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Abstract

The stratified self-calibration approach based on the absolute conic or its dual, the absolute dual quadric, has the
merit of allowing the intrinsic camera parameters to vary while being retrieved from an image sequence. In this paper,
we show that for a camera with small rotation and general translation, a new linear equation resulted from the infinity
homography can be added to a system of linear equations to compute the absolute dual quadric. Experiments with both
synthetic and real images show that satisfactory results can be obtained with the proposed linear approach. It is possible
to further improve the calibration result by adopting some nonlinear optimization schemes, e.g., a suitable LM-like
algorithm, to enforce the absolute dual quadric constraints using the linear solutions as an initial guess. © 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Self-calibration of a camera from images has been an important research topic on computer vision
over the last few years since it may reduce the need of off-line calibration and increases on-line flexi-
bility. It is shown in (Faugeras, 1992; Hartley et al., 1992) that general projective reconstructions, i.e.,
the simplest type of self-calibration, can be obtained easily using two or more uncalibrated projective
images. Recently more and more researchers pay their attention to possible ways of upgrading these
reconstructions from projective to metric. Faugeras et al. (1992) proposed a robust self-calibration
method using the Kruppa equations to impose constraints on the fixed internal parameters obtained
from the fundamental matrix. A number of approaches based on similar concepts to self-calibration
have been developed (Armstrong et al., 1996; Faugeras, 1995; Hartley, 1994a,b; Heyden and Aastrom,
1996).
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Instead of using the Kruppa equations, some widely accepted approaches (Pollefeys and Van Gool,
1998; Quan and Triggs, 2000) are based on the absolute quadric which is a concise parameterization of the
absolute conic introduced by Triggs (1997). By means of this parametric representation, it is shown that the
self-calibration can be done even if the camera intrinsic parameters are allowed to vary while generating a
sequence of images. On the other hand, based on the infinity homography, approaches of stratified re-
construction for projective, affine, and finally Euclidian space have also been widely adopted in the last few
years (Pollefeys and Van Gool, 1999; Pollefeys et al., 1996; Zisserman et al., 1995). In fact, some other
researchers have dealt with the calibration problem for some special motions (Apapito et al., 1998;
Faugeras et al., 1998), in which the work in (Apapito et al., 1998) has involved both the absolute quadric
and the infinity homography. A good analysis of what has been done in the filed of self-calibration can also
be found in (Pollefeys, 1999).

It is shown in (Pollefeys and Van Gool, 1998) that, under the condition that the intrinsic camera pa-
rameters, except for the focal length, are known, a linear solution of the varying focal length together with
the location of a particular affine structure can be obtained. The linear solution can be then used to initialize
the corresponding nonlinear optimization procedure. As a special case of having only two images obtained
with varying focal lengths, only one modulus constraint proposed in (Pollefeys and Van Gool, 1999) for the
infinity homography exists that the plane at infinity cannot be determined. In order to handle the two-
image case, Pollefeys and Van Gool (1999) add the scene constraint obtained from vanishing points to solve
the self-calibration problem.

In this paper, we propose a linear approach to the self-calibration problem with varying focal length for
a camera with small rotation and general translation. The approach is based on the infinity homography
and the absolute quadric and does not require an additional vanishing point constraint as in (Pollefeys and
Van Gool, 1999). Such camera motions can often be seen in stereo vision applications in which a small
rotation between two cameras can be found. The paper is organized as follows. In Section 2, some
background geometry and notation are introduced. Section 3 describes the general self-calibration problem
based on the absolute quadric and the infinity homography. Then in Section 4, the linear solution for the
special case of two images, obtained from a camera with small rotation and general translation, based on
the infinity homography constraints is introduced. Following that, the associated 3D metric reconstruction
procedure is summarized in Section 5, and some experimental results are given in Section 6. Finally, we
draw conclusions in Section 7.

2. Background geometry and notation

In this section, a brief review is given for the classical projective geometry notions of infinity homo-
graphy, plane at infinity, absolute conic, and their relationships to camera calibration.

2.1. Projection matrix and infinity homography

A basic projection procedure of scene points onto an image by a perspective camera can be described
as

m o PM, (1)

where o denotes the equality up to a scaling factor, P is the 3 x 4 projection matrix, M = [X Y Z 1]T and
T . . . . .

m = [x y 1] represent the homogeneous coordinates of a 3D world point and an image point, respectively.

Due to the stratums of space, the projection process should be represented by means of its corresponding

projection matrix in the space under consideration.
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For Euclidean space, the projection matrix can be represented as

fr s u ||l 0 0 O R ¢
Puw=KRT=1|0 f, v||0 1 0 0 [OT 1}, (2)
0 0 1 0 01 0 3
where T represents the transformation of coordinate systems from world to the camera-centered system, P
denotes the perspective projection and K is the camera matrix consisting of the intrinsic parameters of
camera. In the camera matrix, f; and f, are the focal lengths measured in width and in height of the pixels in
the image, respectively, s is a factor measuring the skew of the two image axes, and u, and v, are the image
coordinates of the principal point.
Consider the projective space. The projection matrix can be represented as

Poroj = [He,], (3)
where e, is the epipole, and H, the Homography, describes the projection from a particular reference plane

to the image plane, as discussed next.
Given a reference plane IT = [z7 1]" 2 [n, 7, 73 1]" in the 3D space, a point My = [m], 1]" is said to lie

on this plane if and only if IT"M;; = n"my + 1 = 0. Specifically, since n'm; = —1, the relationship can be
represented as
_|mn| _ | mn _ | Bx3
a=[1]-| 205

Hence, the projection process which maps the 3D point Mj; to its image point 7 by the projective pro-
jection matrix can be described as

- I3,
fig X PooiMn = [Hle,] {Zﬁ}mn (5)

or
iy o< [H — e,n' |my. (6)

Thus, [H — e,n'] in fact represents the homography between Mj; and ;. Or, more precisely it can be
written as

H =H—en". (7)

If the plane IT is chosen to be [0 0 0 1]T, the corresponding homography is simply given by H. This is the
homography denoted in the projective projection matrix (3). On the other hand, the infinity homography is
denoted as another special homography which describes the transformation from the plane at infinity to the
image plane

H*=H —e,n. (8)

00’

where 7, is the vector consisting of the first three elements of [7., 7., 7, 1] Which represents the location
of the plane at infinity, IT,, with respect to the reference plane of H. The details about the plane at infinity
are given in the next subsection.

2.2. Plane at infinity and absolute conic

According to the notation used in (Zisserman et al., 1998), a point in 3-space is represented by
homogeneous 4-vector X = [X; X, X; X4], and the plane at infinity, or the infinity plane, I, is the
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plane expressed as Xy = 0 in an affine frame and is setwise invariant under Euclidean motions, i.e., any
rigid motion of a camera will not change the camera’s relative position and orientation with respect to
1.

The absolute conic, €, is a point conic on I1,, represented as X} + X7 + X7 = 0 and X; = 0, containing
only imaginary points (Semple and Kneebone, 1979). As its dual, the absolute dual quadric is denoted as
Q. A special property associated with the absolute conic is that if camera parameters do not change,
then the image of the absolute conic, w, and its dual, »*, will also stay the same for all views. In
particular, for Euclidean representation of the world, such a property expressed with w* can be realized
as

o o Pt P = KR a0 [ e = e o)
3

In cases which allow variable intrinsic camera parameters, there is a particularly useful property of the dual

image of the absolute conic such that

! = KK o PQP (10)

is satisfied for all views (i’s). According to (10), constraints on the intrinsic camera parameters associated
with K; can therefore be transformed to constraints to those on elements of w;. This actually provides a
basis for the self-calibration.

3. Self-calibration

The absolute dual quadric and the infinity homography are the basis of the self-calibration since images
of the former encode the camera matrix for all views while the latter encodes the camera rotation. By these
parameterizations, location of the plane at infinity as well as the intrinsic camera parameters can be ob-
tained. Thus, the projection matrix for 3D reconstructions in metric space can be obtained.

In this section, a general approach to the self-calibration problem based on the absolute dual quadric is
briefly reviewed. Then, in order to overcome the difficulty induced by the special case of using only two
images wherein the solution in general cannot be determined uniquely, the infinity homography constraints
for camera motions with small rotation and general translation are presented in the next section.

Consider the absolute dual quadric given in (10). Starting from its Euclidean representation, such a
quadric can eventually be expressed in projective space as

(O3S PCUC:'Q:ucP;ruc,- = (Pproj,» TI;I\}[)QZUC (Tgh}Pl;ioj,) = Ppr"ji (TI;REIQ:LICT;J)P;?;Oj, = PprojfQ;;rojp[;l;ojl7 (1 1)
where P,;, denotes the projection matrix in projective space for the ith image,
K' o0
Tpm = { T 1] (12)

is the transformation matrix to upgrade the geometry from projective to metric, and

o[ KKY —KK'm.
proj = | —g!l KK nl KK'n,,

(13)
is the absolute dual quadric in projective space.
In particular, if the world frame is aligned with the first camera, Pyj, = [/|0], then we have

w; = KiKiT o B proin;rojP pTrOJl "
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with
o KlKIr —KIKIFTEDC
Q

proj — T T T T
- KK 7 KK

(15)

For an ideal camera, as suggested with an approximation provided in (Pollefeys and Van Gool, 1998), we
have ug = vy =0, s =0 and f; = fyé fi, which lead to the following camera matrix:

fi 0.0
Ki=10 fi 0]. (16)
0 0 1
Thus, (15) can be simplified as '
1t 0 0 —fim,
. 0 fi 0 — T,
Qi = 0 0 ) - . (17)
_flznool _flznoo2 _nOO3 lzniol +f12ni<:2 + niog
Leta=f7, b= —f{Ta,, ¢ = = [Ty, d = =Ty, and e = fin2, + fin2 + 2, (14) becomes
20 0 a 0 0 b
L 00 a 0 c¢|. 18
A R PR Lt 8)
b ¢ d e

and we can obtain the following system of linear equations (details are shown in Appendix A):

kia + kb + kise + kigd + kise + kig = 0,
kora + koo + kyze + kogd + kose + kog = 0,
ksra + kb + kyzc + kyad + ksse + kg = 0,
ksia + karb + kyzc + kasd + kyse + kye = 0.

(19)

When only two images are available, instead of a unique solution, only a family of solutions can be de-
termined for (19). Even if the rank 3 constraint for the absolute dual quadric (17) is imposed, one still ends
up with four possible solutions (Pollefeys and Van Gool, 1998). To overcome this difficulty, Pollefeys and
Van Gool (1999) and Pollefeys (1999) added a scene constraint obtained from vanishing points and thus
resulted in enough linear equations. In the next section, without any additional scene constraints, we show
that under special camera motions of a small rotation and a general translation it is possible to obtain a
close-form solution through the properties of the infinity homography.

4. A new linear method

Consider the case of two images. Eq. (8) becomes

Hf; = H]z - @,.TEIO X KzR]szl, (20)

! This matrix is essentially the same of that shown in (Pollefeys and Van Gool, 1998), except for some minor changes in notation.
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where e, is the epipole in the second image, Hy, = [e,], F denotes the homography, 2 Hy represents the
corresponding infinity homography, and Ry, is the rotation from the first camera to the second one. Note
that the last term of (20) is indeed the infinity homography represented in Euclidean space (see Luong and
Vieville, 1993 for details).

For a small rotation, we have

; fz 2
%rn Y Jaris % {waz —fr0,
O : :
KRpK| = ‘%”21 %7”22 Sors | = _%wz % o |, (21)
L L Oy _ O
N 31 N 31 "33 N N 1

where w;, w, and o, are the rotation angles with respect to the x-axis, the y-axis and the z-axis, respectively.
Thus, (20) can be simplified as

L L —
hll — €5 Tl h12 — € T, h13 — € Tloo, N i @z way
1 [
hy —€,Too,  hp — €T, ho3 — €T, | X —j—fwz 7? fro, |. (22)
h3l — €T h32 — €T, h33 — €Tl % — (/U—X 1
1 1

Consider the three diagonal elements of the both sides of (22), we have

TCOQI _ hll - h22 + erznooz , (23)

e,

el 4)

h33 — €3 To0;,

fr=

- hy — €,

From (23), b can be expressed as a function of ¢ and ¢ as

—h h .
g.ff _8_2..](‘127.5002%]%1 .a_|_kb2 . c. (26)

e, e,

b= —flznool =

With (19) and (26), the five variables defined in (18) and thus the four parameters f, n,, T, and m,,, can
be solved. Moreover, once f; is obtained, the value of f> can be calculated using either (24) or (25). *

5. 3D metric reconstruction

A stratified approach to self-calibration, as outlined in (Pollefeys, 1999; Pollefeys and Van Gool, 1999;
Zisserman et al., 1995), includes a step-by-step procedure of projective reconstruction, affine reconstruc-
tion, and finally the desired metric reconstruction from multiple images. A similar stratified approach but
using only two images, according to the linear algorithm proposed in this paper can be summarized as
follows:

2 les], 1s an antisymmetric 3 x 3 matrix representing the vectorial product with e (see Pollefeys, 1999) and F is the fundamental
matrix relating the two images.

3 In the implementation, values of f> obtained from (24) and (25), respectively, are found to be quite similar. The average of the two
values are used as a robust estimation of f; in the simulation.
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The 3D metric reconstruction procedure:
e Stage 1. Find the two projective projection matrices:

Pprojl - [[3><3‘03]7

(27)
Proroj, = [Hizle,].

e Stage 2. Obtain Tpy; i.e., find the four parameters fi, 7, T, and 7, by solving (19) and (26).
e Stage 3. Derive the projection matrix for Euclidean space

Pcuc,- = Pproj,T]a_]\}[v i = la 2. (28)

e Stage 4. Obtain the metric structure through the SVD-based 3D reconstruction method given in (Roth-
well et al., 1995).

6. Experiment results

In this section, calibration results obtained with the proposed linear method are presented. For a
stratified self-calibration approach, the accuracy of the perspective reconstruction affects the results re-
markably. The modified eight-point algorithm is adopted in the implementation, which usually gives a
satisfactory fundamental matrix, F, even under noisy conditions (Hartley, 1997). Using the derived fun-
damental matrix, the metric reconstruction is then conducted.

The performance of the proposed approach is examined using both synthetic and real images. In the
former, statistical results such as means and standard deviations are provided for f,, f>, I1,, and 3D re-
construction error, respectively, under different noise conditions. In the latter, on the other hand, we
measure the parallelism and orthogonality, as well as the 2D reprojection errors, of 3D structures obtained
from the metric reconstruction.

6.1. Experiments using synthetic data

The simulations are carried out on pairs of images obtained from a synthetic scene consisting of 50 3D
points. As shown in Fig. 1, these points are generated randomly in a 100 x 100 x 100 cube centered at

150

pixel

50
150

150
100
100

i 50 50
pixel pixel

Fig. 1. The 3D structure for the simulation.
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(100, 100, 100). Then, two images of this synthetic scene with size of 1400 x 1400 pixels are generated using
two Euclidean projection matrices, Pey, = Ki[R1|t1] and P, = Kr[Ra|t], with K; = diag[550, 550, 1],
Ri(w=0° ¢=0° k=0°), t,=10,0,0], K,=diag[600,600,1], Ry(w =2° ¢ =4.5°, k =7.6°) and
t, = [1, =20, —3]. The three parameters w, ¢, and x denote the rotation angles around the x-axis, the y-axis
and the z-axis, i.e., the tilt, pan, and swing angles, respectively.

Fig. 2 shows the mean and standard deviation of the estimation of the first focal length (f}) for zero
mean Gaussian noise, with standard deviation ranging from 0 to 1 pixel, added to locations of image
points. For each noise level, the statistics are obtained from a total of 100 trials. Note that in this figure and
also the next few figures, the half longitudinal short line denotes the standard deviation of experimental
results obtained with the 100 trials for each noise level and the middle of this short line denotes the mean of
these. While their standard deviations have the general trend to increase with the noise level, the means of
these estimations approximately give the correct value f; = 550. Similar results can also be observed for the
estimations of the second focal length, f> = 600, as shown in Fig. 3.

To evaluate the accuracy of the estimation of 7., the real n, is first obtained with Eq. (20) using the real
rotation R, and the fundamental matrix F obtained from the image pair before adding noises. The angular
error is then defined as the angle between the estimated n,, and the real n.,. Fig. 4 shows the mean and
standard deviation of the angular error for various noise levels.

As for the 3D reconstruction errors, since real locations of all 3D points are given for the simu-
lation, we can directly measure the average distance between the true 3D structure and the corre-
sponding structure recovered in metric space. The distance measurement procedure can be described as
follows. First, the two structures are moved to have their centroids located at the origin of the world

E 600
a
S ss0f std —
£
[
o
% 560 ,
5 A
£ 540 | 1
kS
£
S 520 | 1
o
T
8 500 L L L L L
= 0 0.2 0.4 0.6 0.8 1
standard deviation of noise level (pixel)
Fig. 2. The estimated first focal length (f1) for various noise levels.
T
X
=
s 640 ]
g std —e—
8 620 f
©
c
3
Al AL N S S |
[0}
<
5 580 4
<
iS)
5 560 ,
e ‘ ‘ ‘ ‘ ‘
8 0 0.2 0.4 0.6 0.8 1

standard deviation of noise level (pixel)

Fig. 3. The estimated second focal length (f3) for various noise levels.
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std —o—
0.6 [ |

N : ] t % % % % 7

0 0.2 0.4 0.6 0.8 1
standard deviation of noise level (pixel)

angular error (degree)

Fig. 4. Angular error for the estimates of 7., for various noise levels.

5F std —o— R

3D reconstruction error (pixel)
w
T
——
—
L

1 S % g

s 3

0 . . . . .
0 0.2 0.8 1

0.4 0.6
standard deviation of noise level (pixel)

Fig. 5. The 3D metric reconstruction error for various noise levels.

coordinate system. Secondly, a size normalization operation for both structures is carried out. Thirdly,
pointwise Euclidean distances between the two structures are calculated for corresponding 3D fea-
ture points. And finally, we average these distances to obtain an estimation of the 3D reconstruction
error. Fig. 5 shows the mean value and the corresponding standard deviation of the 3D reconstruction
error.

From these simulation results, one can observe that the proposed linear method is capable of solving the
self-calibration problem, in terms of accuracy and robustness, under conditions of small rotation and
general translation of the camera.

6.2. Experiments based on real images

In this subsection, results obtained with the proposed linear method for pairs of real images are pre-
sented. The images are obtained from the CMU image sequence (CIL Stereo Dataset, 1998). Fig. 6 shows a
typical image in the image sequence with 36 reference points. A subset of these point features is connected
with 10 line segments (marked with 0-9 in Fig. 7) to facilitate the parallelism and orthogonality mea-
surement of the recovered 3D metric structure.

In the experiment, the principal points given in (CIL Stereo Dataset, 1998) are utilized as known intrinsic
parameters in addition to f,/f, =1 and s = 0. The proposed linear method is applied to 10 image pairs
(1-2,1-3,...,1-11) for the corresponding 3D metric reconstruction. For the recovered 3D structure,
Table 1 shows the true and estimated angles between 11 selected pairs of line segments. Each of the esti-
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0
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11 12
1 2
13 14
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25 26
15 16 6
U 27
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29— 30
3 4
20
19
17 18
8 9
21 2

Fig. 7. Ten line segments connecting a subset of point features.

mated angles is obtained by averaging the corresponding angles calculated from the 10 image pairs. It is
readily observable from Table 1 that the proposed approach preserve the parallelism and orthogonality * of
the recovered 3D structure satisfactorily.

* The parallelism and orthogonality measure, which shows how the shape of the reconstructed 3D structure is preserved, is the main
performance measure of a metric reconstruction approach and has been adopted in (Pollefeys and Van Gool, 1999; Louraskis and
Driche, 2000).
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Table 1

True and estimated angles between 11 selected pairs of line segments
Line segment pair True angle (deg.) Estimated angle (deg.) Standard deviation (deg.)
1-2 1.2071 0.8955 0.1281
34 0.9094 0.8177 0.0669
5-6 2.5379 1.1341 0.0667
6-7 1.8160 29217 1.1020
8-9 1.5674 0.6351 0.1471
1-5 88.8999 89.3040 0.1398
3-7 89.3059 89.1086 0.0383
4-6 90.1267 90.1520 0.0222
5-9 89.4330 89.3644 0.2756
7-8 90.5845 90.1790 0.0373
0-1 90.2291 90.5843 0.0380

Table 2

The reprojection errors for the 3D metric reconstruction
Image Mean error (pixel) Standard deviation (pixel)
First 5.1806 x 1077 2.3773 x 1077
Second 1.8433 x 1072 6.6671 x 1073

Besides the parallelism and orthogonality measurement, the reprojection error, which measures the
differences between the original image points and those obtained by reprojecting the recovered 3D
structure back to the image plane, provides another performance measurement of the metric recon-
struction. A small value of such an error implies that coplanarity and collinearity constraints associ-
ated with the projective geometry are well satisfied. In this study, because we assume Py = [/]0], i.e.,
the first image is perfect, the computation errors are propagated to the second image in the recon-
struction process. It is shown in Table 2 that the reprojection error of the recovered 3D structure for
the first image is much lower than that for the second; both are reasonably small for typical appli-
cations.

Note that the 3D reconstruction error of about 0.7 or 0.8 pixels is obtained in Fig. 5 for synthetic image
data with standard deviation of the noise level equal to 0.2. For real images, e.g., the one shown in Fig. 6,
the noise level could be much higher, and so will be the 3D reconstruction error. On the other hand, fairly
small reprojection errors are obtained in Table 2 for real image points since they are mainly used as the
aforementioned constraints in the 3D reconstruction. Such constraints should be satisfied even if the re-
constructed 3D structure is not very accurate.

7. Conclusion

In this paper, we present a linear method that can solve the self-calibration problem with only two
images if the images are obtained by a camera with small rotation and general translation, possibly having a
varying focal length. Experiment results for synthetic simulations as well as real images show that the
proposed approach performs satisfactorily. Moreover, besides image pairs, our method can also handle the
case of multiple images since such a method is based on the absolute dual quadric and is designed to solve
the self-calibration problem associated with image sequence. On the other hand, as part of an optimal self-
calibration method, the linear solution may be good enough for an additional nonlinear optimization
procedure, which can be adopted to improve the calibration result further.
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Appendix A

The coefficients of the system of linear equations given in (19) are listed in detail as follows: °

ki =ph +ph — (03 +0%) ki =2(pupis — pupau) ki3 =2(ppis — popu) ks = 2(pispis — pspu) kis =Pl — pay ks =Pl — P

ka1 = pupa + pip» ky = plapa + pup»n ka3 = prapxn + propu kay = p1apx + pi3pu kas = prapa kas = p13px3
k31 = pups1 + pupxn k3 = puaps1 + pupsn k33 = puaps + p1apsa ks = prapss + p1apsu k3s = prapsa ks = p13p33
ka1 = pup31 + popxn ki = paups1 + pupx k43 = papz + pupu kas = papss + p1apu ks = paapaa kas = p3p33
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