
Speed up of rendering pipeline by deferred
lighting and triple queue structure

- _ 1uu-
80-

2 60-

B.-S. Liang and C.-W. Jen

- 1 - 7

772 7 5 0 738 7 2 7 -723

b

Redundant operations and stalls prevent a rendering pipeline
from full-speed operation. To speed up the rendering pipeline, a
triple queue structure is proposed to smooth the pipeline and to
obtain benefit from deferred lighting. The results of cycle-accurate
simulation show that the proposed structure can reduce rendering
cycles to 52.9y0 in small size queues.

?! 80-
60-

r

Introduction: The rendering pipeline is a mainstream method to
implement three-dimensional (3D) graphics rendering. However,
the rendering pipeline method has two problems. The first prob-
lem is redundant operations on invisible polygons. Deferred light-
ing [l] can delete the redundant operations, and save operation
cycles on them. However, if not well handled, the saved cycles
may become useless 'bubbles' in the pipeline. Our purpose was to
design a specific architecture to obtain benefit from the save
cycles. The second problem is pipeline stalls. Due to various poly-
gon sizes, polygon and pixel rates are not in linear proportion.
Stalls occur whenever the data rates mismatch the process speed of
hardware. A straightforward way to avoid stalls is to insert one
queue as a buffer between the polygon and pixel rate areas [2, 31.
However, the queue size quickly grows if a longer queue is
required, since 20 to 40 bytes are required for a single entry in this
queue. To solve these two problems, we propose a triple queue
structure to smooth the pipeline and to obtain benefit from
deferred lighting. Since three queues surround the lighting module,
bubbles and stalls in the pipeline can be avoided. Therefore, this
design can obtain benefit from deferred lighting, and speed up the
rendering pipeline significantly by only having small queue sizes.

geometry (buffer)

related data setup
a

Ibbuffedltexlure butled TQ
lighting and related data+ colour setuF

colour + geometry
related data - (triangle b

geometry

oueue)

3 -
7 8 6 775 7 6 4 7 5 9

C

geometry
related dat

80
60-

queue
TQ(triangle

colour
related data

UI C

queue) 1670111

- - - - -
-

5 8 3 5 6 0 544 535 5 2 9 d

Fig. 1 Architectures of rendering pipelines

a Without queue
b Single queue structure
c Triple queue structure

Table 1: Queue lengths in different overall queue size

8

$ 80-
60-

5 40

-

U

5 80-
P 60- ' 40
c

100-
80-
60

Table 2 Cycle numbers in rendering pipeline without queue

~ 1 0 0 - 9 _ 4 _ 2 ~ ~ 955 9 0 8 889
8 0 6 7 9 2 - 7 7 1

b

~ 1 0 0 - 9 ~ 6 ~ , ~ 9 1 7 8 9 9
7 9 9 - 7 8 4 881762

c

941 9 2 4 909 890 657 -
d 691 675 657 636

-

AI over Dolphins I Dolohins I over AI I I Do'phins I Pattern name

100-
80-
60

94.1 92.4 90.9 89.0 - 65,7

d 69.l 67.5 65.7 63.6
-

Triple queue structure: Fig. l a shows a conventional pipeline with-
out a queue, with only one buffer between stages. Fig. l b shows
the single queue structure. One queue, TQ (triangle queue), is
inserted before scan conversion, at the border between the poly-

Long polygon cycle (50:l)
Short uolygon cycle (10:l)

gon and pixel rate areas. The single queue structure can be a refer-
ence to show the speed up by queue without deferred lighting.
Fig. l c shows our proposed triple queue structure. The lighting
module, 'Lighting and colour setup', is deferred and sandwiched
between two queues: IQ (index queue) and TQ. The IQ stores glo-
bal indices of polygons before lighting, and TQ stores lighted pol-
ygon information. The lighting module acts as a delay.
Conversely, another queue, PQ (pixel queue) stores pixels the par-
ent polygons of which are in the IQ, the TQ or the lighting mod-
ule. The length of the PQ is longer since each polygon may map to
many pixels. However, the size of the PQ is still small since each
entry is only two bytes for coded xy-co-ordinates of pixels.

138434 602261 739160 736328
70845 209683 279534 272176

90.6 92.4 90.6 91 1 90.6 90.6 90.690.6

2.

* 96.1 95.2 95.8 94.0 94.0

total queue length, bytes

Fig. 2 Ratio of rendering cycles in long polygon cycle (50.1)

a Dolphins
b AI
c AI over Dolphins
d Dolphins over AI
0 single queue structure
W triple queue structure
100% = rendering cycles in rendering pipeline without queue

1670/31 total queue length, bytes

Fig. 3 Ratio of rendering cycles in short polygon cycle (l0: l)

a Dolphins
h AI
c AI over'Dolphins
d Dolphins over AI
0 single queue structure
W triple queue structure
100% = rendering cycles in rendering pipeline without queue

Rendering in triple queue structure: As shown in Fig. I C , to render
a polygon in a 3D scene, geometry-related data of this polygon
enter the rendering pipeline first. The polygon is then transformed
and scan-converted into a group of pixels for depth comparison. If
all pixels of this polygon fail in depth comparison, the polygon is
invisible and will be discarded. No data will be sent to queues in
this condition. In contrast, if any pixel passes the depth compari-
son, the xy-co-ordinates of all passed pixels are sent to the PQ.
Meanwhile, the global index of this polygon is sent to the IQ.
When the 'Lighting and colour setup' module receives the global

1332 ELECTRONICS LETTERS 25th October 2001 Vol. 37 No. 22

~ ~~ ~ ~ ~~ ~~ ~

index from the IQ, it also receives the colour-related data by the
global index. After lighting and colour setup, the lighted polygon
information is queued in the TQ. The ‘Shading and texture map-
ping’ module then receives the lighted polygon information from
the TQ and pixel co-ordinates from the PQ to generate shaded
and textured pixels to construct the final image in the frame
buffer. Since the pixel order of our triple queue structure is identi-
cal to the conventional one, rendering pipelines with the triple
queue structure can realise transparency and alpha blending oper-
ations correctly.

Cycle-accurate simulution: We construct SystemC models of the
rendering pipelines for cycle-accurately simulation [4]. Two kinds
of conditions are considered; first, the long polygon cycle, its ratio
of polygon cycles to pixel cycles being 50: 1. We assume each poly-
gon requires 150 cycles in the ‘Lighting and colour setup’ module,
and each pixel requires three cycles in the ‘Shading and texture
mapping’ module. The second condition is the short polygon
cycle, the ratio being 1O:l. Each polygon takes only 30 cycles in
this case. In the triple queue structure, the ‘Lighting and colour
setup’ requires an additional ten cycles to receive the colour-
related data. The display resolution is 640 x 480. Four simulation
patterns are: ‘Dolphins’, ‘AY, ‘A1 over Dolphins’ and ‘Dolphins
over AI’. The last two patterns are combinations of the first two,
and the Dolphins are always prior to the AI in the rendering
sequence. This enables back-face culling. The simulated queue
sizes range from 256 to 4K bytes. In the single queue structure, all
sizes are assigned to the TQ. In our triple queue structure, half
size is assigned to the PQ, quarter size to the IQ and quarter size
to the TQ. Each entry size is 2 bytes in the PQ for encoded pixel
co-ordinates, 2 bytes in the IQ for the global index of polygons,
and 32 bytes in the TQ for information of the lighted polygon.
The queue lengths in different overall queue size are listed in
Table 1.

Simulation results: We adopt the cycle number in the rendering
pipeline without queue as criterion, as listed in Table 2. Figs. 2
and 3 show the results of long and short polygon cycle conditions,
respectively. In the two Figures, the single queue structure is
denoted by white bars. For the long polygon cycle condition in
Fig. 2, the TQ queue is always empty and loses its function.
Therefore, the rendering cycles remain long, no matter how large
the queue size. For the short polygon cycle condition in Fig. 3,
the single queue functions better, but the speed up is still limited.
However, owing to deferred lighting, the triple queue structure
shows better speed up, as shown in the black bars in Figs. 2 and
3. Especially in the ‘Dolphins over Al’ pattern in Fig. 2d and
Fig. 3d, because the Dolphins are rendered earlier, many polygons
in the following AI are invisible and discarded in depth compari-
son, and therefore the lighting module saves many operation
cycles. Regrading the operations of the triple queue, the saved
cycles can contribute to speeding up overall rendering. Hence, the
rendering cycle can be widely shortened to 52.9%.

Conclusion: The pipeline stalls caused by data rate changes and
the redundant operations on invisible polygons prevent full-speed
operation of the rendering pipeline. Although the queue reduce
pipeline stalls, the performance of the single queue structure is
limited and only able to reduce rendering cycles to 85.7%. To
avoid stalls and to benefit from the deferred lighting technique, we
propose a triple queue structure to speed up the rendering pipe-
line. The cycle-accurate simulation results show that, with the
same overall queue size, our structure achieves better performance
than the single queue structure, and can reduce rendering cycles to
52.9%.

Acknowledgment: This work was supported by National Science
Council, Taiwan, Republic of China, under Grant NSC-89-2218-
E009-085.

0 IEE 2001
Electronics Letters Online No: 20010901
DOI: 10.1049/el:20010901
B . 3 . Liang and C.-W. Jen (Department of Electronics Engineering,
National Chiao Tung University, Hsinchu, Taiwan, Republic of China)
E-mail: bsliang@ee.nctu.edu,tw

I 1 July 2001

ELECTRONICS LETTERS 25th October 2001 Vol. 37

References

1 LIANG, B.-S., YEH, W.-C., LEE, Y.-C., and JEN, C.-W.: ‘Deferred lighting:
a computation-efficient approach for real-time 3-D graphics’. Proc.
IEEE Int. Symp. on Circuits and Systems, 2000, pp. IV-657-IV-
660

‘Infinitereality: a real-time graphics system’. Proc. Comp. Graphics
(SIGGRAPH), 1997, pp. 293-303
HARRELL, C.B., and FOULADI, F.: ‘Graphics rendering architecture
for a high performance desktop workstation’. Proc. Comp.
Graphics (SIGGRAPH), 1993, pp. 93-100

4 Open SystemC Initiative, ‘SystemC source code and manual
version l.O.l’, http://www.systemc.org/, 2001

2 MONTRYM, J.S., BAUM, D.R., DICNAM, D.L., and MIGDAL, C.J.:

3

Adaptive approach for FEC reliable multicast

T. Lestayo, M. Fernandez and C. Lopez

An adaptive integrated forward error correction approach to
provide reliability in a multicast environment is proposed. The
proposed solution avoids the undesirable feedback implosion
phenomenon regardless of the number of receivers and uses
minimum bandwidth in the feedback channel.

Zntroduction: One approach to improve the performance of relia-
ble multicast transport protocols is to use jointly the capabilities
of forward error correction (FEC) and automatic repeat request
(ARQ). There exist two ways of combining FEC and ARQ. In the
layered model [l], FEC operates independently beneath the ARQ
layer. Here, the role of the FEC function is to reduce the packet
loss probability seen by the ARQ layer, thereby decreasing the
number of retransmissions and the network bandwidth require-
ments. In the integrated model [2], the FEC and ARQ functions
are integrated into the same layer and the FEC module operates
as follows: for a given set of data packets (also referred to as a
transmission group (TG)), it computes and holds a set of redun-
dant or parity packets. Once the sender has received all the
requests across the feedback channel, it transmits the minimum
number of parity packets needed to recover all the losses in the
original data set. The efficiency of this protocol has been analysed
in [2], where it is shown that integrated FEC can substantially
reduce the amount of network bandwidth usage. The reported
results also show that, for a large community of receivers, sending
proactively a (small) number of parity packets along with the data
ones is not detrimental to efficiency and could reduce feedback.
However, this number depends on factors such as the number of
receivers and the loss probability along the path from the source
to each receiver, which is not always completely known to the
sender. Therefore, in real network operations, the number a of
parity packets initially sent should vary as the multicast group size
or the network load change [3].

In this Letter, we propose an algorithm to estimate the optimal
number of initial parity packets with prior knowledge of neither
the population size of the multicast group nor the transmission
conditions inside the network. We describe a proactive integrated
FEC/ARQ protocol that uses this algorithm to dynamically vary
the proportion of initial parity packets, and we study the perform-
ance of this technique.

Bandwidth analysis: The proposed algorithm will be incorporated
into a multicast protocol that obeys these generic rules:
(i) The sender multicasts k data packets along with a parity pack-
ets. The value of a is selected to provide the minimum overall
bandwidth. Later, we will provide the details of the proposed
adaptive selection mechanism.
(ii) Each receiver requests in unicast mode the number of parity
packets that are required to recover the entire TG, if any are
required.
(iii) The sender multicasts the highest number of parity packets
requested. Steps (ii) and (iii) are repeated until all users recover the
TG.

The total bandwidth consumed by the protocol can be decom-
posed into that of forward (from sender to receivers) and back-

No. 22 1333

http://www.systemc.org

