
Speed up of rendering pipeline by deferred 
lighting and triple queue structure 
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Redundant operations and stalls prevent a rendering pipeline 
from full-speed operation. To speed up the rendering pipeline, a 
triple queue structure is proposed to smooth the pipeline and to 
obtain benefit from deferred lighting. The results of cycle-accurate 
simulation show that the proposed structure can reduce rendering 
cycles to 52.9y0 in small size queues. 
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Introduction: The rendering pipeline is a mainstream method to 
implement three-dimensional (3D) graphics rendering. However, 
the rendering pipeline method has two problems. The first prob- 
lem is redundant operations on invisible polygons. Deferred light- 
ing [l] can delete the redundant operations, and save operation 
cycles on them. However, if not well handled, the saved cycles 
may become useless 'bubbles' in the pipeline. Our purpose was to 
design a specific architecture to obtain benefit from the save 
cycles. The second problem is pipeline stalls. Due to various poly- 
gon sizes, polygon and pixel rates are not in linear proportion. 
Stalls occur whenever the data rates mismatch the process speed of 
hardware. A straightforward way to avoid stalls is to insert one 
queue as a buffer between the polygon and pixel rate areas [2, 31. 
However, the queue size quickly grows if a longer queue is 
required, since 20 to 40 bytes are required for a single entry in this 
queue. To solve these two problems, we propose a triple queue 
structure to smooth the pipeline and to obtain benefit from 
deferred lighting. Since three queues surround the lighting module, 
bubbles and stalls in the pipeline can be avoided. Therefore, this 
design can obtain benefit from deferred lighting, and speed up the 
rendering pipeline significantly by only having small queue sizes. 
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Fig. 1 Architectures of rendering pipelines 

a Without queue 
b Single queue structure 
c Triple queue structure 

Table 1: Queue lengths in different overall queue size 
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Table 2 Cycle numbers in rendering pipeline without queue 
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Triple queue structure: Fig. l a  shows a conventional pipeline with- 
out a queue, with only one buffer between stages. Fig. l b  shows 
the single queue structure. One queue, TQ (triangle queue), is 
inserted before scan conversion, at the border between the poly- 

Long polygon cycle (50:l) 
Short uolygon cycle (10:l) 

gon and pixel rate areas. The single queue structure can be a refer- 
ence to show the speed up by queue without deferred lighting. 
Fig. l c  shows our proposed triple queue structure. The lighting 
module, 'Lighting and colour setup', is deferred and sandwiched 
between two queues: IQ (index queue) and TQ. The IQ stores glo- 
bal indices of polygons before lighting, and TQ stores lighted pol- 
ygon information. The lighting module acts as a delay. 
Conversely, another queue, PQ (pixel queue) stores pixels the par- 
ent polygons of which are in the IQ, the TQ or the lighting mod- 
ule. The length of the PQ is longer since each polygon may map to 
many pixels. However, the size of the PQ is still small since each 
entry is only two bytes for coded xy-co-ordinates of pixels. 
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Fig. 2 Ratio of rendering cycles in long polygon cycle (50.1) 

a Dolphins 
b AI 
c AI over Dolphins 
d Dolphins over AI 
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Fig. 3 Ratio of rendering cycles in short polygon cycle ( l0: l )  

a Dolphins 
h AI 
c AI over'Dolphins 
d Dolphins over AI 
0 single queue structure 
W triple queue structure 
100% = rendering cycles in rendering pipeline without queue 

Rendering in triple queue structure: As shown in Fig. I C ,  to render 
a polygon in a 3D scene, geometry-related data of this polygon 
enter the rendering pipeline first. The polygon is then transformed 
and scan-converted into a group of pixels for depth comparison. If 
all pixels of this polygon fail in depth comparison, the polygon is 
invisible and will be discarded. No data will be sent to queues in 
this condition. In contrast, if any pixel passes the depth compari- 
son, the xy-co-ordinates of all passed pixels are sent to the PQ. 
Meanwhile, the global index of this polygon is sent to the IQ. 
When the 'Lighting and colour setup' module receives the global 
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index from the IQ, it also receives the colour-related data by the 
global index. After lighting and colour setup, the lighted polygon 
information is queued in the TQ. The ‘Shading and texture map- 
ping’ module then receives the lighted polygon information from 
the TQ and pixel co-ordinates from the PQ to generate shaded 
and textured pixels to construct the final image in the frame 
buffer. Since the pixel order of our triple queue structure is identi- 
cal to the conventional one, rendering pipelines with the triple 
queue structure can realise transparency and alpha blending oper- 
ations correctly. 

Cycle-accurate simulution: We construct SystemC models of the 
rendering pipelines for cycle-accurately simulation [4]. Two kinds 
of conditions are considered; first, the long polygon cycle, its ratio 
of polygon cycles to pixel cycles being 50: 1. We assume each poly- 
gon requires 150 cycles in the ‘Lighting and colour setup’ module, 
and each pixel requires three cycles in the ‘Shading and texture 
mapping’ module. The second condition is the short polygon 
cycle, the ratio being 1O:l. Each polygon takes only 30 cycles in 
this case. In the triple queue structure, the ‘Lighting and colour 
setup’ requires an additional ten cycles to receive the colour- 
related data. The display resolution is 640 x 480. Four simulation 
patterns are: ‘Dolphins’, ‘AY, ‘A1 over Dolphins’ and ‘Dolphins 
over AI’. The last two patterns are combinations of the first two, 
and the Dolphins are always prior to the AI in the rendering 
sequence. This enables back-face culling. The simulated queue 
sizes range from 256 to 4K bytes. In the single queue structure, all 
sizes are assigned to the TQ. In our triple queue structure, half 
size is assigned to the PQ, quarter size to the IQ and quarter size 
to the TQ. Each entry size is 2 bytes in the PQ for encoded pixel 
co-ordinates, 2 bytes in the IQ for the global index of polygons, 
and 32 bytes in the TQ for information of the lighted polygon. 
The queue lengths in different overall queue size are listed in 
Table 1. 

Simulation results: We adopt the cycle number in the rendering 
pipeline without queue as criterion, as listed in Table 2. Figs. 2 
and 3 show the results of long and short polygon cycle conditions, 
respectively. In the two Figures, the single queue structure is 
denoted by white bars. For the long polygon cycle condition in 
Fig. 2, the TQ queue is always empty and loses its function. 
Therefore, the rendering cycles remain long, no matter how large 
the queue size. For the short polygon cycle condition in Fig. 3, 
the single queue functions better, but the speed up is still limited. 
However, owing to deferred lighting, the triple queue structure 
shows better speed up, as shown in the black bars in Figs. 2 and 
3. Especially in the ‘Dolphins over Al’ pattern in Fig. 2d and 
Fig. 3d, because the Dolphins are rendered earlier, many polygons 
in the following AI are invisible and discarded in depth compari- 
son, and therefore the lighting module saves many operation 
cycles. Regrading the operations of the triple queue, the saved 
cycles can contribute to speeding up overall rendering. Hence, the 
rendering cycle can be widely shortened to 52.9%. 

Conclusion: The pipeline stalls caused by data rate changes and 
the redundant operations on invisible polygons prevent full-speed 
operation of the rendering pipeline. Although the queue reduce 
pipeline stalls, the performance of the single queue structure is 
limited and only able to reduce rendering cycles to 85.7%. To 
avoid stalls and to benefit from the deferred lighting technique, we 
propose a triple queue structure to speed up the rendering pipe- 
line. The cycle-accurate simulation results show that, with the 
same overall queue size, our structure achieves better performance 
than the single queue structure, and can reduce rendering cycles to 
52.9%. 
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Adaptive approach for FEC reliable multicast 

T. Lestayo, M. Fernandez and C. Lopez 

An adaptive integrated forward error correction approach to 
provide reliability in a multicast environment is proposed. The 
proposed solution avoids the undesirable feedback implosion 
phenomenon regardless of the number of receivers and uses 
minimum bandwidth in the feedback channel. 

Zntroduction: One approach to improve the performance of relia- 
ble multicast transport protocols is to use jointly the capabilities 
of forward error correction (FEC) and automatic repeat request 
(ARQ). There exist two ways of combining FEC and ARQ. In the 
layered model [l], FEC operates independently beneath the ARQ 
layer. Here, the role of the FEC function is to reduce the packet 
loss probability seen by the ARQ layer, thereby decreasing the 
number of retransmissions and the network bandwidth require- 
ments. In the integrated model [2], the FEC and ARQ functions 
are integrated into the same layer and the FEC module operates 
as follows: for a given set of data packets (also referred to as a 
transmission group (TG)), it computes and holds a set of redun- 
dant or parity packets. Once the sender has received all the 
requests across the feedback channel, it transmits the minimum 
number of parity packets needed to recover all the losses in the 
original data set. The efficiency of this protocol has been analysed 
in [2], where it is shown that integrated FEC can substantially 
reduce the amount of network bandwidth usage. The reported 
results also show that, for a large community of receivers, sending 
proactively a (small) number of parity packets along with the data 
ones is not detrimental to efficiency and could reduce feedback. 
However, this number depends on factors such as the number of 
receivers and the loss probability along the path from the source 
to each receiver, which is not always completely known to the 
sender. Therefore, in real network operations, the number a of 
parity packets initially sent should vary as the multicast group size 
or the network load change [3]. 

In this Letter, we propose an algorithm to estimate the optimal 
number of initial parity packets with prior knowledge of neither 
the population size of the multicast group nor the transmission 
conditions inside the network. We describe a proactive integrated 
FEC/ARQ protocol that uses this algorithm to dynamically vary 
the proportion of initial parity packets, and we study the perform- 
ance of this technique. 

Bandwidth analysis: The proposed algorithm will be incorporated 
into a multicast protocol that obeys these generic rules: 
(i) The sender multicasts k data packets along with a parity pack- 
ets. The value of a is selected to provide the minimum overall 
bandwidth. Later, we will provide the details of the proposed 
adaptive selection mechanism. 
(ii) Each receiver requests in unicast mode the number of parity 
packets that are required to recover the entire TG, if any are 
required. 
(iii) The sender multicasts the highest number of parity packets 
requested. Steps (ii) and (iii) are repeated until all users recover the 
TG. 

The total bandwidth consumed by the protocol can be decom- 
posed into that of forward (from sender to receivers) and back- 
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