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ORIGINAL ARTICLE

Importance sampling of products
from illumination and BRDF using spherical

radial basis functions

Abstract In this paper, a new
approach for the importance sampling
of products from a complex high
dynamic range (HDR) environment
map and measured bidirectional
reflectance distribution function
(BRDF) data using spherical radial
basis functions (SRBFs) is presented.
In the pre-process, a complex HDR
environment map and measured
BRDF data are transformed into

a scattered SRBF representation

by using a non-uniform and non-
negative SRBF fitting algorithm.

An initial guess is determined for
the fitting operation. In the run-time
rendering process, after the product
of the two SRBFs is evaluated, this is
used to guide the number of samples.
The sampling is done by mixing
samples from the various “product”
SRBFs using multiple importance
sampling. Hence, the proposed

approach efficiently renders images
with multiple HDR environment
maps and measured BRDFs.

Keywords Illumination - Environ-
ment map - Bidirectional reflectance
distribution function - Importance
sampling - Spherical radial basis
function

1 Introduction

To improve the quality of realistic images, more and more
research has been focusing on efficient rendering with
image-based illumination and measured bidirectional re-
flectance distribution function (BRDF) data. The main
reason for this interest is image-based illumination cap-
tures complex real-world lighting and measured BRDF
data contain real-world material property. Monte Carlo-
based approaches [29,30] are often used to incorporate
high dynamic range (HDR) environment maps with com-
plex BRDF models. However, there is a major problem
with the Monte Carlo-based approaches. When tracing the

rays in the scene, the tracing path of each ray has to be
selected according to the product distribution of the illu-
mination and BRDF. It would waste a lot of samples if
they are generated randomly or uniformly, because only
few sampling paths reach the right intensity. On the other
hand, if samples are generated against the high energy dir-
ection of the product distribution, it would achieve low
variance and increase the efficiency of rendering. There-
fore, sampling the importance of products from the illu-
mination and BRDF is critical for efficient realistic image
rendering.

Lately, many researchers have transformed environ-
ment maps and the original measured BRDF data into
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other representation forms, such as wavelets [3,4, 14, 17],
factored representations [15] and so on. Then they would
analyze the original data to sample probability distribu-
tions of sampling directions. They would generate sam-
pling directions according to the probability distribution
found in the specified representation. In the proposed ap-
proach, the environment map and the measured BRDF
data are represented by using spherical radial basis func-
tions (SRBFs) [7, 18, 28].

The SRBFs are special radial basis functions (RBFs)
defined on the unit sphere. Because of their intrinsic
potential, SRBFs are more suitable for representing the
spherical data, such as an environment map and BRDF
data. SRBFs are used in the proposed approach as the
basis functions with the following benefits:

— Since SRBFs are defined in the spherical domain, the
illumination as well as the BRDF can be directly fitted
to the data without re-parameterization. Therefore, any
inaccuracy because of the re-parameterization process
is avoided.

— High-frequency signals can be handled efficiently be-
cause of the spatial localization property of the SRBFs.

— Since SRBFs are circularly axis-symmetric and ro-
tation-invariant functions, it is simple to rotate SRBF
functions.

— The convolution of two SRBF kernels in some situ-
ations has a simple mathematical form which makes it
possible to evaluate the integral for probability estima-
tion without extra processes to construct the probabil-
ity density function (PDF).

— The approximated results are accurate enough to repre-
sent most features of the original data and the probabil-
ity can be directly estimated for importance sampling
with the simple form of the convolution by choosing
the appropriate SRBF kernels.

In this paper, the scattered SRBFs are used to repre-
sent the HDR environment map and the BRDF data. With
useful SRBF properties, the resulting representation can
be easily applied in the Monte Carlo-based importance
sampling technique. In the pre-process, a complex HDR
environment map and measured BRDF data are trans-
formed into a scattered SRBF representation by using
a non-uniform and non-negative SRBF fitting algorithm.
An initial guess is introduced for the fitting operation. In
the run-time process, after the product of the two SRBFs
is computed, this is used to guide the number of sam-
ples. The sampling is done by mixing samples from the
various “product” SRBFs using multiple importance sam-
pling [29, 30]. This is different from the sampling from the
“true” product distribution such as is done in the wavelet
importance sampling [3] or bidirectional sampling ap-
proaches [2]. Figure 1 gives an overview of the proposed
approach.

The rest of the paper is organized as follows: Sect. 2
reviews the related works. In Sect. 3, the SRBFs are de-

Environment map

i

/ BRDF data /
4

Pre-process ‘ SRBF representation ‘
Run-time l Product of two functions ‘
process

4

‘ Sampling from product distribution ‘

4

‘ Rendering of pixels ‘

Fig. 1. Overview of proposed approach

scribed. Sections 4 and 5 present the off-line SRBF fitting
process and the run-time rendering process, respectively.
The results are given in Sect. 6. Finally, conclusions are
discussed in Sect. 7.

2 Related works

For distant illumination, the rendering equation [10] is

Bx(no)=/L(ni)px(ni, no) (i -nx) Vi(m) do(n), (1)
2

where By (1),) denotes the outgoing radiance from a point x
in direction 7o, L(n;) is the incident radiance in direc-
tion 7, px (N, No) denotes the BRDF, V. (#;) is the visibil-
ity function, and n, is the surface normal at x. To evaluate
the integral of the rendering equation, it is common to use
Monte Carlo-based approaches. They solve the integrals
by computing the average of random samples of the inte-
grand, accumulating these values and taking the average.
Importance sampling is a variance reduction technique of
Monte Carlo-based approaches.

2.1 BRDF importance sampling

Importance sampling of BRDFs is a technique to reduce
the image variance in physically based rendering. The
concept is to find the distribution based on the representa-
tion of BRDFs. Simple analytical models such as diffuse,
Phong or generalized cosine models can be sampled ana-
lytically.

Shirley [24] demonstrated how to sample the trad-
itional Phong BRDF model efficiently. Lafortune and
Willems [13] also presented importance sampling schemes
for the modified Phong model. Ward [31] showed the
stochastic sampling method for the BRDF models com-
posed of elliptical Gaussian kernels. Lafortune et al. [12]
used multiple cosine-lobes for representing the BRDFE.
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They used a non-linear fitting algorithm to fit sums of
cosine-lobes to an analytical model or to actual measure-
ments. Although this representation is simple and can be
applied for the Monte Carlo importance sampling, it is
hard to approximate the complex BRDF by using their fit-
ting process. McCool and Harwood [16] generalized a k-D
tree representation of probability distributions to sup-
port generation of samples from conditional distributions.
Lalonde [14] used wavelets to represent the BRDF and
proposed an importance sampling scheme for measured
BRDFs. Matusik etal. [17] also used a wavelets repre-
sentation of BRDF and presented a numerical sampling
method based on wavelets analysis. Lawrence et al. [15]
demonstrated an importance sampling method based on
a factored representation. They reparameterized the BRDF
by using a half-angle [23] and then the non-negative ma-
trix factorization (NMF) twice to decompose the BRDF
data for efficient importance sampling.

2.2 Environment map importance sampling

Environment map importance sampling is another tech-
nique for increasing the efficiency of ray tracing-based
algorithms, together with complex lighting captured in
a HDR environment map.

In some previous works, the environment maps were
transformed into finite basis functions, such as wave-
lets [19], spherical harmonics [21,22,25] and steerable
functions [26]. Some researchers used importance sam-
pling techniques to distribute samples according to the
energy distribution in the environment map [1, 6, 11,20].
The importance sampling is often implemented based on
clustering algorithms or hierarchical tiling schemes. Simi-
larly, such an approach performs poorly for highly specu-
lar surfaces since samples chosen do not take the specular
lobe into account.

2.3 Sampling from product distributions

More recently, several researchers have worked on this
problem by drawing samples from the product distribution
of the illumination and the BRDF. These approaches prod-
uce high quality images with a small number of samples.
Burke et al. [2] introduced a technique which is called
bidirectional sampling. They considered both energy of
incident illumination and the surface BRDF in the sam-
pling process. Two Monte Carlo algorithms for sam-
pling from the product distribution are presented. One
is based on reflection sampling and the other is based
on sampling-importance re-sampling (SIR). Clarberg
et al. [3] presented a technique for importance sampling
from products of the illumination and the BRDF using
a hierarchical wavelet representation. Their method is very
efficient for measured BRDF data but requires significant
precomputation for environment maps. Talbot et al. [27]
presented an importance resampling algorithm to gen-

erate more equally weighted samples for Monte Carlo
integration. Cline et al. [5] proposed an importance sam-
pling algorithm to generate samples based on the product
of an environment map and a BRDF. It performs well
for scenes with complex BRDFs and environment maps.
Ghosh et al. [8] presented a sequential sampling algorithm
for dynamic environment map illumination. While ex-
ploiting temporal coherence, it samples from the product
of illumination and BRDFE.

3 Spherical radial basis functions

An SRBF is recognized as an axis-symmetric reproducing
kernel function defined on S™, the unit sphere embed-
ded in R"*!. The kernel function only depends on the
spherical distance between unit vectors. Let n and & be
two points on S™ and 6(n, &) be the geodesic distance be-
tween 1 and £ on S™, which is the arc length of the great
circle joining n and &. Since SRBF kernel functions are de-
pendent on €, SRBFs can be expressed in the expansions
of Legendre polynomials as

G(cost) =G-8 =Y GPi(n-9),

=0

2

where P;(n-£&) is Legendre polynomials of degree [ and
Legendre coefficients G;s of Legendre polynomials satisfy

[o,0)
G;>0 and ZGZ < 0.
=0

Since SRBFs have expansions of Legendre polyno-
mials, there is a useful property based on the orthogonal
property of Legendre polynomials in [—1, 1] called spher-
ical singular integral [7, 18,28] by

(G *m H)(Sg-Eh)=/G(n'$g)H(n'$h)dw(77)

Sm
oo

w,
=Y G H—P(& &),
=0 dm,l

3

where wy, is the total surface area of $™, d,,, ; is the dimen-
sion of the space of order-/ spherical harmonics on S$”,
and dw denotes the differential surface element on S™.
One example of SRBFs is the Gaussian SRBF kernel.
The definition of Gaussian SRBF kernel is
GH(n-& ) =t 1 >0, “)
where A denotes the parameter called bandwidth and con-
trols the coverage of the SRBF. The Gaussian SRBF ker-
nel is adopted as the kernel function for the following
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reasons. The convolution of two Gaussian SRBF kernels
has a mathematically simple form with small m [28]. The
convolution of two Gaussian SRBFs can be written as

G s, HO™ (&g - &5 hg, Ap)
m—1

1 2\ 7
:e—(xgﬂh)wmp(ﬂ)mzl (||V||)<—) ’

5
2 [l ®

where r = A4&, + Ay, I' is the Gamma function, I, is the
modified Bessel functions of the first kind of order p, and
I - || is the Euclidean norm.

Given a set of K distinct points {1, &, ..., Ex} on §™,
which is called the set of SRBF centers, and another set
of real numbers {A{, A, ..., Ax}, which is called the set
of SRBF bandwidth parameters, a spherical function F(7)
can be represented in SRBF expansions as

K
Fp) =Y FG(p-&: M),

k=1

(6)

where Fj, is the SRBF coefficient.

Distribution of the SRBFs’ centers on the sphere af-
fects the compression efficiency significantly. If uniform
SRBFs are used to represent the data with sparse distri-
bution, it would waste lots of basis kernels on the region
without data. On the other hand, using scattered SRBFs,
i.e., adapting the center, bandwidth and coefficient of each
basis, the SRBF kernels can be located based on the data
distribution on the sphere. Therefore, scattered SRBFs can
capture the features of the original data with much fewer
bases than those used in uniform SRBFs.

4 Off-line SRBF fitting process

In the pre-process, scattered SRBFs are used to represent
the HDR environment maps and the measured BRDF data.
The non-uniform and non-negative SRBF fitting algorithm
is introduced to transform the HDR environment maps and
the measured BRDF data into scattered SRBFs.

Given a desired number of SRBFs #;, there are three
sets of parameters that are to be optimized: the set of
SRBF coefficients L ={L, L2, ..., Ly}, the set of SRBF
centers & = {§1,82,...,&,} on $2 and the set of band-
width parameters A = {A1, A2, ..., Ay} in R. The object-
ive is to minimize the square error between the original
data and the approximated data by

{L, &, A} =argmin/ |D(;) — D(np) 1> do (i)
{L,E,A} )
S

ny
D) =Y LiG (mi-&; i), (7

k=1

where D(n;) is the original data and D(#;) is the approxi-
mated data.

The proposed approach modifies the previous ap-
proach [28] to solve the optimization problem. The coef-
ficients of all bases are constrained to be positive since the
coefficients are needed in estimating the probability dis-
tribution. Therefore, the L-BFGS-B solver [32] is used to
optimize the coefficients.

The non-uniform and non-negative SRBF fitting algo-
rithm consists of the following main steps:

1. Use the L-BFGS-B solver to optimize the set of centers
from a given initial guess or the results of the previous
iteration.

2. Use the L-BFGS-B solver to optimize the set of band-
width parameters and the set of coefficients respect-
ively.

3. The process is terminated if the difference of squared
errors between current and previous iteration are less
than a threshold E, or the count of iterations exceeds
a user-defined threshold 7.

This process is one kind of non-linear optimization.
The fitting results are highly dependent on the initial
guess, i.e. the initial guess would dominate the accuracy of
the representation. The proposed approach applies the pre-
vious initial guess approach [28] to determinate an initial
guess for a fitting operation. After the fitting process, the
HDR environment map with SRBFs is represented as

M
L)~y FMG(ni-&: 1)), ®)

Jj=1

where L(#n;) is the incident radiance in direction n;, G is
the SRBF kernel function, &; is the center o_f basis on unit
sphere, A; is the bandwidth of the basis, F illu i5 the basis
coefficient for the illumination, and M is the number of the
SRBFs for illumination.

Similarly, the measured BRDF data is represented in
scattered SRBFs for each fixed outgoing direction as

N
px(niy o) = Y FPG (i - &3 M),
k=1

where py (ni, 1o) is the original BRDF data, G is the SRBF
kernel function, & is the basis center on unit sphere, Ay is
the basis bandwidth, F,?rdf is the basis coefficient for the
BRDF, and N is the number of SRBFs for the BRDF.

()]

5 Run-time rendering process

The flowchart of the run-time rendering process is shown
in Fig. 2. When the view ray hits the object in the scene,
the product of the environment map and the BRDF repre-
sented in SRBFs is first calculated. Next, the number of
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Fig. 2. Run-time rendering process

the samples of each SRBF is determined according to its
integral. Then samples are generated from each SRBF and
the results are combined by the multiple importance sam-
pling technique [29, 30].

5.1 Product of illumination and BRDF

As mentioned before, taking the Gaussian SRBF as the
kernel function has some benefits. One is that it is easy to
calculate the product of the two Gaussian SRBFs. Ignor-
ing the normalized term, the product of the two Gaussian
SRBFs is

F3e)»3(77~§3) = e MMWED | ,=h2 2 (152)
F3 = e~ A1ta2)

A3 =|M&1 + A28

M1 +Mb

&3 =

(10)

where Fj is the coefficient, A3 is the bandwidth, and &3 is
the center of the product result. The product of the illumin-
ation and the BRDF is defined as follows:

L) px(mi, no)

M N
~ Y FMNGi-& k) Y PG i-& ). (1D

j=1 k=1

After calculating the product of the two SRBFs, the
number of basis functions becomes M x N. If all the basis

functions are used to generate the samples, computation
cost will be high. Therefore, the basis functions with large
coefficients are reserved and the basis functions with small
coefficients are pruned. Since most of the energy is dis-
tributed in a few basis functions with large coefficients,
a good approximation for original data is obtained even
with only keeping the n largest coefficients.

5.2 Multiple importance sampling

After calculating the product of the environment map and
the BRDF, it is desirable to generate rays distributed ac-
cording to the density of the product. When the integral of
the incident illumination for a fixed outgoing direction 1,
located at x with normal 7, is evaluated, the Monte Carlo
estimator for the integral can be written as

Bx(no) = / L) px(Mi, 10) (Mi - nx) Ve (1) dw(n)
52
= |:L(77i)/0x(77ia770)

N 1
n v(ns|no)

] (s -n)Ve(ng),  (12)

s=1

where y(15]1,) is the probability of generating sample dir-
ection 1, assuming that n, is fixed.

However, it is expensive to construct a single PDF
y(ns|no) that follows the shape of the complex product of
the illumination and the BRDF. A technique for import-
ance sampling [29, 30], multiple importance sampling, is
adopted. The combination of several potentially good es-
timators makes the Monte Carlo integration a more robust
technique. The estimators calculated with different PDFs
can have different qualities in different regions of the inte-
gration domain. It makes a weighted-average of all estima-
tors where the weights depend on the sampling positions.
If the integral of f(x) is evaluated as

/ f(x)dx,
2

and there are n different estimators, the combined estima-
tor is given by

SRR f(Xij)
F = _ (X )2/ 1

; n; ;w,( l’j)Pi(Xi,j)’ (13)

= ]_
where p; is the PDF for each estimator, n; denotes the
number of samples from p;, X; ; are the samples from p;
for j =1, 2,...,n;,and all samples are assumed to be in-
dependent. Also, w; is the weighting function and satisfies
the following two conditions:

D wit)=1, wi(x)=0 whenever p;(x)=0. (14)
i=1
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Then, the expected value of the combined estimator F
would be equal to the integral of f(x).

This technique is applied to the importance sampling
of product distribution, and Eq. 12 would become:

By (no) = / L) px(Mi, 10) (M - nx) Ve (1) dw(n;)

~ Z 1 i [ n;pi(Xi ;) ]
n; Y o hpk(Xi )

i=1 """ j=1

" [L(Xi,j)px(Xi,j, Mo)

(X)) ] (Xi,j -n)Vi(Xi j),

5)

where n is the number of SRBFs, n; denotes the number
of samples from each SRBF, and p; is the PDF calcu-
lated from each SRBF kernel function for i =1, ..., n.
X; ; is the sample of each SRBF kernel function for
j=1,...,n;

When computing Eq. 15 in a run-time rendering pro-
cess, the number of samples, n;, should be taken from each
SRBF kernel and the sampling directions distributed ac-
cording to each SRBF kernel, X; ;, should be generated.

5.3 Sampling algorithm

Intuitively, each scattered SRBF covers a part of the
entire product region. Although there would be two or
more overlapping SRBFs in the same region, the inten-
sity of multiple sampling directions within a pixel can still
be gathered using the multiple importance sampling ap-
proach.

The product of the environment map and the BRDF
for a given viewing direction in the run-time rendering
process is first calculated. Then, recall that SRBF is de-
fined on the unit sphere, and its integral is easy to cal-
culate by using the spherical singular integral property
of SRBF. The integral of each SRBF can be taken as its
total energy gathered from all directions. Therefore, it is
straightforward to allocate samples according to the ratio
of the integral of each SRBF to the sum of all SRBFs’
integrals. Furthermore, more samples in the SRBFs with
a higher level of energy are allocated. Thus, the energy
by squaring the influence of the integral is emphasized.
The probability of choosing the SRBF [ for each sample is
given by

I
Y i

where n is the number of SRBFs and I; is the inte-
gral of SRBF i. A 1D cumulative distribution function
(CDF) over [ from these probabilities is calculated. In

P() = (16)

Fig. 3. Elevation angle and azimuth angle defined against an SRBF

the dispatching process, a uniform variable in [0, 1] is
initially generated and this variable with a random num-
ber for each sample is jittered. Then, the CDF is tra-
versed to determine where the sample should be taken
from.

Next, a sample direction in each SRBF kernel is gen-
erated by sequentially selecting the elevation angle 6 and
the azimuth angle ¢, as shown in Fig. 3. For the eleva-
tion angle 6, the metropolis random walk algorithm [29,
30] is used to generate samples with a desired density.
It should be noted that the SRBF kernel itself only de-
scribes 1D density, while the desired density of sampling
is the density over the sphere. Therefore, when the ele-
vation angle 0 is selected by this approach, the influence
of the circumference around the center of the SRBF ker-
nel, in particular, should be considered. For the azimuth
angle ¢, each SRBF kernel is symmetric against the vec-
tor that is defined by its center and the origin of the unit
sphere. Therefore, the distribution of the azimuth angle ¢
is uniform, and a random number in [0, 277] can simply be
generated to evaluate ¢.

6 Results

All results are generated on an AMD Athlon64 FX-60 PC
with NVIDIA GeForce 7900 GTX.

6.1 Fitting errors

The fitting performances of the Lafortune model [12]
and the proposed SRBF representation are compared. The
Lafortune model, which combines multiple generalized
cosine-lobes, can be written as

p(u, v) =Y " (Crittevx + Cyittyvy + Couzv)",  (17)
i

where u is the incident direction and v is the outgoing
direction. In this fitting process, a non-linear optimization
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technique was applied to determine the parameters Cy ;,
Cy.i, C;i and n;. The objective was to minimize the mean-
square error of the reflectance functions multiplied by the
cosines of the incidence angles with the normal. Because
the model was fitted depending on the outgoing and inci-
dent directions at the same time, it was not easy to make
an initial guess. Consequently, it is sometimes hard to fit
this model to some complex BRDF data.

Table 1 displays the fitting errors of the Lafortune
model and the scattered SRBFs with Gaussian SRBF ker-
nels. When fitting the Lafortune model, the initial guesses
were randomly generated and the fitting process was exe-

Table 1. Comparison of fitting errors

Lafortune Scattered
model SRBFs
Paint blue 32% 14%
Garnet red 7.6% 4%
Krylon blue 10% 5.9%
Cayman 19% 5.9%

d

Fig. 4a—f. Sampling results with material ‘Garnet red’. a 10 sam-
ples, b 40 samples, ¢ 60 samples, d 80 samples, e 100 samples and
f 100 samples (BRDF)

cuted numerous times (100 times for each BRDF). In the
experiments, although the number of lobes for the Lafor-
tune model was added, it remained difficult to improve
the fitting performance. The results of the proposed ap-
proach are compared with the best-fit Lafortune models
(with three lobes).

6.2 Rendering

The rendering results of a complex HDR environment map
and several BRDF data are demonstrated. The proposed
approach is compared to SRBF-based BRDF importance
sampling.

Figures 4-6 show the comparisons between the pro-
posed approach with a varying number of samples and
BRDF importance sampling. The Buddha model in ‘Grace
Cathedral’ is rendered with different BRDF data. From
Figs. 4-6, the materials are ‘Garnet Red’, ‘Krylon Blue’,
and ‘Cayman’ measured by Cornell University. The sam-
pling results a—e are from the SRBF product with a vary-
ing number of samples. And f is the rendered results using
SRBFs-based BRDF importance sampling. Performing

!

¢
w
LY
R .
—
-
-

Fig. Sa—f. Sampling results with material ‘Krylon blue’. a 10 sam-
ples, b 40 samples, ¢ 60 samples, d 80 samples, e 100 samples and
f 100 samples (BRDF)
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Fig. 6a—f. Sampling results with material ‘Cayman’. a 10 samples,
b 40 samples, ¢ 60 samples, d 80 samples, e 100 samples and f 100
samples (BRDF)

the SRBFs product sampling in the run-time process ob-
viously adds some overhead. In the current implementa-
tion, there was a 40% increase in computation time over
the SRBF-based BRDF importance sampling for an equal
number of samples. However, the quality of the rendered
images with the proposed method is much better than with
the SRBF-based BRDF importance sampling.

A complex scene with two complex HDR environ-
ment maps and three different measured BRDF data with
60 samples per pixel are given in Fig. 7. Each environ-
ment map with 100 Gaussian kernels and each BRDF
measurement in the scattered SRBFs is represented with
five Gaussian kernels. After computing the products, 100
Gaussian kernels are reserved to generate samples.

Compared with previous methods, the SRBF represen-
tation can significantly decrease pre-computed data storage.
For example, wavelet importance sampling presented by
Clarberg et al. [3] requires significant precomputation for
environment maps when rotating lighting environment. In
order to get a smooth result, they must bilinearly interpo-
late between the four nearest wavelets in the environment
map. Since an SRBF is a rotation-invariant function, rotat-

Fig.7. a a ‘Garnet red’ Buddha and a ‘Cayman’ plane in ‘Uffizi
Gallery’ HDR environment, b a ‘Krylon blue’ Buddha and a ‘Cay-
man’ plane in ‘Uffizi Gallery’, ¢ a ‘Krylon blue’ Buddha and
a ‘Cayman’ plane in ‘St. Peter’s Basilica’ and d a ‘Cayman’ Bud-
dha and a ‘Garnet red’ plane in ‘St. Peter’s Basilica’

ing functions in the SRBF representation is as straightfor-
ward asrotating the centers of the SRBF. Correct SRBFs can
simply be obtained by one rotation operation.

The proposed approach achieves low variance in non-
occluded regions. However, the resulting images still have
noise in partially occluded regions as the proposed ap-
proach does not take visibility into account during the
sampling process. Ghosh and Heidrich [9] presented an
approach to address the noise in partial shadow regions.
On the other hand, the major computation cost for ray trac-
ing is the visibility testing.

7 Conclusions

A new approach for importance sampling of products
from illumination and BRDF has been presented. The pro-
posed approach efficiently renders images with multiple
HDR environment maps and measured BRDFs. The main
contributions of this paper are as follows: (a) in the off-
line SRBF fitting process, an initial guess is determined
for a fitting operation; (b) in the run-time rendering pro-
cess, after the product of the two SRBFs is computed,
this is used to guide the number of samples. The pro-
posed approach samples each SRBF of a subset of SRBFs
and combines the samples’ values by multiple importance
sampling.

In the future, an algorithm to generate samples smarter
will be developed based on some heuristic approaches.
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