, 0.360)

MgSiN2 Mg (0.076, 0.625, 0.000) Si (0.068, 0.125, 0.010) N1 (0.051, 0.093, 0.355)
N2 (0.112, 0.657, 0.421)

BeGeN2 Be (0.115, 0.660, 0.000) Ge (0.082, 0.129, −0.012) N1 (0.070, 0.126, 0.368)
N2 (0.091, 0.635, 0.358)

MgGeN2 Mg (0.076, 0.625, 0.000) Ge (0.069, 0.125, 0.010) N1 (0.053, 0.096, 0.357)
N2 (0.110, 0.654, 0.418)

types of metal–N bond. The average bond length is calculated to be 1.75 Å for Si–N and
2.09 Å for Mg–N. These results agree well with the recent measured values of MgSiN2 with
the neutron diffraction method [13]. The contours of charge difference in the MgSiN2 crystal
on a plane perpendicular to the z axis are shown in figure 2. The electron density is much
lower around the group IV atom (Si) relative to the N, indicating strong directionality of Si–N
bonding. Comparing to the group-IV homo-nucleus semiconductors, the stronger bonding
between group IV and N atoms leads to a shorter bond length and therefore a larger energy
bandgap. This tendency can be better appreciated in figure 3, where comparisons of the optical
bandgap of orthorhombic ternary nitride crystals, column IV and IV nitrides as a function of
bond length are shown.

In figure 4, we present the calculated energies as a function of unit cell volume for the
two orthorhombic ternary nitride crystals BeCN2 and MgCN2. From the calculated results,
the equation-of-state parameters such as the bulk modulus and its pressure derivative were
deduced. The results are summarized in table 2. The bulk modulus for MgCN2 was found
to be 234 GPa, which decreases to 175 GPa for MgSiN2 and 171 GPa for MgGeN2. The
tendency is expected from the decreasing bonding strength (and therefore larger unit cell
volume) from C–N, Si–N to Ge–N. By replacing Mg with Be, the bulk modulus becomes
even larger with a value reaching 374 GPa for BeCN2. These calculated values support the
notion of the orthorhombic ternary nitrides as potential protective coating materials. Note that
our calculated bulk modulus of MgSiN2 also agrees with the linear thermal compressibility
K = 6.84 × 10−12 Pa−1 (K ≡ −1/V (∂V /∂P )T = 1/B) reported in the literature [13]. For
further comparison, note that Karch et al estimated the bulk modulus of β-Ge3N4 to be about
214 GPa [15] and Gavrilenko reported 2H-GaN to be 215 GPa [16]. Both crystals possess a
similar structure as the ternary nitrides studied here.

The phonons of the orthorhombic ternary nitrides at the . point can be classified by the
irreducible representation of the point group C2v. The group theory predicts the following
symmetry of the modes: 12A1 + 12A2 + 12B1 + 12B2, where A1, B1and B2 modes are both
Raman and infrared active while A2 are infrared active only.

There exists a gap from 20 to 250 cm−1 in the zone-centre phonon frequencies. We are
interested in the high frequency phonon modes since these vibration modes could potentially
influence the infrared absorption edge of the ternary nitride crystals. Calculated frequencies
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Figure 2. Charge difference contours on a plane perpendicular to the z axis of MgSiN2 at a height
of 2.05 Å.

of the high-frequency zone-centre photon modes of MgSiN2 and MgGeN2 are summarized in
table 3. By replacing Si with Ge, a large frequency downshift appears in the phonon modes
whose lattice distortion involves a significant Si motion. These vibrations include the B1-
symmetry modes at 465 cm−1 and 549 cm−1 and A1-symmetry modes at 346, 354, 614, 824
and 836 cm−1. The highest frequency mode at 836 cm−1 is Raman and infrared active and
therefore could play the major role in determining the infrared absorption edge of MgSiN2.
By allowing the possibility of biphonon absorption, MgSiN2 could therefore be transparent up
to 6 µm in the infrared.

3.2. Electronic structures and density of states

The electronic band structures of BeSiN2 and MgSiN2 near the optical bandgap are presented
in figure 5. It can be seen that these ternary nitrides are not direct band crystals. The valence
band maximum (VBM) of MgSiN2 occurs at the U(1/2, 0, 1/2) point while the conduction
band minimum (CBM) lies at .. For comparison, the VBM of BeSiN2 appears at . and the
CBM occurs at X(1/2, 0, 0). From further comparison with the direct band result of GaN, the
major cause for the indirect bandgap in these ternary nitrides could be attributed to the lower
crystal symmetry of the orthorhombic structure.
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Figure 3. Comparison of the optical gap of orthorhombic ternary nitride crystal MgXN2 (Pna21,
X = Si, and Ge), with column IV and IV nitrides as a function of bond length.
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Figure 4. Calculated energy difference (0E = E(V ) − E(V0)) as a function of normalized unit
cell volume (V/V0) for the ternary nitrides (a) BeCN2 and (b) MgCN2. The solid curves are the
fits to equation (1).
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Table 2. The calculated lattice constants (in Å) and mechanical properties of the orthorhombic
ternary nitrides. Experimental data are given in parentheses whenever are available.

Nitride crystal Unit cell dimensions (Å)
(Pna21) (α = β = γ = 90◦) B (GPa) B ′ = (∂B/∂P )0

BeCN2 a = 4.430 374 6.2
b = 5.301
c = 4.265

MgCN2 a = 4.598 234 3.7
b = 6.219
c = 4.481

BeSiN2 a = 4.942(4.98)a 270 12.7
b = 5.748(5.75)a

c = 4.651(4.67)a

MgSiN2 a = 5.267(5.28)a 175 1.0
b = 6.483(6.46)a

c = 5.011(4.98)a

BeGeN2 a = 4.986 263 10.4
b = 5.802
c = 4.694

MgGeN2 a = 5.301(5.49)a 171 10.8
b = 6.524(6.61)a

c = 5.064(5.17)a

Ge3N4 (P 63/m)b a = 7.40 214 4.4
c = 3.20

a Data taken from Inorganic Crystal Structure Database (ICSD), Fachinformationszentrum,
Eggenstein-Leopoldshafen 2, D-7514 Karlsruhe, Germany.
b [14].

Table 3. Computed frequencies of zone-centre phonons (.), classified by symmetry label.

Nitride crystal (Pna21) K (Group) Irrep. Frequencies (cm−1)

MgSiN2 .(C2v) A1 (z, x2 + y2, z2) 346, 354, 421, 544
614, 824, 836

B1 (x, xz) 465, 549, 706, 804

MgGeN2 .(C2v) A1 (z, x2 + y2, z2) 223, 324, 412, 524,
541, 738, 780

B1 (x, xz) 323, 487, 681, 768

To gain more insight into the calculated optical properties we studied PDOS and LDOS
spectra. The calculated PDOSs for MgSiN2 are given in figure 6. For the ternary nitride
crystals studies here the valence bands are dominated by the bonding states of nitrogen. More
specific features in the PDOS are presented as follows. The valence bands with bonding
energy from −14.3 to −10.8 eV are mainly contributed from the N 2s states. The N 2p
states dominate the electronic bands that are near the top of the valence bands ranging
from −5.7 to 2.4 eV. The N bonding states are much higher than those of the electronic
states of metal atoms (Mg and Si) in the absence of the metal d states. In contrast, all the
antibonding states from nitrogen, and metal atoms, play significant roles in the conduction
bands. Similar results were also found on group III nitride crystals XN (X: B, Al, Ga,
In) [16].
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(b)(a)

Figure 5. Electronic band structures of (a) BeSiN2 and (b) MgSiN2 near the optical gap.

3.3. Linear and second-order nonlinear optical susceptibilities

The calculated energy gap, dielectric constants, and second-order nonlinear susceptibilities are
summarized in table 4. The anisotropy of static dielectric constants of these ternary nitrides is
not significant. Although a small dissimilarity appears between the xx and yy components, the
major birefringence lies between the zz and the xx components with a magnitude of about 0.1.
Replacing Si with Ge increases the averaged dielectric constant from 4.61 to 4.79 accompanied
with a decrease in the energy bandgap.

The frequency-dependent dielectric functions of MgSiN2 are presented in figure 7. The
first two peaks appearing at 4.5 and 5.0 eV in the imaginary part arise from the optical transitions
from the VBM to CBM, which determine the absorption edge of MgSiN2. From the PDOS
analysis, we can find these transitions to have the characters of N 2p (at VBM) and the s
orbitals of Mg, Si and N (at the CBM). Therefore the decreasing optical bandgap shown in
table 4 can originate from a difference in the antibonding properties of metal atoms at the
CBM.

Equation (6) has been used for analysing the static second-harmonic susceptibility of
the ternary nitride crystals and the results are presented in table 4. For these materials, χ(2)

zzz

is negative with a fairly constant magnitude lying between −13.8 and −17.3 pm V−1. In
contrast all other susceptibility components such as χ(2)

xzx and χ(2)
yzy vary significantly with

material. Note that bond additivity model predicts a simple relation of χ(2)
zzz = −2χ(2)

xxz for
wurtzite structure [17]. For ternary nitrides, we found that only MgGeN2 follows this simple
rule, while all other nitrides deviate considerably. For example, the ratio of χ(2)

xzx andχ(2)
zzz for

MgSiN2 is near to unity, but for BeSiN2 the ratio can be as small as 0.1. Similar behaviour
was also observed in group III nitrides [17], indicating that the simple bond additivity model
is inappropriate for elucidating the nonlinear optical response in nitride crystals.
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(b)

(c)

(a)

Figure 6. Partial densities of states of MgSiN2 projected onto (a) Mg, (b) Si and (c) N species at
various atomic orbitals.

Figure 7. Real (solid curve) and imaginary (dashed) part of the optical dielectric function of
MgSiN2 as a function of incident photon energy.



Orthorhombic ternary nitrides 10427

Table 4. Calculated optical properties of the orthorhombic ternary nitrides.

Nitride crystal Bandgap Dielectric Second-order
(Pna21) Eg (eV) constants nonlinearity (pm V−1)

BeCN2 5.75 εxx = 4.74 χ
(2)
zzz = −12.90

εyy = 4.71 χ
(2)
xzx = χ

(2)
zxx = 4.73

εzz = 4.89 χ
(2)
yzy = χ

(2)
zyy = 1.16

MgCN2 4.76 εxx = 5.10 χ
(2)
zzz = −13.81

εyy = 5.00 χ
(2)
xzx = χ

(2)
zxx = 2.61

εzz = 4.96 χ
(2)
yzy = χ

(2)
zyy = 13.38

BeSiN2 5.08 εxx = 4.72 χ
(2)
zzz = −17.09

εyy = 4.77 χ
(2)
xzx = χ

(2)
zxx = 1.66

εzz = 4.90 χ
(2)
yzy = χ

(2)
zyy = 1.12

MgSiN2 4.15 εxx = 4.59 χ
(2)
zzz = −17.30

εyy = 4.57 χ
(2)
xzx = χ

(2)
zxx = 15.96

εzz = 4.66 χ
(2)
yzy = χ

(2)
zyy = 14.82

BeGeN2 5.24 εxx = 4.75 χ
(2)
zzz = −18.14

εyy = 4.72 χ
(2)
xzx = χ

(2)
zxx = 6.22

εzz = 4.90 χ
(2)
yzy = χ

(2)
zyy = 3.47

MgGeN2 3.97 εxx = 4.80 χ
(2)
zzz = −14.49

εyy = 4.71 χ
(2)
xzx = χ

(2)
zxx = 8.80

εzz = 4.86 χ
(2)
yzy = χ

(2)
zyy = 7.58

In such complex compounds as ternary nitrides, it is useful to identify the role played by
each atomic species and orbital. For this purpose, we use equation (7) for resolving χ(2)(0)
into contributions from each atomic species at each energy interval in either the initial valence
bands or intermediate conduction bands. The results are presented in figure 8 for BeSiN2 and
figure 9 for MgSiN2. The main contributions to the SH susceptibilities of the orthorhombic
ternary nitrides were found to originate from the electronic states near the optical bandgap.
By comparing figure 8(b) with 9(b), we can also find that the various χ(2)

xzx contributions from
electronic bands of BeSiN2 have more or less the same magnitude but with opposite signs. In
contrast, for MgSiN2 the positive terms dominate, which results in a larger χ(2)

xzx . Transition
moments, which reflect the degree of inhomogeneity in the charge distribution of electronic
bands, determine the sign of each term in equation (7). From the species and band-by-band
decomposition, we found that all the atomic species contribute to the SH susceptibilities and
there are no dominant species. Unlike borate crystals [18], the SH response in these ternary
nitride crystals cannot be clearly separated into various terms from isolated atomic groups or
clusters. This is expected from the ternary nitride structure whose metal atoms are tetrahedrally
coordinated by N and vice versa both N atoms are tetrahedrally coordinated by the metal atoms
2 × A and 2 × B. The full band method is therefore needed for correctly calculating the NLO
response of these crystals.

Finally to reveal the reliability of our modelling, we applied the calculation method
to wurtzite GaN. The choice of GaN is based upon its structural similarity to the ternary
nitrides and the availability of numerous experimental and simulation results. The results are
summarized in table 5. Our calculated unit cell dimensions are among the closest results to the
experimental values. In addition, our bulk modulus agrees reasonably well with the measured
values and also with other calculations. The calculated energy bandgap is about 30% smaller



10428 Jung Y Huang et al

-2 1 4 7 10
-3

-1

1

dχ
/d

E
 (

pm
/V

.e
V

)

Si
N
Be

(a) 

(b) 

(c) 

 χ(zzz)= -17.09 pm/V

-2 1 4 7 10
-1

0

1

dχ
/d

E
 (

pm
/V

.e
V

) Si
N
Be

 χ(xzx)=1.66 pm/V

Eband ( eV )

-1

0

1

dχ
/d

E
 (

pm
/V

.e
V

) Si
N
Be

 χ(yzy)=1.12 pm/V

-2 1 4 7 10

Figure 8. Second-order nonlinear optical susceptibility components (a) zzz, (b) xzx and (c) yzy
of BeSiN2 projected onto various atomic species and energy bands by using equation (7).

than the experimental observation; however, this is to be expected at the level of the LDA
methodology. The smaller bandgap also overestimates optical dielectric constants. Although
the smaller bandgap obtained with LDA can be corrected with a simple scissors approximation
or more sophisticated GW correction, we did not intend to do so in this study. Our calculated
second-order susceptibilities, which are about one half of the experimental values [8,9], agree
reasonably well with other calculated results with a similar theoretical sophistication [17].
Based on these comparisons, we can confidently conclude that the simulation results reported
in this study reliably reflect the real physical properties of the ternary nitrides.

4. Conclusions

In summary, the structural, mechanical and optical properties of orthorhombic ternary nitride
crystals have been analysed theoretically with a first-principles calculation scheme. These
nitrides possess fairly large optical bandgap, second-order nonlinear optical susceptibility
and bulk modulus. Therefore they could be useful for both optical and protective coating
applications. Our calculations with band-by-band and atomic species decomposition not
only yield values of material properties, but also provide deep insight into the fundamental
understanding of the mechanical and optical properties of orthorhombic ternary nitrides.
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Table 5. Lattice constants, elastic, and optical properties of wurtzite GaN.

a = b (Å) c s B0 (Gpa) B ′
0 Eg (eV) ε⊥ ε| εav χ

(2)
xzx (pm V−1) χ

(2)
zzz (pm V−1)

Present 3.178 5.167 209 5.0 2.31 5.91 5.92 5.92 −9.0 15.9
calculation
Exp. [19] 3.190 5.200
Exp. [20] 3.160 5.120
Exp. [21] 188 3.2
Exp. [22] 237 4.3
Exp. [23] 245 4.0
Exp. [24] 3.52
Exp. [25] 3.30
Exp. [26] 5.35
Exp. [27] 5.80
Exp. [28] 14.4 29.7
Exp. [29] 16.0 33.0
Other calc. [16] 3.240 5.240 2.40 5.87 5.89 5.88 −11.7 20.8
Other calc. [30] 3.170 5.130
Other calc. [31] 3.162 5.142
Other calc. [32] 3.143 5.111 215 5.9 5.21 5.41 5.28
Other calc. [33] 3.220 5.260
Other calc. [15] 3.143 5.111
Other calc. [34] 3.146 5.125
Other calc. [35] 3.170 5.135
Other calc. [36] 3.162 5.141
Other calc. [37] 3.126 5.120 190 2.9
Other calc. [38] 3.210 5.237 197 —-
Other calc. [39] 200 3.8 4.71 4.62 4.68
Other calc. [40] 3.80
Other calc. [17] 5.54 5.60 5.74 −6.9 11.5
Other calc. [41] −4.2 7.0
Other calc. [42] −8.5 12.1
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Figure 9. Second-order nonlinear optical susceptibility component (a) zzz, (b) xzx and (c) yzy of
MgSiN2 projected onto various atomic species and energy bands by using equation (7).
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