H
; i &%) The Journal of
ﬁ% Systems and

Software

ELSEVIER The Journal of Systems and Software 59 (2001) 143-152

www.elsevier.com/locate/jss

Reschedulable-Group-SCAN scheme for mixed
real-time/non-real-time disk scheduling in a multimedia system

Hsung-Pin Chang *, Ray-I Chang °, Wei-Kuan Shih ¢, Ruei-Chuan Chang **

& Department of Computer and Information Science, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30050, Taiwan, ROC
> Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC
¢ Department of Computer Science, National Tsing Hau University, Hsinchu, Taiwan, ROC

Received 21 June 2000; received in revised form 7 October 2000; accepted 2 January 2001

Abstract

Real-time disk scheduling is important for time-critical multimedia applications. Previous approaches, such as SCAN-earliest
deadline first (EDF) or DM-SCAN, applied the SCAN scheme to reschedule service sequence of input tasks to reduce tasks’ service
time. However, they required the input to be in EDF order. In DM-SCAN, a deadline modification scheme was employed to obtain
a pseudo-EDF sequence from non-EDF ordered input tasks. Because the modified deadlines were smaller than the original ones,
number of tasks that could be rescheduled is decreased and thus data throughput is reduced. In this paper, we propose Resched-
ulable-Group-SCAN (RG-SCAN), a new real-time disk scheduling algorithm using the concept of Reschedulable-Group (R-
Group). Differing from previous approaches, RG-SCAN has no limitation on the input task’s sequence. In addition, by exploiting
the service time’s reduction after rescheduling in each R-Group, RG-SCAN has been extended to serve mixed real-time and non-
real-time workloads. As shown in experimental results, our approach can support more tasks than DM-SCAN, both real-time and
non-real-time. Additionally, our approach can provide larger data throughput and offer better response time to non-real-time tasks.
For example, given 30 random-generated real-time tasks, the number of non-real-time tasks that can be supported by RG-SCAN is
1.3 times that supported by DM-SCAN. In addition, our data throughput is 1.1 times DM-SCAN’s. © 2001 Elsevier Science Inc.

All rights reserved.

Keywords.: Real-time disk scheduling; Mixed workload; Multimedia database/file systems; Operating system

1. Introduction

In the last decade, advances in hardware technology
have dramatically increased processor speeds, and this
increase is expected to continue to double every year.
However, although disk capacity is improved at 60-80%
compounded annually, no similar advances are expected
to reduce the access time of storage devices. As a result,
the performance gap between processors and disks
continues to increase and a computer system’s perfor-
mance is increasingly limited by the storage subsystem.
This problem is becoming more serious with the emer-
gence of multimedia applications (Lougher and Shep-
herd, 1993; Gemmell et al., 1995). Multimedia data
usually consume significant disk bandwidth and many
viewers have to be supported simultaneously (Dan et al.,

*Corresponding author. Tel.: +886-3-5712121-56656; fax: +886-3-
5721490.
E-mail address: rc@cc.nctu.edu.tw (R.-C. Chang).

1994). In addition, due to the rigorous timing require-
ments for jitter-free playback, media data must be ac-
cessed under real-time constraints (Gemmell and
Christodoulakis, 1992). Therefore, how to maximize
data throughput under real-time constraints poses a
challenge in the design of a real-time multimedia disk
scheduling algorithm (Steinmetz, 1995).

The SCAN algorithm was first proposed by Denning
for scheduling conventional disk tasks (Denning, 1967).
By moving the disk arm from the innermost track to the
outermost track or vice versa to retrieve data block
when it passes through, the SCAN algorithm minimizes
the seek-time cost and has been proved as an optimal
algorithm under amortized analysis and probability
model (Chen and Yang, 1992; Chen et al.,, 1992).
However, due to the lack of timing consideration, the
SCAN algorithm is not suitable for scheduling real-time
disk tasks. To address a task’s real-time characteristic,
earliest deadline first (EDF) was proposed and shown to
be optimal if tasks are independent (Liu and Layland,

0164-1212/01/$ - see front matter © 2001 Elsevier Science Inc. All rights reserved.

PII: S0164-1212(01)00058-9

144 H.-P. Chang et al. | The Journal of Systems and Software 59 (2001) 143-152

1973; Lehoczky, 1990; Lin and Tarng, 1991). Never-
theless, for disk scheduling, the service time of a disk
task depends on the previous task’s track location, and
the assumption that tasks are independent is not held.
Actually, taking only deadlines into account without
service time consideration, EDF incurs excessive seek-
time costs and results in poor disk throughput (Reddy
and Wyllie, 1994).

Therefore, researchers are investigating methods to
combine the features of SCAN type of seek-optimizing
algorithms with EDF type of real-time scheduling al-
gorithms (Chang et al., 2000). For example, given an
EDF schedule, SCAN-EDF reschedules tasks with the
same deadline by SCAN to improve the data through-
put (Reddy and Wyllie, 1993). Thus, the efficiency of
SCAN-EDF depends upon how many tasks have the
same deadlines, i.e., how often the SCAN algorithm can
be applied. To increase the rescheduling probability, the
DM-SCAN scheme was proposed (Chang et al., 1998).
However, in both SCAN-EDF and DM-SCAN, the
input tasks must be in EDF order before the seek-op-
timizing SCAN scheme is applied. Because the input
tasks may not conform to an EDF order, a deadline
modification scheme is proposed by DM-SCAN, trans-
ferring non-EDF ordered tasks into a pseudo-EDF se-
quence. (Here, “pseudo” means the tasks are ordered by
the modified deadlines, not their actual deadlines.) In
this way, the input tasks would always keep as an EDF
sequence. In addition, making the rescheduled result to
be EDF-ordered by a deadline modification scheme,
DM-SCAN applies the rescheduling idea iteratively to
progressively improve disk performance. Unfortunately,
in order to guarantee real-time constraints, the modified
deadlines are earlier than the original ones. As a result,
the number of input tasks that can be rescheduled to
reduce service time is decreased and the obtained data
throughput is lowered.

To resolve the drawback of DM-SCAN, in this pa-
per, we propose Reschedulable-Group-SCAN (RG-
SCAN) scheme: a new real-time disk scheduling
algorithm that uses the concept of Reschedulable-Group
(R-Group). Given a set of real-time disk tasks, an R-
Group consists of the maximum number of continuous
disk tasks that can be rescheduled without violating
their respective timing constraints. Therefore, by seek-
optimizing tasks in R-Groups, data throughput is im-
proved under real-time guarantees. In addition, our
proposed RG-SCAN assumes no specific input sequence
and thus does not require deadline modification in each
iteration. Consequently, our approach is more flexible
and obtains more data throughput than DM-SCAN
algorithms. Furthermore, we extend the proposed ap-
proach to serve mixed real-time/non-real-time tasks in a
multimedia environment. By exploiting the reduction of
service time after rescheduling tasks within each R-
Group, non-real-time tasks can be served to minimize

response time while guaranteeing the timing constraints
of real-time tasks. As presented in experimental results,
our approach can support more tasks than DM-SCAN,
both real-time and non-real-time. Additionally, our
approach can provide larger data throughput and offer
better response time to non-real-time tasks. For exam-
ple, given 30 randomly generated real-time tasks, the
number of non-real-time tasks which can be supported
by RG-SCAN is 1.3 times that supported by DM-
SCAN; and our data throughput is 1.1 times DM-
SCAN’s.

The remainder of this paper is organized as follows.
Section 2 presents the disk service model in a real-time
multimedia environment and defines the real-time disk
scheduling problems. The previous DM-SCAN ap-
proach is introduced in Section 3. In Section 4, we
present the definition of R-Group and our proposed
RG-SCAN real-time disk scheduling algorithm. Section
5 demonstrates how RG-SCAN is extended to efficiently
serve mixed real-time/non-real-time disk tasks. Sections
6 and 7 present the experimental results and the con-
clusion remarks, respectively.

2. Problem descriptions

2.1. Disk service model in a real-time multimedia
environment

Assume that start-time and finish-time denote the
actual times at which a task is started and completed,
respectively. To describe the timing characteristics of a
real-time task, two parameters are associated with it to
determine the proper start-time and finish-time:

e Ready time: the earliest time at which a task can start.
o Deadline: the latest time at which a task must be com-

pleted.

If a task is started before its ready time, some of the
resources, e.g., buffer pool, network controller, will
overflow and the system will be erratic. In addition, if a
task is not completed before its deadline, users will
perceive glitches during the playing, which would violate
the spirit of multimedia applications. Thus, to meet the
real-time requirements, the start-time of a task should
not be earlier than its ready time. Additionally, its finish-
time should not be later than the related deadline (Jeffay
et al., 1991; Stankovic and Buttazzo, 1995). A schedule
of real-time tasks is said to be feasible if all tasks can be
sequentially served according to the specified real-time
requirements.

To serve a disk task, the disk-head first needs to be
moved from the previous task’s cylinder to the requested
one by a seek-time cost. Then a rotational latency is
presented for the desired sector rotated under the disk
read—write head. Finally, the asked data are transferred
from disk to buffer by a transfer time. Therefore, a

H.-P. Chang et al. | The Journal of Systems and Software 59 (2001) 143-152 145

conventional disk task 7; is denoted by three parameters
(t;,1;,b;), where ¢; is the track location, /; is the sector
number, and b; is the data size. Assume that the schedule
sequence is 7;T;. The service time of task 7; is calculated
as

c;; = seek_time(abs(t; — t;)) + rotational _latency(l;)
+ transfer_time(b;). (1)

Clearly, the service time not only depends on the re-
quested task itself but relates to the previous one. For
example, in a HP 97560 hard disk (Ruemmler and
Whyllie, 1994), the service time c;; with movement dis-
tance d;; = |t; — t;| can be modeled by

_ [324+404,/d;, d;,;<383, 2
771800+ 0.008d;,, d;; > 383,

which is piecewise non-linear, a non-decreasing concave
function.

As stated above, disk tasks used to serve time-critical
multimedia applications must be real-time guaranteed.
Accordingly, for each disk task 7; in a multimedia en-
vironment, two more parameters are presented to
characterize its real-time attributes: (#;,d;), where r; is
the ready time and d; is its deadline. As disk tasks are
non-preemptive, the start-time s; and finish-time f; of a
real-time task 7; with schedule 7;7; are thus computed by
s; = max{r;, f;} and f; = s; + ¢;;, respectively.

2.2. Real-time disk scheduling problem

Given a set of real-time disk tasks T = {T},D,
..., T,} where n is the number of input disk tasks and
the ith disk task 7; is denoted by (r;,d;, ¢, 1;,b;). The
objective of a real-time disk scheduling algorithm is to
find a feasible schedule T, = T_(yT.¢5) - - - T;(,y With max-
imal throughout. The index function z(i), fori = 1 to n, is
a permutation of {1,2,...,n}. Define schedule finish-
time as the finish time it takes to serve all input tasks
according to their respective timing constraints. Clearly,
this is the finish-time of the latest task f..,. Therefore,
the disk throughput is calculated as follows:

Throughput = % _ b/ fin o (fin) - 3)
P

The obtained disk throughput is related to the inverse of

schedule finish-time. If the input schedule is completed

earlier, more data throughput is obtained. The data

throughput improvement of scheduler z compared with

scheduler x can be computed as

Throughput improvement
=(1 _fz(n)/f;x(n)) x 100%. (4)

Therefore, the problem objective defined to maximize
throughput can be achieved by minimizing the schedule

finish-time. We formally formulate the real-time disk
scheduling problem as follows.

Definition 1 (Real-time disk scheduling). Given a set of n
real-time disk tasks T = {7}, D,...,T,}, where the ith
task T; = (r;,d;, t;,1;,b;), find a feasible schedule T, =
Tz(l)Tz(z) cee TZ(,,) that resolves minvZ{fz<,,)} under 0 < Sz(i)
and fz(,-) < dz(,-) for 1 < Z(i) <n.

As mentioned in the preceding subsection, a task’s
service time depends on the related track distance be-
tween its previous task and itself. Thus, it is not fixed, but
is determined by the schedule result. However, the
schedule result minimizing schedule finish-time is deter-
mined by the required service time. As a result, it is hard
to design an optimal scheduling algorithm for maxi-
mizing data throughput while also guaranteeing real-
time constraints. This real-time disk scheduling problem
has been shown to be NP-complete (Wong, 1980).

3. Related works

In past years, various real-time disk scheduling al-
gorithms have been developed to heuristically employ a
seek-optimizing SCAN scheme for an EDF schedule to
reduce the disk service time. For example, the well-
known SCAN-EDF scheme first schedules disk tasks
with the earliest deadlines. If two or more disk tasks
have the same deadline, these tasks are serviced ac-
cording to their relative track locations, i.e., by the
SCAN algorithm. Since only tasks with the same
deadline are seek-optimized, the obtained data
throughput improvement is limited. To increase the
probability of applying the SCAN algorithm to re-
schedule input tasks, DM-SCAN proposed the concept
of maximum-scannable-group (MSG) (Chang et al.,
1998). An MSG is a set of continuous tasks that can be
rescheduled by SCAN without missing their respective
timing constraints. Given an EDF schedule 7 =
T, - - - T, the MSG G; starting from task 7; is defined as
the sequential tasks G; = T; Ty Ti42 - - - Tiom, Where task T}
satisfies following criteria:

fi<d; and r;<s; forj=ito i+m. (5)

By iteratively rescheduling tasks within MSGs, DM-
SCAN also proposes an incremental approach to
progressively improve disk throughput. However, the
rescheduled result will not be in EDF sequence be-
cause SCAN is applied to reschedule tasks within each
MSG. Since DM-SCAN requires the input tasks based
on EDF order, a deadline modification scheme is
proposed to modify tasks’ deadlines and transfers the
rescheduled non-EDF sequence into a pseudo-EDF
order. Here, “pseudo” means that the tasks are or-
dered by the modified deadlines. For example, given

146 H.-P. Chang et al. | The Journal of Systems and Software 59 (2001) 143152

i |
B 1<—1
ol
’L_‘ ﬂ<::,1 dy>ds —>ds=ds
Ts

ﬂ Modified Pseudo Deadline; l Deadline;

di>d,—>di=d

d>ds —>dy=ds3

d3<dy —>d3=ds

l:l Task Execution;

Fig. 1. A simple example to illustrate the deadline modification
scheme.

the schedule sequence 7;7;, a pseudo-deadline dy; is
derived as dy;) = min{d;,d,;}. Fig. 1 presents a simple
example to illustrate the deadline modification scheme.
The original input T = T\,T3T4Ts is not an EDF
schedule because we have d» > ds and d; > ds. Tra-
versing from the last task 75 to the first task 7j, if any
task has its deadline larger than that of its previous
task, the deadline modification scheme is applied. For
example, dj is larger than ds and is modified equal to
ds in order to satisfy the EDF requirement. Following
the same procedure, d> and d; are also modified. Note
that, although d; < d, in the original input schedule,
d, is also modified as the value of d; is larger than
that of modified pseudo-deadline d,. Clearly, the
modified pseudo-deadlines are smaller than the origi-
nal ones. In addition, although only two tasks (7, and
T,) violate the EDF order, three tasks (7y, T», and T})
have their deadlines modified to meet EDF sequence.
Transferring the rescheduled non-EDF ordered se-
quence into a pseudo-EDF one by deadline modifi-
cation scheme, DM-SCAN iteratively reschedule tasks
from the derived pseudo-EDF schedule to obtain
more data throughput.

4. RG-SCAN

From the preceding section, we can see the draw-
backs of the deadline modification scheme, where the
modified deadlines are smaller than the original ones.
Therefore, the group size for rescheduling is narrowed
down and number of tasks that can be rescheduled is
decreased. Moreover, some tasks suffer from the dead-
line modification scheme, even though their deadlines
are ordered in EDF sequence. To resolve these draw-
backs, in this paper a new real-time disk scheduling
algorithm called RG-SCAN using the concept of
R-Group is proposed. Given any input tasks set, con-
secutive tasks that can be rescheduled under real-time
constraints can be directly derived by the concept of
R-Group.

Definition 2 (R-Group (Reschedulable-Group)). Given a
set of real-time disk tasks T = T\ 75 - - - T,,, the R-Group
G; 1s defined as the maximum number of continuous
tasks G; = T; Ty - - - T, With each task T, for k=i to
i+m satisfies f;,, < min,"{d,} and max}""{r} <s;.
Fig. 2 presents a simple example to illustrate the concept
of R-Group. For example, to calculate R-Group G,, we
have fy< min;_,{d,} =d;s and max}_, {r} =ri<s.
But f; > min}_,{di} =d5 and s, < maxi_,{r} =r.
Therefore, G, = T,T3. Following the same procedure,
other R-Groups can be derived as G; = 1T, G; = T,
and G4 = T;Ts, respectively. Note that, the input
schedule is not an EDF sequence. The following simple
example shows the different schedules obtained by DM-
SCAN and RG-SCAN, respectively.

Example 4.1. Let S = T\ T, T37,T5 be the input schedule

(for example, the rescheduled result of the first iteration)

with (Fl,dl) = (1, 10), (rg,dz) = (1, 11), (7‘37013) = (3, 15),

(r4,ds) = (6,16) and (rs,ds) = (5,14). Their track loca-

tions are 30, 12, 56, 33 and 36. Assume that the initial

disk head is located at track 0. The associated start-
times and finish-times are (s1,f1) = (1,5), (s2,/2) =

(5.7), (s3,/3) = (7,12), (53, /i) = (12,15) and (ss, f5) =

(15,16). The rescheduled results obtained using DM-

SCAN and RG-SCAN are as follows:

e DM-SCAN: Since the deadlines of input tasks are not
ordered incrementally, i.e., not in EDF sequence, the
deadline modification scheme is applied in DM-
SCAN. After applying the deadline modification
scheme, the new obtained ready times and deadlines
are (r,dy) = (1,10), (r,dr) = (1,11), (r3,d3) =
(3,14), (r4,ds) = (6,14), and (rs,ds) = (5, 14). By fol-
lowing Eq. (5), the obtained R-Groups, i.e., MSGs,
are G1 = T1T2, G2 = Tz, G3 = T3, G4 = T4, and G5 =
Ts. Because G; = T;T, can be rescheduled as 7,T;
(since the initial disk head is located at track 0) to
minimize the seek time, thus the output schedule is
LNTT,Ts.

e RG-SCAN: In contrast, RG-SCAN can identify R-
Groups directly from any sequences of input tasks.
Therefore, deadline modification is not needed. The

{ == 1
| ——

!
IReady Time; l Deadline; :I Task Execution; C] R-Group

Fig. 2. An example to illustrate the identification of R-Group.

H.-P. Chang et al. | The Journal of Systems and Software 59 (2001) 143152 147

obtained R-Groups are G, =71, G,=D01,
G3; =0Ty, G,=T;, and Gs =Ts. Since not only
G, = T1T> but also G; = T3T4 can be rescheduled to
reduce their service time, a better schedule result
LTI, T Ts is obtained by RG-SCAN.

As shown in the above example, the R-Group
G3 = T3 in DM-SCAN while G3 = Ti;T4 in RG-SCAN.
The RG-SCAN thus identifies more tasks for resched-
uling (called reschedulable tasks) than DM-SCAN,
which is shown in the output schedules obtained by
DM-SCAN and RG-SCAN, respectively. As stated in
Section 1, if more tasks are seek-optimized, more data
throughput is obtained. Therefore, RG-SCAN provides
more data throughput than that obtained by DM-
SCAN. Fig. 3 shows the operation flows of DM-SCAN
and RG-SCAN, that is, given a set of tasks, DM-SCAN
requires that these tasks must be ordered in EDF se-
quence, whereas RG-SCAN has no such limitation. In
addition, in DM-SCAN, the iterative approach of pro-
gressively improving disk throughput requires the
deadline modification scheme to keep tasks in EDF
order. However, RG-SCAN identifies reschedulable
tasks directly from the non-EDF input tasks and
deadline modification is never needed. Since original
deadlines are larger than the modified deadlines, RG-
SCAN has larger group size for rescheduling than that
obtained by DM-SCAN, as demonstrated by Example
4.1. Therefore, our approach is more flexible and ob-
tains more throughput improvement than DM-SCAN.

Following we prove that, if an input schedule is fea-
sible, the refined schedule by rescheduling tasks within a
R-Group does indeed improve the data throughput
under guaranteed real-time requirements.

Theorem 4.1. Given a set of feasible real-time tasks
Ty = Ty(])Ty(z) oo Ty(n) with R-Group G = Ty(i)Ty(,ur]) s
Ty(ism). Assume that S; = TgiTsiv1) - Ts(ym) i the re-
scheduled result of G; by seek-optimized algorithm for
Ts=Ty)Ty) Tyi—0Tsw Tsirry - Tsizmy - Ty(wy- Then
T s obtains more data throughput than Ty under guaranteed
real-time requirements.

» DM-SCAN [—® Output schedule

Input tasks based
on EDF order u
Deadline-Modification
(a)
, »{ RG-SCAN [——Output schedule
Input tasks in
any order _G_

(b)

Fig. 3. The operation flows of DM-SCAN and RG-SCAN.

Proof. From the definition of R-Group G;=
Ty Tyvry - Tyem)» We have fyi < fran < -0 < fr(im)
< minj(i'f{dy(k)}. Since S; = TS(,-) TS(i+l) cee TS(i+m) is the
seek-optimized rescheduled result of G;, we have
Sstiem) < fr(em)- In addition, for the rescheduled result
in S;, foo < S < - < Ssim) < Sriem < ming 7 {dygo }
=min," {dsu} < min} " {dss)}. Therefore, the real-
time requirements fsu) < dsp for i <k <i+m is guar-
anteed. O

Notably, the above proof assumes that the input
schedule is feasible. However, our approach may pro-
duce feasible rescheduled result even an infeasible
schedule is given, although it is not guaranteed. As-
sume that T =T\7>---T, is a set of input tasks; then
because each R-Group G; is started from task 7;, there
are at most n R-Groups considered (G, G,,...,G,).
For these n R-Groups, we have the overlapping prop-
erty, which is shown in Appendix A. In other words,
these R-Groups may not be mutually exclusive. If we
sequentially serve these n R-Groups, then earlier R-
Group’s seek-optimized rescheduled result may be de-
stroyed by the later one’s. For example, if R-Group
G; = T3 T4Ts T and its seek-optimized rescheduled result
R; = T5Ts T4 T;. From the overlapping property, assume
that R-Group G, = TyT5TsT;. After rescheduling tasks
in G4, the seek-optimized result R, = T7T575Ty. Evi-
dently, the seek-optimized operation in G, destroys the
previous seek-optimized order in Gs;. This disturbs the
algorithm’s progression and makes performance of
the rescheduled result to be unpredictable. As a result,
we select only the mutually exclusive R-Groups for
rescheduling and serve them in first-in-first-out (FIFO)
order.

Therefore, RG-SCAN first identifies a R-Group and
reschedules tasks in it by SCAN; then the next mutually
exclusive R-Groups is identified and tasks within it are
rescheduled. This process is repeated until the last
R-Groups is achieved. However, in addition to the dif-
ferent identification scheme from DM-SCAN, once
RG-SCAN identifies an R-Group, it reschedules tasks in
the derived R-Group and immediately updates the tasks’
start-times and deadlines. Therefore, the identification
of remaining R-Groups is based on the more prompt
value of start-times and deadlines. In addition, as will be
stated in Section 5, the non-real-time tasks can thus be
serviced after the identification of an R-Group to min-
imize their response time. The algorithm runs iteratively
until convergence.

Given a set of n tasks, the time complexity of identi-
fing n R-Groups is O(nlogn). This is achieved by using
an AVL tree to keep track of the minimum deadline and
maximum ready time in each R-Group. In contrast, the
time complexity of identifying » MSGs is O(n). However,
in each iteration, DM-SCAN requires O(nlogn) time
complexity, which is the same as the time complexity of

148 H.-P. Chang et al. | The Journal of Systems and Software 59 (2001) 143152
R 4 *
|T1 | T|T |1 |15 [16| T | Ty | To [Td T“\Tu Tis | Tua | Tus | Tis | Tz-..
G Gy G, Gu Gig
(a)
1 2 3
T3|T2| T1 | Ts |Ts | Ts g T7 | Tio|Ts | To | T1z | Tiz| Ta ETM Tis T]ﬁgz.
G; Gy Gy Gy G4
®)

Fig. 4. A simple example illustrates the employment of R-Group to serve non-real-time tasks: (a) three non-real-time tasks arrive in the serve of
R-Group Gy, G4, and Gy, respectively; (b) they are served in Gy, Gy, and Gy4 by the service time reduction after rescheduling each

R-Group.

RG-SCAN in each iteration. In other words, both
DM-SCAN and RG-SCAN have the same O(nlogn)
time complexity in each iteration. When new tasks arrive,
the time complexity of both schemes is also O(nlogn).

5. Supporting non-real-time tasks

In a multimedia system, although most accesses are
for media data, a few non-real-time disk requests are
interposed to access conventional files. For example, in a
video-on-demand (VoD) system, we first search the ar-
chive to select the desired video. After that, a continuous
retrieval of selected media data is guaranteed for jitter-
free playback. Although non-real-time tasks have no
deadline constraints, reasonable response time has to be
offered while guaranteeing the real-time tasks’ timing
requirements.

Intuitively, non-real-time tasks would be served after
the completion of all real-time tasks. However, in this
way, non-real-time tasks will be served with an unde-
sirably long response time and at worst, be starved of
service.

From Theorem 4.1, the data throughput is improved
by rescheduling tasks in an R-Group using a seek-op-
timized algorithm. In other words, the finish time of an
R-Group is advanced as Eq. (3) indicates. We obtain the
“slack” between the advanced finish-time and the orig-
inal one and use this slack to serve non-real-time tasks.
Therefore, non-real-time tasks are served quickly, while
still guaranteeing the real-time tasks’ timing constraints.
Fig. 4 shows how a R-Group is employed to serve non-
real-time tasks. Once non-real-time tasks arrive, as the
current R-Group is under way, we try to serve them in
the next R-Group’s slack. For example, if a non-real-
time task 7; arrives during the execution of R-Group G|,
it is served in the slack of the next R-Group G;. If the
slack derived from an R-Group is not large enough to
sustain a non-real-time task, we continue to identify the
next R-Group and the derived slack is added to the
previous one, until the non-real-time task can be served.

Queuing Discipline for
Non-Real-Time tasks
Non-Real-Time

Disk Scheduling
Algorithm

P

Fig. 5. Service model for serving real-time and non-real-time disk
tasks.

Reschedulable-Group
Identification

Real-Time Tasks

For example, the slack derived from R-Group G5 is too
small to serve 75>. As a result, we serve 7> by the accu-
mulated slack derived from G; and Gy;.

Fig. 5 presents the service model for serving mixed
real-time/non-real-time disk workloads. Because non-
real-time tasks may arrive faster than a system’s capa-
bility, an isolated queue is maintained to temporarily
hold them. Therefore, there are two separate queues in
the system, one for real-time tasks and the other for
non-real-time tasks. From the input real-time tasks’
queue, we first identify tasks belonging to an R-Group.
By rescheduling tasks within the R-Group, slack is de-
rived from the reduction of service time. After that, one
or more non-real-time tasks are taken out of the non-
real-time task’s queue and served within the derived
slack until the schedule result is infeasible. If no non-
real-time tasks arrive and the queue is empty, the finish
time of the R-Group is advanced and data throughput
of real-time tasks is also improved.

6. Performance evaluation
6.1. Experimental environments

In this section, the experimental results of our pro-
posed RG-SCAN algorithm are presented to compare
with previous approaches. Table 1 presents some im-
portant parameters of HP 97560, which is used as our
target disk for performance evaluation (Ruemmler and

H.-P. Chang et al. | The Journal of Systems and Software 59 (2001) 143-152 149

Table 1
Disk parameters of HP 97560

No. of cylinders per disk 1972

No. of tracks per cylinder 19

No. of sectors per track 72

Sector size 512 bytes

Seek-time function (ms) Seek(d) = { 324 +04vd, d<383,
8.00 4 0.0084, d > 383

Revolution speed
Transfer time

4002 rpm
10 MBps

Whyllie, 1994). Each real-time task is assumed to ask for
a track of data (36 KB in HP 97560). The ready times of
real-time tasks are randomly generated and their dead-
lines are uniform distributed within a proper interval
after their corresponding ready times. Non-real-time
tasks are assumed to arrive with a Poisson distribution.
The mean inter-arrival time between each non-real-time
task is varied with different experiments and is described
below. The request size of each non-real-time task is
assumed to be 4 KB. The workloads of both real-time
and non-real-time tasks are uniformly distributed over
the disk surface. In all following experiments, 100 ex-
periments are conducted with different seeds for random
number generation.

6.2. Performance of real-time disk scheduling

6.2.1. Number of supported real-time tasks

First, we present the experimental results of different
disk scheduling algorithms for serving real-time tasks.
There are two metrics to measure the efficiency of a real-
time disk scheduling algorithm: one is the number of
supported tasks, and the other is the data throughput.
Given a set of input tasks, the applied disk scheduling
algorithm should serve as many tasks as possible. If the
same tasks are served, the applied disk scheduling al-
gorithm must finish the schedule as quickly as possible
to maximize data throughput.

Given 100 experiments, Table 2 presents the minimal,
maximal, and average number of real-time tasks that are
supported by different disk scheduling algorithms. The
number of supported tasks n is obtained by increasing
the number of input tasks incrementally until the
schedule result is infeasible with n + 1 real-time tasks.
On average, our proposed RG-SCAN provides 24 real-

Table 2
The minimal, maximal, and average number of supported real-time
task with different scheduling policies

Algorithms Number of supported tasks

Min Max Average
RG-SCAN 20 27 24
DM-SCAN 20 26 22
SCAN-EDF 14 22 18

time tasks, which is better than both DM-SCAN and
SCAN-EDF, which support 22 and 18 tasks, respec-
tively. Accordingly, identifying task groups for re-
scheduling can serve more tasks than only rescheduling
tasks having the same deadline. This is because the
number of reschedulable tasks identified by RG-SCAN
or DM-SCAN is much larger than SCAN-EDF. As a
result, input tasks’ service times are reduced after re-
scheduling and more tasks can be served before their
deadlines. In addition, RG-SCAN further supports
more tasks than DM-SCAN. As stated above, DM-
SCAN requires modifying tasks’ deadlines for the
identification of reschedulable tasks. In contrast, RG-
SCAN identifies reschedulable tasks by using the
concept of R-Group, which demands no specific input
sequence, and thus no tasks’ deadlines needs to be
modified. Because the modified deadlines are smaller
than the original deadlines, RG-SCAN thus identifies
more number of reschedulable tasks than DM-SCAN.
As a result, the further reduction of tasks’ service times
prompts more tasks to be supported by RG-SCAN.

6.2.2. Data throughput improvement

If the same real-time tasks are served, then the ap-
plied disk scheduling algorithm must maximize data
throughput, i.e., minimize schedule finish-time, to ac-
commodate the huge volumes of multimedia data ac-
cess. Fig. 6 shows the data throughput improvement of
RG-SCAN and DM-SCAN under different number of
EDF tasks. The data throughput improvement is com-
pared with SCAN-EDF. For each bar in Fig. 6, 100
experiments were applied and the average throughput
improvement is used for measurement. From the ex-
perimental results, the data throughput improvement
obtained by RG-SCAN is always better than that ob-
tained by DM-SCAN, no matter how many tasks are
applied in the input schedule. This demonstrates the
efficiency of RG-SCAN over DM-SCAN. For example,
with 15 real-time tasks, the data throughput improved

18 | DM-SCAN BRG-SCAN

Improvement (%)

6 7 8 91011121314151617181920
Number of Real-Time Tasks

Fig. 6. The data throughput improvement of DM-SCAN and RG-
SCAN under different number of input tasks.

150 H.-P. Chang et al. | The Journal of Systems and Software 59 (2001) 143-152

by RG-SCAN is 1.1 times DM-SCAN’s. Although input
tasks are EDF-ordered, the deadline modification
scheme adopted in DM-SCAN advances tasks’ dead-
lines and restricts the group size for rescheduling. In
contrast, the RG-SCAN automatically identifies re-
schedulable tasks within an R-Group from any input
tasks set. No deadline modification is required and the
obtained number of reschedulable tasks is guaranteed to
be larger than DM-SCAN. Therefore, RG-SCAN can
provide more data throughput than DM-SCAN.

In addition, from Fig. 6, we observe that the
throughput improvement of RG-SCAN is more signifi-
cant than that of DM-SCAN if more tasks are served.
Because more tasks are served, the deadline modifica-
tion scheme used in DM-SCAN will modify more tasks’
deadlines and narrow down the group size for resched-
uling. In contrast, RG-SCAN assumes no specific input
sequence and no tasks’ deadlines are modified. There-
fore, RG-SCAN performs well with an increased num-
ber of input tasks. In multimedia system design, more
and more simultaneous streams are provided to support
the increasing number of client viewers. Therefore, the
improvement of our proposed approach will be superior
to DM-SCAN with advances in multimedia systems’
design technologies.

6.3. Non-real-time task’s performance

6.3.1. Number of supported non-real-time tasks
Secondly, we measure non-real-time task’s perfor-
mance supported by different disk scheduling
algorithms in a real-time environment. Given a set of
real-time tasks, a well-behaved disk scheduling algo-
rithm should support as many non-real-time tasks as
possible, while guaranteeing the timing constraints of
real-time tasks. In addition, the applied disk scheduling
algorithm must offer good response time for non-real-
time tasks to stay below some user-tolerance threshold.

Table 3

Assuming that there are 20 real-time tasks, Table 3
shows the minimal, maximal, and average number of
non-real-time tasks supported by RG-SCAN and DM-
SCAN. The mean inter-arrival time of non-real-time
tasks is assumed to be 10.1 ms, which saturates the
non-real-time task’s queue to avoid the occurrence of
an empty queue. The queuing principle for non-real-
time tasks is followed using FIFO order. Note that, by
exploiting the SCAN order in R-Groups, other queu-
ing principles exist to reduce average response time of
non-real-time tasks. For example, we can select non-
real-time tasks that incur minimum seek time with the
tasks in an R-Group. In this paper, we select FIFO for
its simplicity and fairness. Table 4 shows the same
results, but with 30 real-time tasks. We also present the
minimal, maximal, and average schedule finish-time of
various disk scheduling schemes for comparison. Note
that the schedule finish-times of RG-SCAN and DM-
SCAN include both the execution of real-time and
non-real-time tasks.

Tables 3 and 4 show that RG-SCAN serves more
non-real-time tasks than DM-SCAN in the same real-
time environment, i.e., having the same real-time tasks.
Without the requirement to modify tasks’ deadlines,
RG-SCAN obtains larger group sizes, i.e., more re-
schedulable tasks, for rescheduling. The slack between
advanced finish-time and original finish-time in RG-
SCAN is thus larger than in DM-SCAN. Therefore,
more non-real-time tasks have the chance to be served
within the obtained slack by RG-SCAN. In addition,
both RG-SCAN and DM-SCAN supporting non-real-
time tasks have comparable schedulable finish-times
with SCAN-EDF. That is, non-real-time tasks sup-
ported by RG-SCAN and DM-SCAN, together with
their real-time tasks, have almost the same schedule
finish-time as SCAN-EDF, which only serves real-time
tasks. Especially, the average schedule finish-time of
RG-SCAN under 30 real-time tasks has smaller value

Given 20 real-time tasks, the schedule finish-time and number of supported non-real-time tasks of different approaches

Algorithm Schedule finish-time (ms) Number of non-real-time tasks

Min Max Avg. Min Max Avg.
RG-SCAN 289.25 333.34 313.17 0 8 3
DM-SCAN 289.25 333.34 311.66 0 5 2
SCAN-EDF 285.35 338.12 309.33 NA NA NA
Table 4

Given 30 real-time tasks, the schedule finish-time and number of supported non-real-time tasks of different approaches

Algorithm Schedule finish-time (ms) Number of non-real-time tasks

Min Max Avg. Min Max Avg.
RG-SCAN 522.98 552.38 537.68 7 9 8
DM-SCAN 535.36 548.88 542.12 6 7 6
SCAN-EDF 530.59 559.71 545.15 NA NA NA

H.-P. Chang et al. | The Journal of Systems and Software 59 (2001) 143-152 151

Table 5

Given different real-time and non-real-time tasks, the obtained response time of non-real-time tasks (NRT-Tasks) by RG-SCAN and DM-SCAN

Algorithm 20 real-time tasks 25 real-time tasks 30 real-time tasks

NRT-tasks Res. time (ms) NRT-tasks Res. time (ms) NRT-tasks Res. time (ms)
RG-SCAN 2 132.19 4 140.31 6 145.80
DM-SCAN 2 140.50 4 151.90 6 157.62

than that of SCAN-EDF, while RG-SCAN simulta-
neously supports an average of eight non-real-time
tasks.

In Table 3, we support one more non-real-time task
than DM-SCAN, and the number of supported non-
real-time tasks is smaller than that of real-time tasks. As
stated in Section 5, in a multimedia system, most disk
accesses are real-time demanded for media playback.
Only a few non-real-time tasks are interposed for ordi-
nary file access. Therefore, our scheme serves 1.5 times
the number of non-real-time tasks supported by DM-
SCAN and we believe that this is valuable due to the
small number of non-real-time tasks in a multimedia
system. In addition, from Tables 3 and 4, the number of
supported non-real-time tasks is increased with that of
real-time tasks in systems. Therefore, the number of
supported non-real-time tasks by RG-SCAN relates
with the increase of real-time tasks and offers good
scalability in a multimedia system. Furthermore, the
techniques we propose in this paper can cooperate with
other approaches (Spuri and Buttazzo, 1994; Lehoczky
et al., 1987; Lehoczky and Ramos-Thuel, 1992) to fur-
ther improve the performance for supporting non-real-
time task.

6.3.2. Response time

Responsiveness is an important factor measuring the
performance of disk scheduling algorithms for the sup-
port of non-real-time tasks. In this subsection, we pre-
sent the response time of non-real-time tasks using RG-
SCAN and DM-SCAN. 100 experiments are conducted
for each approach and the mean inter-arrival time of
non-real-time tasks is assumed to be 50.1 ms. In Table 5,
using different numbers of real-time and non-real-time
tasks, we present non-real-time task’s average response
time under RG-SCAN and DM-SCAN. From the ex-
perimental results, our proposed RG-SCAN scheme
offers shorter response time than DM-SCAN. For ex-
ample, with 25 real-time and 4 non-real-time tasks, RG-
SCAN provides a reduction of 7.6% of DM-SCAN’s
response time.

As explained above, RG-SCAN has larger group
sizes for rescheduling than DM-SCAN, and the service
time’s reduction of rescheduling tasks in RG-SCAN is
larger than in DM-SCAN. Thus, RG-SCAN will obtain
enough slack to quickly serve non-real-time tasks and
shorten their response times. However, we observe that
the response time improvement is actually not very

significant compared with DM-SCAN. This is because,
in some cases, the slack obtained by rescheduling the
fewer real-time tasks by DM-SCAN is just large enough
to serve non-real-time tasks. On the other head, RG-
SCAN obtains larger group size and postpones non-
real-time task’s execution to wait for the completion of
more real-time tasks. This limitation can be resolved by
rescheduling real-time and non-real-time tasks together
within an R-Group. As shown in Fig. 4, the serving of
non-real-time tasks is put on the end of an R-Group. By
rescheduling non-real-time and real-time tasks together,
the response times of non-real-time tasks are reduced.
Thus, the total service time is decreased, and more non-
real-time tasks can be served. Nevertheless, this requires
rescheduling by SCAN each time a non-real-time task is
tested for schedulability, which increases the time com-
plexity. However, on average, RG-SCAN still provides
shorter response time than DM-SCAN.

7. Conclusions

In order to improve disk throughput, a seek-opti-
mizing rescheduling scheme is applied as much as pos-
sible to disk requests under guaranteed real-time
constraints. However, previous approaches limit their
flexibility and performance since the rescheduling
scheme is employed only to an EDF schedule. In this
paper, we propose RG-SCAN, a new disk scheduling
algorithm using the concept of R-Group, to resolve this
drawback. Using this R-Group, consecutive tasks that
can be rescheduled under real-time constraints are de-
rived from any input tasks set, so no deadline modifi-
cation is required. Since original deadlines are larger
than the modified deadlines, RG-SCAN obtains a larger
task group for rescheduling than DM-SCAN.

In addition, we extend the RG-SCAN algorithm to
serve mixed real-time/non-real-time tasks in a multime-
dia environment. By rescheduling tasks within an R-
Group, slack derived from the reduction of service time
is used to serve non-real-time tasks to minimize their
response times. The experimental results show that our
approach can support more tasks, both real-time and
non-real-time, than DM-SCAN. Additionally, our ap-
proach can provide larger data throughput and offer
good response time to non-real-time tasks. Further-
more, our scheme offers good scalability for the support
of both real-time and non-real-time tasks. Therefore,

152 H.-P. Chang et al. | The Journal of Systems and Software 59 (2001) 143—-152

our proposed RG-SCAN can keep pace with the ex-
plosive progress of multimedia design technology, per-
forming much better than the DM-SCAN approach.

Appendix A

Theorem. Given an input schedule T =T\T,---T,. For
each R-Group G;=TT; - Ty, the sub-group
T,Tps1 - Tixm of Gy is a part of G, for p=i+1to i+ m.

Proof. Assume that the smallest deadline in a R-Group
Gi = TTy1 -+~ Tip is dy = ming 7 {dy}.

(a) Since T=T,T»---T, is the input schedule, we
have s; <s;; and f; < fiy for all i.

(b) From the definition of R-Group G; and G, =

T;Ti1 -+ - Trim, we have fi,, < d, and max;™ {r,} <s..

= Therefore, from (a) and (b), it can be derived

that fi,, <d, = min; " {d;} < min; " {d,} and

maxj;';{rk} < max; 7 {r} <S;<S, for p=i+1 to
i +m. Thus, the sub-group Ty()Ty(p+1) - Ty(iem Of

G; must be a part of G, forp=i+1toi+m. O

References

Chang, H.P., Chang, R.I., Shih, W.K., Chang, R.C., 2000. Enlarged-
maximum-scannable-groups for real-time disk scheduling in a
multimedia system. In: Proceedings of the 24th IEEE International
Computer Software and Application Conference (COMPSAC),
pp- 383-388.

Chang, R.I., Shih, W.K., Chang, R.C., 1998. Deadline-modification-
SCAN with maximum scannable-groups for multimedia real-time
disk scheduling. In: Proceedings of the 19th IEEE Real-Time
Systems Symposium, pp. 40-49.

Chen, T.S., Yang, W.P., 1992. Amortized analysis of disk scheduling
algorithm 7 (R). Journal of Information Science and Engineering 8
(2), 223-242.

Chen, T.S., Yang, W.P., Lee, R.C.T., 1992. Amortized analysis of
some Disk-Scheduling algorithms: SSTF, SCAN, and N-Step
SCAN. BIT 32, 546-558.

Dan, A., Sitaram, D., Shahabuddin, P., 1994. Scheduling policies for
an on-demand video server with batching. In: Proceedings of 2nd
ACM Multimedia Conference, pp. 5-22.

Denning, P.L., 1967. Effects of scheduling on file memory operations.
In: Proceedings of AFIPS SICC, pp. 9-21.

Gemmell, D.J., Christodoulakis, S., 1992. Principles of delay sensitive
multimedia data storage and retrieval. ACM Transaction on
Information Systems 10 (1), 51-90.

Gemmell, D.J., Vin, H.M., Kaudlur, D.D., Rangan, P.V., Rowe, L.A.,
1995. Multimedia storage servers: a tutorial. IEEE Computer 28
(5), 40-49.

Jeffay, K., Stanat, D.F., Martel, C.U., 1991. On nonpreemptive
scheduling of periodic and sporadic tasks. In: Proceedings of
Twelfth IEEE Real-Time Systems Symposium, pp. 129-139.

Lehoczky, J.P., Sha, L., Strosnider, J.K., 1987. Enhanced aperiodic
responsiveness in hard real-time environments. In: Proceedings of
8th IEEE Real-Time Systems Symposium, pp. 261-270.

Lehoczky, J.P., 1990. Fixed priority scheduling of periodic task sets
with arbitrary deadlines. In: Proceedings of 11th IEEE Real-Time
Systems Symposium, pp. 201-212.

Lehoczky, J.P., Ramos-Thuel, S., 1992. An optimal algorithm for
scheduling soft-aperiodic tasks in fixed-priority preemptive sys-
tems. In: Proceedings of 13th IEEE Real-Time Systems Sympo-
sium, pp. 110-123.

Lin, T.H., Tarng, W., 1991. Scheduling period and aperiodic tasks in
hard real-time computing systems. In: Proceedings of ACM
SIGMETRICS, pp. 31-38.

Liu, C.L., Layland, J.W., 1973. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of ACM 20 (1),
46-61.

Lougher, P., Shepherd, D., 1993. The design of a storage server for
continuous media. The Computer Journal 36 (1), 32-42.

Reddy, A.L.N., Wyllie, J.C., 1993. Disk scheduling in a multimedia 1/
O system. In: Proceedings of 1st ACM Multimedia Conference,
pp. 225-233.

Reddy, A.L.N., Wyllie, J.C., 1994. 1/O issues in a multimedia system.
IEEE Computer 27 (3), 69-76.

Ruemmler, C., Wyllie, J.C., 1994. An introduction to disk drive
modeling. IEEE Computer 27 (3), 17-28.

Stankovic, J.A., Buttazzo, G.C., 1995. Implications of classical
scheduling results for real-time systems. IEEE Computer 28 (6),
16-25.

Steinmetz, R., 1995. Multimedia file systems survey: approaches for
continuous media disk scheduling. Computer Communication 18
(3), 133-144.

Spuri, M., Buttazzo, G.C., 1994. Efficient aperiodic service under
earliest deadline scheduling. In: Proceedings of 15th IEEE Real-
Time Systems Symposium, pp. 2-11.

Wong, C.K., 1980. Minimizing expected head movement in one
dimension and two dimensions mass storage system. Computer
Survey 12 (2), 167-178.

Hsung-Pin Chang received the B.S. and M.S. degree in Computer and
Information Science in 1995, and 1997, respectively, from National
Chiao Tung University, Taiwan, ROC. He is currently a Ph.D. can-
didate in Computer and Information Science at National Chiao Tung
University. His research interests include real-time system, operating
system, and wireless communication.

Dr. Ray-I Chang is a member of Computer Systems and Communi-
cations Laboratory (CSCL) in Institute of Information Science (IIS),
Academia Sinica, Taiwan, ROC. He earned his Ph.D. degree in Elec-
trical Engineering and Computer Science from National Chiao Tung
University in 1996, where he was a member of Operating Systems
Laboratory. At CSCL of 1IS, Dr. Chang has worked on the projects of
real-time traffic engineering, video-on-demand server, and distributed
digital library design. His current research interests include real-time
and distributed multimedia systems. He has published over 50 scientific
papers in the international journals and conferences. Dr. Chang is a
member of IEEE.

Wei-Kuan Shih received the B.S. and M.S. degrees in computer sci-
ence from the National Taiwan University, and the Ph.D. degree in
computer science from the University of Illinois, Urbana-Cham-
paign.

He is an Associate Professor in the Department of Computer Sci-
ence at the National Tsing Hua University, Taiwan. His research in-
terests include real-time systems, VLSI design automation, and
wireless communication. From 1986 to 1988, he was with the Institute
of Information Science, Academia Sinica, Taiwan.

Ruei-Chuan Chang received the B.S. degree in 1979, the M.S. degree in
1981, and his Ph.D. degree in 1984, all in computer science from
National Chiao Tung University. In August 1983, he joined the De-
partment of Computer and Information Science at National Chiao
Tung University as a Levcturer. Now he is a Professor of the De-
partment of Computer and Information Science. He is also an Asso-
ciate Research Fellow at the Institute of Information Science,
Academia Sinica, Taipei.

