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Abstract

This paper proposes a method based on linear programming techniques to treat quasi-concave and non-concave fuzzy
multi-objective programming (FMOP) problems. The proposed method initially presents a piecewise linear expression to
interpreting a quasi-concave membership function. Then we 7nd the convex-type break points and transform all quasi-
concave membership functions into concave functions. After that, the converted program is solved by linear programming
techniques to obtain a global optimum. In addition to not containing any of the zero–one variables, the proposed method
does not require dividing the quasi-concave FMOP problem into large sub-problems as in conventional methods. The
extension of the proposed method can treat general non-concave FMOP problems by merely adding less number of
zero–one variables. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since Zimmermann 7rst introduced conventional linear programming and multi-objective linear programming
into fuzzy set theory [14,15], various methods using linear programming (LP) have been developed to solve
fuzzy multi-objective programming (FMOP) problems. Many studies [1–3,5,8–11,13] indicate in practice
that most applications in engineering, physical, business, social, and management 7elds are not pure linear,
triangular, concave, or convex FMOP problems but rather are quasi-concave or more general non-concave
FMOP problems. One of the most promising techniques of linearizing non-concave functions is the piecewise
linear programming. Hence, FMOP problems with piecewise linear membership functions has been studied by
Narasimham [10], Hannan [2], Nakamura [9], Inuiguchi et al. [4], and Yang et al. [13]. In general, an FMOP
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Fig. 1. (a) A concave membership function. (b) A convex membership function. (c) A concave–convex mixed membership function.
(d) A more general non-concave membership function.

problem, in which the aggregated goal is the minimum operator of individual goals, is widely formulated as
follows:

FMOP Problem

Maximize �

Subject to �6�i(zi); i=1; 2; : : : ; n;

�i(zi)= |zi(X )− gi|; zi(X )∈F (a feasible set);

(1.1)

where �i(zi) is the membership function of ith objective function, gi denotes the fuzzy goal of ith objective
function, zi(X ) is the ith objective function, and X is a vector of decision variables.

A membership function �i(zi) may be concave-shaped or convex-shaped, as shown in Figs. 1(a) and (b)
respectively. The marginal possibility with respect to a concave membership function is decreasing, whereas
the marginal possibility with respect to a convex membership function is increasing. If the marginal possibility
increases 7rst and then decreases, or decreases 7rst and then increases, then the membership function becomes
a convex–concave or concave–convex mixed shape as shown in Fig. 1(c). Many empirical evidences [1–3,5,8–
11,13] indicated that membership functions are not concave or convex but the mixed shapes composed by
concave and convex curves or even more general non-concave curves as shown in Fig. 1(d).
Conventional FMOP methods [2,9,4,10,13] for solving Problem (1.1), however, have some disadvantages

as discussed below:
(i) Conventional methods lack a clear and simple way to represent a general piecewise membership function

�i(zi). Most methods use complicated expressions to represent a quasi-concave membership function.
(ii) Narasimham’s method [10] and Hannan’s method [2] can only solve FMOP problems where all �i(zi)

are triangular or concave functions.
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(iii) Nakamura’s method [4] needs to divide the original quasi-concave FMOP problem into 2J
n
i=1mi sub-

problems, where mi is the number of intersections between concave and convex functions in �i(zi), then
uses LP to solve these sub-problems repeatedly.

(iv) Inuiguchi et al.’s method [4] involves tedious process of computing all break points for transforming
entire original membership functions into new membership functions. If the number of break points
in the membership functions is large, then it causes tiresome computational burden to convert these
membership functions into concave functions.

(v) Yang et al.’s method [4] requires adding
∑n

i=1 mi zero–one variables in their model for solving a quasi-
concave FMOP problem, where mi represents the number of intersections between concave and convex
functions in �i(zi).

(vi) These methods are diKcult to treat more general non-concave FMOP problems as shown in Fig. 1(d).
This paper proposes a method based on LP techniques to solve an FMOP problem in (1.1). The features

of the proposed method are listed below:
(i) It uses a more convenient and clear way to express general piecewise membership functions such as

quasi-concave shape.
(ii) It utilizes LP techniques to directly solve a piecewise quasi-concave FMOP problem without adding any

zero–one variables or dividing the problem into several sub-problems.
(iii) It can also solve a more general piecewise non-concave FMOP problem by adding only one zero–one

variable between two quasi-concave functions.

2. Review of conventional FMOP models

Several commonly used approaches for solving a FMOP problem in (1.1) are brieLy reviewed in this
section. In 1980, Narasimham [10] 7rst proposed a LP approach to solving an FMOP problem with triangular
membership functions. However, two primary drawbacks exist in Narasimham’s method. First, an FMOP
problem has to be divided into 2n sub-problems where n is the number of fuzzy goals. Second, all membership
functions are restricted to triangular or trapezoidal shapes.
Extending triangular or trapezoidal to general concave shaped membership functions, Hannan [2] pre-

sented a piecewise linear function
∑Ni

j=1 �ij|zi − gij| + �izi + ri to interpret a concave membership function
�i(zi). Where |zi − gij| = d−

ij +d+
ij ; gij are the change points of segments, d−

ij and d+
ij are deviation variables,

�ij; �i, and ri are parameters. The serious limitation in Hannan’s method is that all �i(zi) should be concave
functions.
For tackling a quasi-concave FMOP problem, Inuiguchi et al. [4] developed a approach of transforming

all quasi-concave functions into concave functions. Consider the following example slightly modi7ed from
Inuiguchi et al. [4].

Example 1

Maximize �

Subject to �6�1(z1); �6�2(z2);

z1 = − x1 + 2x2; z2 = 2x1 + x2;

− x1 + 3x2621; x1 + 3x2627;

4x1 + 3x2645; 3x1 + x2630; x1; x2¿0;
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Fig. 2. (a) �1(z1) and �2(z2) in Example 1. (b) Two converted �′
1(z1) and �′

2(z2) in Inuiguchi et al. Model.

�1(z1) =




0; z16− 3;
0:04z1; − 36z162;
0:08z1 + 0:2; 26z1612;
1; z1 = 12;
− 0:1z1 + 2:2; 126z1617;
− 0:05z1 + 0:5; 176z1627;
0; z1¿27;

�1(z2)=




0; z267;
0:06z2; 76z2617;
0:1z2 + 0:6; 176z2621;
1; z2 = 21;
− 0:033z2 + 1:7; 216z2627;
− 0:1z2 + 0:8; 276z2630;
− 0:25z2 + 0:5; 306z2632;
0; z2¿32;

where �1(z1) and �2(z2) are speci7ed in Fig. 2(a).

Notably both �1(z1) and �2(z2) are quasi-concave functions, as depicted in Fig. 2(a). Inuiguchi et al. 7rst
convert �1(z1) and �2(z2) into two concave functions �′

1(z1) and �′
2(z2) respectively, as shown in Fig. 2(b).

Example 1 then can be solved by the following LP model:
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FMOP Model 1 (Inuiguchi et al.’s [4] method for Example 1)

Maximize �′

Subject to �′6�′
1(z1); �′6�′

2(z2);
z1 = − x1 + 2x2; z2 = 2x1 + x2;
− x1 + 3x2621; x1 + 3x2627;
4x1 + 3x2645; 3x1 + x2630; x1; x2¿0;

�′
1(z1) =




0; z16− 3;
min( 1

13 z1 + 3
13 ; 3

65 z1 + 29
65 ); − 36z1612;

1; z1 = 12;
− 1

15 z1 + 9
5 ; 126z1627;

0; z1¿27;

�′
2(z2) =




0; z267;
min( 3

26 z2 − 21
26 ; 3

52 z2 − 11
52 ); 76z2617;

1; z2 = 21;
min(− 1

5 z2 + 32
3 ;− 1

15 z2 + 8
3 ;− 1

45 z2 + 53
45 ); 216z2632;

0; z2¿32:

Although Inuiguchi et al.’s idea is very useful in formulating quasi-concave functions into concave functions,
there are three shortcomings in Inuiguchi et al.’s method as described below:
(i) If number of break points is large, then it causes tedious computational burden to convert these mem-

bership functions into concave functions.
(ii) That transforming procedure is complicated and cannot eNectively deal with an FMOP problem with

more general non-concave functions.
(iii) That method still requires zero–one variables to treat converted concave functions (i.e., �′

1(z1) and
�′
2(z2)).

Take Example 1 for instance, 7ve break points are required to do transforming computing. Suppose there
are n objective functions and each of these functions have mi break points then the number of transforming
computing is

∑n
i=1 mi. The situation would become more complicated for treating more general non-concave

FMOP problems.
Yang et al. [13] presented another method for treating a quasi-concave FMOP problem. Take Example 1

for instance. Yang et al.’s method could formulate Example 1 as the following zero–one programming model
(as depicted in Fig. 3(a) and 3(b)):

FMOP Model 2 (Yang et al.’s [13] method for Example 1)

Maximize �

Subject to �61− a4 − z1
d1

+ M (1− �1) + M�2; �61− 12− z1
d2

+ M�1 + M�2;

�61− a3 − z1
d3

+ M�1 + M�2; �61− 27− z1
d4

+ M (1− �2) + M�1;

�61− a6 − z2
d5

+ M (1− �3); �61− 21− z2
d6

+ M�3;

�61− a10 − z2
d7

+ M�3; �61− a9 − z2
d8

+ M�3;

�61− 32− z2
d9

+ M�3; z1 = − x1 + 2x2; z2 = 2x1 + x2; − x1 + 3x2621;

x1 + 3x2627; 4x1 + 3x2645; 3x1 + x2630; x1; x2¿0;
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Fig. 3. (a) �1(z1) in Yang et al. Model. (b) �2(z2) in Yang et al. Model.

where �1; �2, and �3 are zero–one variables, M is a big number, and a1; a2; : : : ; a10 are approximated end-point
values as depicted in Figs. 3(a) and (b).

A major disadvantage in Yang et al.’s method is that it involves too many zero–one variables for treating
quasi-concave FMOP problems. The number of zero–one variables equals the number of intersections between
convex and concave functions. Besides, many end-point approximations are required before formulating a
quasi-concave FMOP program. Take Example 1 for instance, �i(zi) contains two convex–concave intersections
and �2(z2) contains one convex–concave intersection. Therefore, three zero–one variables (i.e., �1; �2; �3) are
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Fig. 4. (a) �1(z1) in Nakamura’s Model. (b) �2(z2) in Nakamura’s Model.

added in the solution process. In addition, ten times end-point approximations (i.e., a1; a2; : : : ; a10) are required
in formulating FMOP model 2. A detailed discussion is given in Li and Yu [7].
Considering �i(zi) in Problem (1.1) could be concave, convex, or concave–convex mixed type functions,

Nakamura developed a method to expressing a general piecewise membership function [9]. He reformulates
Problem (1.1) as follows:

Maximize �

Subject to �6�D̃(zi) for i=1; 2; : : : ; n;

where

�D̃(zi)=






 im′∨

j=1

�j(zi)


 ∧

im′′∨
j=1

�j(zi)


 ∧




im′′′∧
j=1

�j(zi)


 ∧ 1


 ∨ 0; in which j =1; 2; : : : ; im′

are the change points over the convex part of each �i(zi); j =1; 2; : : : ; im′′ are the number of linear functions
for separating concave or convex parts over each �i(zi); j =1; 2; : : : ; im′′′ are the change points over concave
part of each �i(zi), and �i(zi) are linear functions representing part of �i(zi).

Nakamura’s method encounters two major diKculties:
(i) Expression of piecewise membership functions is intricate, it requires repetitive use of LP computation

for solving an FMOP problem.
(ii) That method divides an FMOP problem into

∏n
i = 1 2ki sub-problems and requires 2

∑n
i = 1 ki constraints,

where ki is the number of segments for each �i(zi).
Take Example 1 for instance, Nakamura expresses the membership functions, depicted in Fig. 4(a) and (b),

as follows:

�1(z1)= [{�1(z1) ∨ �2(z1)} ∧ {�1(z1)} ∧ {�3(z1) ∨ �4(z1)} ∧ 1] ∨ 0;

�2(z2)= [{�5(z2) ∨ �6(z2)} ∧ �2(z2) ∧ �7(z2) ∧ �8(z2) ∧ �9(z2) ∧ 1] ∨ 0;

where ∨ stands for maximum, ∧ stands for minimum {�1(z1)∨�2(z1)}; {�3(z1)∨�4(z1)}, and {�5(z2)∨�6(z2)}
are the sets of the convex parts.
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Nakamura’s method then divides Example 1 into eight sub-problems. Some of these sub-problems are
expressed as follows:

FMOP Model 3 (Nakamura’s [9] method for Example 1)

Subproblem 1
Maximize �

Subject to �6�1(zi) ∧ �1(z1) ∧ �3(z1)

�6�5(z2) ∧ �2(z2) ∧ �7(z2) ∧ �8(z2) ∧ �9(z2)

Subproblem 2
Maximize �

Subject to �6�2(zi) ∧ �1(z1) ∧ �3(z1)

�6�5(z2) ∧ �2(z2) ∧ �7(z2) ∧ �8(z2) ∧ �9(z2)
: :
: :

Subproblem 6
Maximize �

Subject to �6�2(zi) ∧ �1(z1) ∧ �3(z1)

�6�6(z2) ∧ �2(z2) ∧ �7(z2) ∧ �8(z2) ∧ �9(z2)
: :
: :

After using LP computation repeatedly, Nakamura’s method 7nds the optimal solution in Subproblem 6.

To improve conventional FMOP models, this paper 7rst develops a convenient way to express a piecewise
linear membership function. The proposed expression is simpler than Nakamura’s method [9]. Then we propose
Algorithm 1 for solving an FMOP problem with quasi-concave membership functions. We will demonstrate
the way to apply Algorithm 1 to resolve Example 1 in a more eKcient way. From the basis of Algorithm 1,
we develop Algorithm 2 for solving an FMOP problem with more general non-concave membership functions.

3. Preliminary

The FMOP problem given in (1.1) with piecewise quasi-concave functions is termed as a quasi-
concave FMOP problem. Some propositions of solving a quasi-concave FMOP problem are described in this
section.

Proposition 1. Let �i(zi) be a piecewise linear membership function of zi(X ); as depicted in Fig. 5(a),
where ak ; k =1; 2; : : : ; m, are the break points of �i(zi); sk ; k =1; 2; : : : ; m−1; are the slopes of line segments
between ak and ak+1; and

sk =
�i(ak+1)− �i(ak)

ak+1 − ak
:
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Fig. 5. (a) A general piecewise linear membership function. (b) A concave function �1(z1). (c) A convex function �2(z2).

�i(zi) can then be expressed as follows:

�i(zi)= �i(a1) + s1(zi(X )− a1) +
m−1∑
k=2

sk − sk−1

2
(|zi(X )− ak |+ zi(X )− ak); (3.1)

where |o| is the absolute value of o.

Proof. This proposition can be examined as follows:
(i) If zi(X )6a2 then

�i(zi)= �i(a1) +
�i(a2)− �i(a1)

a2 − a1
(zi(X )− a1)= a1 + s1(zi(X )− a1):

(ii) If zi(X )6a3 then

�i(zi) = �i(a1) + s1(a2 − a1) + s2(zi(X )− a2)

= �i(a1) + s1(zi(X )− a1)
s2 − s1

2
(|zi(X )− a2|+ zi(X )− a2):
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(iii) If zi(X )6ak′ then
∑m−1

k¿k′(|zi(X )− ak |+ zi(X )− ak)= 0 and �i(zi) becomes

�i(a1) + s1(zi(X )− a1) +
k′−1∑
k=2

sk − sk−1

2
(|zi(X )− ak |+ zi(X )− ak):

Take �1(z1) and �2(z2) in Example 1 (as depicted in Fig. 2(a)) for instances, �1(z1) and �2(z2) can be
represented by Proposition 1 as

�1(z1) = 0:04(z1 + 3) +
0:08− 0:04

2
(|z1 − 2|+ z1 − 2)

− 0:1− 0:08
2

(|z1 − 12|+ z1 − 12)

+
− 0:05 + 0:1

2
(|z1 − 17|+ z1 − 17); (3.2)

�2(z2) = 0:06(z2 − 7) +
0:1− 0:06

2
(|z2 − 17|+ z2 − 17)

− 0:033− 0:1
2

(|z2 − 21|+ z2 − 21)

+
− 0:1 + 0:033

2
(|z2 − 27|+ z2 − 27) +

− 0:25 + 0:1
2

(|z2 − 30|+ z2 − 30): (3.3)

An advantage of expressing a quasi-concave membership function by (3.1) is the convenience of knowing
the intervals of convexity and concavity for �i(zi), as described below:

Remark 1 (Convex-type break point). For a �i(zi) expressed by Eq. (3.1), if sk+1 ¿ sk then = �i(zi) is a
convex function for ak−16zi(X )6ak+1 and ak is called a convex-type break point of zi.
Take Expression (3.2) for instance, it is convenient to check that �1(z1) is concave when 26z1(X )617 and

�1(z1) is convex when − 36z1(X )612 and 126z1(X )627. Therefore, the point z1(X )= 2 and z1(X )= 17
are convex-type break points of zi. Similarly for Expression (3:3), �2(z2) is convex for 76z2(X )621 and
concave for 176z2(X )632. z2(X )= 17 is a convex-type break point of z2.

Remark 2 (Concave-type break point). For a �i(zi) expressed by Eq. (3.1) if sk+1¡sk then �i(zi) is a concave
function for ak−16zi(X )6ak+1 and ak is called a concave-type break point of z1.

Remark 3 (Mapping point). For �1(z1) and �2(z2) shown in Fig. 5(b) and (c) respectively, we can 7nd a
convex-type break point bj in z2 by using Remark 1. Then a corresponding point of bj can be found in z1,
and this has the same value of membership functions as bj. Such a point is called a mapping point of bj,
denoted as b′j , which is mapped from z2 to z1 and calculated by b′j = �−1

1 (�2(bj)).

Remark 4 (Converted concave function). Now let us consider two piecewise linear functions �1 and �2

speci7ed in Fig. 6(a).

�1(f(X ))= �1(a1) + s1(f(X )− a1) +
s2 − s1

2
(|f(X )− a2|+ f(X )− a2); (3.4)

�2(f(X ))= �2(b1) + t1(f(X )− b1) +
t2 − t1

2
(|f(X )− b2|+ f(X )− b2); (3.5)

where s1¿s2¿0; t2¿t1¿0; a1 = b1, and a3 = b3.
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Fig. 6. (a) Two piecewise linear membership functions �1 and �2. (b) Two piecewise linear membership functions �′
1 and �′

2.

Then two converted concave functions �′
1 and �′

2, shown in Fig. 6(b), can be speci7ed as follows:

�′
1(f(X )) = �′

1(a1) + s3(f(X )− a1) +
s4 − s3

2
(|f(X )− b′2|+ f(X )− b′2)

+
s5 − s4

2
(|f(X )− a2|+ f(X )− a2); (3.6)

�′
2(f(X ))= �′

2(b1) + t3(f(X )− b1); (3.7)

where

a1 = b1; a3 = b3; t3¿0; s3¿s4¿s5¿0; (3.8)

�1(a1)= �′
1(a1)= 0; �1(a3)= �′

1(a3)= 1;

�2(b1)= �′
2(b1)= 0; �2(b3)= �′

2(b3)= 1;
(3.9)

�′
1(b

′
2)

�′
2(b2)

=
�1(b′2)
�2(b2)

= 1; (3.10)

b′2 = �−1
1 [�2(b2)]: (3.11)

Next, Proposition 2 is presented below:

Proposition 2. Function �′
1 speci:ed in (3:6)–(3:11) is a concave function.

Proof. Due to s3¿s4¿s5, based on Remark 2, b′2 and a2 become concave-type points on �′
1. Consequently,

�′
1 is a concave function.
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Fig. 7. (a) Two functions �1 and �2 in Example 2. (b) Two functions �′
1 and �′

2 in Example 2. (c) A function Z in Example 3.

Consider the following example:

Example 2

Maximize �

Subject to �6�1(z1); �6�2(z2);

z1 = − x1 + 2x2; z2 = 2x1 + x2;−x1 + 3x266; x1 + 3x2612; 4x1 + 3x2630;

3x1 + x2615; x1; x2¿0;

where �1(z1) and �2(z2) are depicted in Fig. 7(a).

Referring to Remark 1, we know �1(z1 = 8) is a convex-type point in z1 and �2(z2 = 5) is a convex-type
point in z2. Then, based on Remark 3, the mapping points can be computed by b′1 = �−1

1 (�2(z2 = 5))= 2:67
and b′2 = �−1

2 (�1(z1 = 8))= 7.
In reference to Remark 4, we have two converted functions below (as shown in Fig. 7(b)):

�′
1(z1)= s1(z1 − 0) +

s2 − s1
2

(|z1 − 2:67|+ z1 − 2:67) +
s2 − s1

2
(|z1 − 6:4|+ z1 − 6:4); (3.12)

�′
2(z2)= t1(z2 − 3) +

t2 − t1
2

(|z2 − 6:4|+ z2 − 6:4) +
s2 − s1

2
(|z2 − 7|+ z2 − 7); (3.13)

where

�1(0)= �′
1(0)= 0; �1(10)= �′

1(10)= 2:67s1 + 3:73s2 + 3:6s3 = 1;

�2(3)= �′
2(3)= 0; �2(9)= �′

2(9)= 3:4t1 + 0:6t2 + 2t3 = 1;
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�1(2:67)
�2(5)

=
�′
1(2:67)
�′
2(5)

=
2:67s1
2t1

= 1;
�1(6:4)
�2(6:4)

=
�′
1(6:4)

�′
2(6:4)

=
2:67s1 + 3:73s2

3:4t1
= 1;

�1(8)
�2(7)

=
�′
1(8)

�′
2(7)

=
2:67s1 + 3:73s2 + 1:6s3

3:4t1 + 0:6t2
= 1; s1¿s2¿s3¿0; and t1¿t2¿t3¿0:

After computation, the slopes of two converted concave functions are s1 = 0:157698; s2 = 0:079018;
s3 = 0:078947; t1 = 0:210526; t2 = 0:210526, and t3 = 0:078947. Hence, Example 2 can be transformed into

Example 2′

Maximize �′

Subject to �′6�′
1(z1); �′6�′

2(z2); z1 = − x1 + 2x2; z2 = 2x1 + x2;

− x1 + 3x266; x1 + 3x2612; 4x1 + 3x2630; 3x1 + x2615; x1; x2¿0;

where �′
1(z1) and �′

2(z2) are expressed in (3.14) and (3.15), respectively.

�′
1(z1)= 0:157698z1 − 0:07968

2
(|z1 − 2:67|+ z1 − 2:67) +

0:000071
2

(|z1 − 6:4 |+ z1 − 6:4); (3.14)

�′
2(z2)= 0:210526(z2 − 3) +

0
2
(|z2 − 6:4|+ z2 − 6:4) +

0:131579
2

(|z2 − 7|+ z2 − 7): (3.15)

Assume that R is the universal set of real numbers, D is an arbitrary domain, and Rn denotes n-dimensional
Euclidean space. For any real-valued function u :D→R, the image of D by u is denoted by u(D), i.e.
u(D)= {u(d) |d∈D}. Then Inuiguchi et al. [4] proved that there exists a strictly increasing and bijective
function g : u(D)→ u′(D) such that u′(d)= g(u(d)) for any d belonging to D, where u :D→R and u′ :D→R.

De7ne an r-level set of u :D→R by [u]r = {d∈D |f(d)¿r} where r ∈R. Inuiguchi et al. [4] proved that
the solution maximizing a function u is equal to the solution maximizing a function u′ in any restricted
domain when {[u]r | r ∈ u(D)}= {[u′]r′ | r′ ∈ u′(D)} and [u′]r′ is a bijective function of [u]r . Accordingly, we
have the following proposition.

Proposition 3. The optimal solution of P1 is the same as that of P2; P1 and P2 are given below in which
�1; �2; �′

1; and �′
2 are speci:ed in (3:6)–(3:11):

P1 P2
Maximize � Maximize �′

Subject to �6�1(f(X )); Subject to �′6�′
1(f(X ));

�6�2(f(X )); �′6�′
2(f(X ));

a1 = b16f(X )6a3 = b3; a1 = b16f(X )6a3 = b3;

f(X )∈F (F is a feasible set); f(X )∈F (F is a feasible set):

Proof. For an f(X ) in the restricted domain [a1; a3] or [b1; b3], we have

(i) �1(a1)= �′
1(a1); �1(a3)= �′

1(a3); �2(b1) = �′
2(b1); �2(b3)= �′

2(b3);

(ii)
�1(b′2)
�2(b′2)

=
�′
1(b

′
2)

�′
2(b

′
2)

;
�1(a2)
�2(a2)

=
�′
1(a2)

�′
2(a2)

;
�1(b2)
�2(b2)

=
�′
1(b2)

�′
2(b2)

;

(iii) t3¿0; s3¿s4¿s5¿0:
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Since {�′
1(f(X )); �′

2(f(X ))} is the strictly increasing and bijective function of {�1(f(X )); �2(f(X ))}
maxf(X ) min{�1(f(X )); �2(f(X ))} is equivalent to

max
f(X )

min {�′
1(f(X )); �′

2(f(X ))}:

Therefore, the optimal solution of P1 is the same as the optimal solution of P2.
Take Example 2 for instance. Solve Example 2′ by utilizing Proposition 4, discussed next, the obtained

solution z1 = 3:525553; z2 = 5:321128; x1 = 1:423341; x2 = 2:474447. The optimal solution of Example 2 is the
same as the optimal solution of Example 2′.

Proposition 4. By referring to Proposition 1; consider an FMOP problem as follows:

Maximize �

Subject to �6�i(zi); X ∈F (a feasible set);

where

�i(zi)= �i(a1) + s1(zi(X )− a1) +
m−1∑
k=2

sk − sk−1

2
(| zi(X )− ak |+ zi(X )− ak)

is a concave function (i.e.; sk − sk−1¡0 for k =2; 3; : : : ; m − 1).
This FMOP problem can then be reformulated as follows:

Maximize �

Subject to �6�i(zi)

�i(zi)= �i(a1) + s1(zi(X )− a1) +
m−1∑
k=2

(sk − sk−1)

(
zi(X )− ak +

k−1∑
l=2

dl

)
;

zi(X )− am−1 +
m−1∑
l=2

dl−1¿0; 06dl−16al − al−1 for all l; l=2; 3; : : : ; m − 1;

X ∈F (a feasible set): (3.16)

Proof. By referring to Li [6], a GP problem{
Maximizew=

m−1∑
k=2

(|zi(X )− ak |+ zi(X )− ak)

subject to zi(X )¿0 and 0¡a2¡a3¡ · · ·¡am−1

}

is equivalent to{
Maximizew=2

m−1∑
k=2

(zi(X )− ak + rk−1)

subject to zi(X )− ak + rk−1¿0 for k =2; 3; : : : ; m − 1; rk−1¿0; xi¿0;

where rk−1 are deviation variables

}
: (3.17)
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Expression (3.17) implies if zi(X )¡ak then at optimal solution rk−1 = ak − zi(X ); if zi(X )¿ak then at
optimal solution rk−1 = 0. Substitute rk−1 by

∑k−1
l=1 dl, where dl is within the bounds as 06dl6al+1 − al,

Expression (3.17) then becomes

Maximize w=2
m−1∑
k=2

(
zi(X )− ak +

k−1∑
l=l

dl

)

Subject to zi(X ) + d1 ¿a2;

zi(X ) + d1 + d2 ¿a3;
...

...

zi(X ) + d1 + d2 + · · ·+ dm−2 ¿am−1;

06dl6al+1 − al for l=1; 2; : : : ; m − 2; zi(X )¿0:

(3.18)

Since al+1 − al¿dl for all l, it is clear that

zi(X )¿am−1 −
m−2∑
l=1

dl¿am−2 −
m−3∑
l=1

dl¿ · · ·¿a3 − d1 − d2¿a2 − d1¿0:

The 7rst (m − 3) constraints in Model (3.18) therefore are covered by the (m − 2)th constraint in Model
(3.18). Proposition 4 is then proven.

Consider the following example as depicted in Fig. 7(c):

Example 3

Maximize z =1:5x − 0:5
3
(|x − 2 |+ x − 2)− 0:75

2
(|x − 3 |+ x − 3)

Subject to x62:5:

Referring to Proposition 4, Example 3 can be linearized as

Example 3′

Maximize z =1:5x − 0:5(x − 2 + d1)− 0:75(x − 3 + d1 + d2)

Subject to x + d1 + d2¿3; 06d162; 06d261; and x62:5:

After running on the LINDO [12], we obtained z =3:5; x=2:5; d1 = 0, and d2 = 0:5.

4. Solution algorithms

From the basis of Proposition 1 to Proposition 4, we propose Algorithm 1 for treating a quasi-concave
FMOP problem.

Algorithm 1 (Solve a quasi-concave FMOP problem)
Step 1: Use Proposition 1 to express each piecewise membership function as �i(zi)= �i(ai1) + si1(zi(X ) −

ai1) +
∑M (i)−1

k=2 sik − sik−1=2(|zi(X ) − aik | + zi(X ) − aik) where aik ; k =1; 2; : : : ; m, are the break
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points of �i(zi); sik ; k =1; 2; : : : ; m − 1, are the slopes of line segments between aik and ai; k+1, and
i=1; 2; : : : ; n.

Step 2: Use Remark 1 to 7nd the convex-type break points and Remark 3 to obtain the corresponding
mapping points.

Step 3: Use Remark 4 to specify the converted concave membership functions.
Step 4: Use Eqs. (3.8), (3.9), and (3.10) to compute the slopes of the Converted concave membership

functions.
Step 5: Use Proposition 4 to linearize the converted functions and then solve it by LP techniques.

Based on the above discussion, for tackling more general non-concave FMOP problems we 7rst have the
following remark.

Remark 5 (Model the union of some quasi-concave membership functions). Any piecewise membership func-
tion can be regarded as the union of some quasi-concave membership functions. Take Fig. 1(d) for instance,
�i(zi) can be regarded as the union of three quasi-concave functions �i1(a16zi6a2); �i2(a26zi6a3), and
�i3(a36zi6a4).
The program of

Maximize �

Subject to �6�i(zi) for i=1; 2; : : : ; n;

can be rewritten as the following program by referring to Li and Yu [7].

Maximize �

Subject to �6�i1(zi) + M�1; �6�i2(zi) + M�2;

�6�i3(zi) + M�3; �1 + �2 + �3 = 1;

where M is a big number and �1; �2; �3 are zero-one variables.

From the basis of Remark 5, we propose Algorithm 2 for solving a general non-concave FMOP problem.

Algorithm 2 (Solve a general non-concave FMOP problem)
Step 0: Convert the piecewise membership functions into the union of some quasi-concave membership func-

tions by adding some 0–1 variables.
Step 1–Step 5: are the same as in Algorithm 1.

5. Numerical examples

Now we use Algorithm 1 to solve Example 1:
Step 1: Utilizing Proposition 1 to represent �1(z1) and �2(z2) as the following expressions (as depicted in

Fig. 2(a)).

�1(z1) = 0:04(z1+3)+0:02(|z1−2|+z1−2)−0:1(|z1−12|+z1−12)+ 0:04(|z1−17|+z1−17);

�2(z2) = 0:06(z2−7)+0:02(|z2−17|+z2−17)−0:0665(|z2−21| +z2−21)

− 0:03335(|z2−27|+z2−27)−0:075(|z2−30|+z2−30):
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Step 2: Using Remark 1 to 7nd convex-type points and Remark 3 to calculate their corresponding mapping
points as follows: (as depicted in Fig. 8(a))

b11 = �−1
1 [�2(17)]= 7; b21 = �−1

2 [�1(2)]= 31
3 and b22 = �−1

2 [�1(17)]= 91
3 :

Step 3: Use Remark 4 to specify the converted concave membership functions �′
1(z1) and �′

2(z2), as shown
in Fig. 8(b).

�′
1(z1)= s1(z1 + 3) +

s2 − s1
2

(|z1 − 7|+ z1 − 7) +
s3 − s2

2
(|z1 − 12|+ z1 − 12); (5.1)

�′
2(z2) = t1(z2 − 7) +

t2 − t1
2

(∣∣z2 − 31
3

∣∣+ z2 − 31
3

)
+

t3 − t2
2

(|z2 − 21|+ z2 − 21)

+
t4 − t3

2
(|z2 − 27|+ z2 − 27) +

t5 − t4
2

(|z2 − 30|+ z2 − 30)

+
t6 − t5

2

(∣∣z2 − 91
3

∣∣+ z2 − 91
3

)
: (5.2)

Step 4: Use Eqs. (3.8)–(3.10) to compute the slopes si and tj; i=1; 2; 3 and j =1; 2; : : : ; 6 in (5.1) and (5.2).
Then

�1(12)= �′
1(12)= 10s1 + 5s2 = 1; �1(27)= �′

1(27)= 10s1 + 5s2 + 15s3 = 0;

�2(21)= �′
2(21)=

26
3 t1 + 16

3 t2 = 1; �2(32)= �′
2(32)=

10
3 t1 + 32

3 t2 + 6t3 + 3t4 + 1
3 t5 + 5

3 t6 = 0;

�1(2)
�2( 313 )

=
�′
1(2)

�′
2(

31
3 )

=
5s1
10
3 t1

= 1;
�1(7)
�2(17)

=
�′
1(7)

�′
2(17)

=
10s1

10
3 t1 + 20

3 t2
= 1;

�1(14)
�2(27)

=
�′
1(14)

�′
2(27)

=
10s1 + 5s2 + 2s3
10
3 t1 + 32

3 t2 + 6t3
= 1;

�1(16)
�2(30)

=
�′
1(16)

�′
2(30)

=
10s1 + 5s2 + 4s3

10
3 t1 + 32

3 t2 + 6t3 + 3t4
= 1;

�1(17)
�2( 913 )

=
�′
1(17)

�′
2(

91
3 )

=
10s1 + 5s2 + 5s3

10
3 t1 + 32

3 t2 + 6t3 + 3t4 + 1
3 t5

= 1; s1¿s2¿s3; t1¿t2¿t3¿t4¿t5¿t6:

After running on the LINDO [12], the solutions found are s1 = 0:077; s2 = 0:046; s3 =− 0:067; t1 = 0:11539;
t2 = 0:058; t3 =− 0:022; t4 =− 0:044; t5 =− 0:2, and t6 =− 0:4. Therefore, we have

�′
1(z1) = 0:077(z1 + 3)− 0:015(|z1 − 7|+ z1 − 7)− 0:056(|z1 − 12|+ z1 − 12);

�′
2(z2) = 0:115(z2 − 7)− 0:029

(∣∣z2 − 31
3

∣∣+ z2 − 31
3

)
− 0:0399(|z2 − 21|+ z2 − 21)− 0:011(|z2 − 27|+ z2 − 27)− 0:078(|z2 − 30|+ z2 − 30)

− 0:1
(∣∣z2 − 91

3

∣∣+ z2 − 91
3

)
:

Step 5: Use Proposition 4 to linearize the converted functions and then solve it by linear programming
techniques.

Based on Proposition 4, the linearized program is described below:
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Fig. 8. (a) Two quasi-concave membership functions in Example 1. (b) Two converted concave membership functions in Algorithm 1.

FMOP Model 4 (Proposed method for Example 1)

Maximize �′

Subject to �′6�′
1(Z1 = 0:067Z1 − 0:031d1 − 0:113d2 + 1:804;

�′6�′
2(Z2)= − 0:4Z2 − 0:058d3 − 0:0798d4 − 0:022d5 − 0:156d6 − 0:2d7 + 12:808;

z1 − 7 + d1¿0; z1 − 12 + d2¿0; z2 − 31
3 + d3¿0;

z2 − 21 + d4¿0; z2 − 27 + d5¿0; z2 − 30 + d6¿0;

z2 − 91
3 + d7¿0; z1 =− x1 + 2x2; z2 = 2x1 + x2; − x1 + 3x2621;

x1 + 3x2627; 4x1 + 3x2645; 3x1 + x2630; x1; x2¿0:
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Table 1
EKciency comparison for solving Example 1

FMOP models Required Required Required Required LP Required
zero–one extra subproblems computation point
variables constraints calculation

Narasimhan’s and Cannot treat Example 1.
Hannan’s methods

FMOP Model 1 3 2 0 1 5
(Inuiguchi et al. method)

FMOP Model 2 3 9 0 1 10
(Yang et al. method)

FMOP Model 3 0 9 8 8 0
(Nakamura’s method)

FMOP Model 4 0 2 0 1 3
(Proposed method)

By solving on the LINDO [12], we obtained x1 = 5:62; x2 = 7:13; z1 = 8:64 and z2 = 18:36 which is exactly
the optimal solution of Example 1. Table 1 summarizes the eKciency comparison between Algorithm 1 and
conventional FMOP methods for solving Example 1.
Now let us consider the following piecewise non-concave FMOP problem.

Example 4

Maximize �

Subject to �6�1(z1) = 0:04(z1 + 3) + 0:02(|z1 − 2|+ z1 − 2)− 0:1(|z1 − 12|+ z1 − 12)

+0:04(|z1 − 17|+ z1 − 17) + 0:04(|z1 − 27|+ z1 − 27)

+0:02(|z2 − 42|+ z2 − 42);

�6�2(z2) = 0:06(z2 − 7) + 0:02(|z2 − 17|+ z2 − 17)− 0:0665(|z2 − 21|+ z2 − 21)

− 0:03335(|z2 − 27|+ z2 − 27)− 0:075(|z2 − 30|+ z2 − 30)

+0:145(|z2 − 32|+ z2 − 32) + 0:03(|z2 − 37|+ z2 − 37);

where �1(z1) and �2(z2) are non-concave functions as depicted in Fig. 9(a).

By referring to Algorithm 2, we have the following steps:
Step 0: Here �1(z1) can be regarded as the union of two quasiconcave functions �11(− 36z1627) and

�12(276z1647). �2(z2) can be regarded as the union of two quasiconcave functions �21(76z2632)
and �22(326z2645).

In reference to Remark 1, Example 2 can reformulated as

Maximize �

Subject to �6�11(− 36z1627) + M�1; �6�12(276z1647) + M (1− �1);

�6�21(76z2632) + M�2; �6�22(326z2645) + M (1− �2); (5.3)

where M is a big number and �1; �2 are 0–1 variables.
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Fig. 9. (a) Two non-concave membership functions in Example 4. (b) Two converted concave membership functions in Algorithm 2.

Step 1: Employ Proposition 1 to represent �11(− 36z1627); �12(276z1647); �21(76z2632) and
�22(326z2645) as follows:

�11(− 36z1627)=0:04(z1 + 3) + 0:02(|z1 − 2|+ z1 − 2)− 0:1(|z1 − 12|+ z1 − 12)

+0:04(|z1 − 17|+ z1 − 17);

�12(276z1647)=0:04(z1 − 27) + 0:02(|z1 − 42|+ z1 − 42);

�21(76z2632)=0:06(z2 − 7) + 0:02(|z2 − 17|+ z2 − 17)− 0:0665(|z2 − 21|+ z2 − 21)

− 0:03335(|z2 − 27|+ z2 − 27)− 0:075(|z2 − 30|+ z2 − 30);

�22(326z2645)=0:04(z2 − 32) + 0:03(|z2 − 37|+ z2 − 37):

Step 2: Based on Remarks 1 and 3, after 7nding the convex-type point then the mapping points can be
obtained by the following equations:

b′11 = �−1
1 [�2(17)]= 7; b′12 = �−1

1 [�2(37)]= 32; b′21 = �−1
2 [�1(2)]= 31

3 ;

b′22 = �−1
2 [�1(17)]= 91

3 and b′23 = �−1
2 [�1(42)]= 41:
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Step 3: Using Remark 4 to specify the converted functions �′
11(z1); �

′
12(z1); �

′
21(z2) and �′

22(z2), as shown in
Fig. 9(b), respectively:

�′
11(z1)= s1(z1 + 3) +

s2 − s1
2

(|z1 − 7|+ z1 − 7) +
s3 − s2

2
(|z1 − 12|+ z1 − 12); (5.4)

�′
12(z1)= s4(z1 − 27) +

s5 − s4
2

(|z1 − 32|+ z1 − 32); (5.5)

�′
21(z2) = t1(z2 − 7) +

t2 − t1
2

(∣∣z2 − 31
3

∣∣+ z2 − 31
3

)
+

t3 − t2
2

(|z2 − 21|+ z2 − 21)

+
t4 − t3

2
(|z2 − 27|+ z2 − 27) +

t5 − t4
2

(|z2 − 30|+ z2 − 30)

+
t6 − t5

2

(∣∣z2 − 91
3

∣∣+ z2 − 91
3

)
; (5.6)

�′
22(z2)= t7(z2 − 32) +

t8 − t7
2

(|z2 − 41|+ z2 − 41); (5.7)

Step 4: In reference to Eqs. (3.8)–(3.10), the slopes si and tj; i=1; 2; : : : ; 5 and j =1; 2; : : : ; 8, in (5.4)–
(5.7) can be computed by solving the following equations:

s1¿s2¿s3; s4¿s5; t1¿t2¿t3¿t4¿t5¿t6; t7¿t8;

�11(12)= �′
11(12)= 10s1 + 5s2 = 1; �11(27)= �′

11(27)= 10s1 + 5s2 + 15s3 = 0;

�12(47)= �′
12(47)= 5s4 + 15s5 = 1; �21(21)= �′

21(21)=
26
3 t1 + 16

3 t2 = 1;

�21(32)= �′
21(32)=

10
3 t1 + 32

3 t2 + 6t3 + 3t4 + 1
3 t5 + 5

3 t6 = 0;

�22(45)= �′
22(45)= 9t7 + 4t8 = 1;

�11(2)
�21( 313 )

=
�′
11(2)

�′
21(

31
3 )

=
5s1
10
3 t1

= 1;

�11(7)
�21(17)

=
�′
11(7)

�′
21(17)

=
10s1

10
3 t1 + 20

3 t2
= 1;

�11(14)
�21(27)

=
�′
11(14)

�′
21(27)

=
10s1 + 5s2 + 2s3
10
3 t1 + 32

3 t2 + 6t3
= 1;

�11(16)
�21(30)

=
�′
11(16)

�′
21(30)

=
10s1 + 5s2 + 4s3

10
3 t1 + 32

3 t2 + 6t3 + 3t4
= 1;

�11(17)
�21( 913 )

=
�′
11(17)

�′
21(

91
3 )

=
10s1 + 5s2 + 5s3

10
3 t1 + 32

3 t2 + 6t3 + 3t4 + 1
3 t5

= 1;

�12(32)
�22(37)

=
�′
12(32)

�′
22(37)

=
10s1 + 5s2 + 15s3 + 5s4

10
3 t1 + 32

3 t2 + 6t3 + 3t4 + 1
3 t5 + 5

3 t6 + 5t7
= 1;

�12(42)
�22(41)

=
�′
12(42)

�′
22(41)

=
10s1 + 5s2 + 15s3 + 5s4 + 10s5

10
3 t1 + 32

3 t2 + 6t3 + 3t4 + 1
3 t5 + 5

3 t6 + 9t7
= 1:

After computing on the LINDO [12], the solutions found are s1 = 0:077; s2 = 0:046; s3 =− 0:067; s4 =
0:091; s5 = 0:0364; t1 = 0:11539; t2 = 0:058; t3 =− 0:022; t4 =− 0:044; t5 =− 0:2; t6 =− 0:4; t7 = 0:091, and
t8 = 0:0455.
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Table 2
EKciency comparison for solving Example 2

FMOP Models Required Required Required Required LP Required
zero–one extra subproblems computation point
variables constraints calculation

Narasimhan’s, Hannan’s Cannot treat Example 2
and Inuiguchi et al. methods

Yang et al. method 9 26 0 1 14
Nakamura’s method 0 26 26 26 0
Proposed method 2 4 0 1 5

Therefore, the program (5.3) becomes

Maximize �′

Subject to �′ 60:077(Z1 + 3)− 0:0154(|Z1 − 7|+ Z1 − 7)− 0:056576(|Z1 − 12|+ Z1 − 12) + M�1;

�′ 60:158(Z1 − 27)− 0:0273(|Z1 − 42|+ Z1 − 42) + M (1− �1);

�′ 60:11539(Z2 − 7)− 0:029
(∣∣Z2 − 31

2

∣∣+ Z2 − 31
3

)− 0:0399(|Z2 − 21|+ Z2 − 21)

− 0:011(|Z2 − 27|+ Z2 − 27)− 0:078(|Z2 − 30|+ Z2 − 30)

− 0:1
(∣∣Z2 − 91

3

∣∣+ Z2 − 91
3

)
+ M�2;

�′ 60:49(Z2 − 32)− 0:023(|Z2 − 41|+ Z2 − 41) + M (1− �2);

where M is a big number and �1; �2 are 0–1 variables.
Step 5: Employing Proposition 4, the above problem can then be linearized below:

Maximize �′

Subject to �′60:067Z1 − 0:031d1 − 0:113d2 + 1:804 + M�1;

�′60:103Z1 − 0:0556d3 − 1:973 + M (1− �1);

�′60:4Z2 − 0:058d4 − 0:0798d5 − 0:022d6 − 0:156d7 − 0:2d8 + 12:808 + M�2;

�′60:444Z2 − 0:046d9 − 13:794 + M (1− �2);

z1 − 7 + d1¿0; z1 − 12 + d2¿0; z1 − 42 + d3¿0;

z2 − (31=3) + d4¿0; z2 − 21 + d5¿0; z2 − 27 + d6¿0;

z2 − 30 + d7¿0; z2 − (91=3) + d8¿0; z2 − 41 + d9¿0;

z1 =−x1 + 2x2; z2 = 2x1 + x2;−x1 + 3x2621; x1 + 3x2627;

4x1 + 3x2645; 3x1 + x2630; x1; x2¿0;

After running on LINDO [12], the solutions obtained are x1 = 5:62; x2 = 7:13; z1 = 8:64 and z2 = 18:36. This
is exactly the optimal solution of Example 2. Comparing the traditional FMOP methods with Algorithm 2,
we have the following Table 2.

6. Concluding remarks

Real-world membership functions in engineering, physical, business, social, and management 7elds are not
pure linear, triangular, concave, or convex shapes but rather are more general non-concave curves, this paper
devotes its eNort to solve a quasi-concave or more general non-concave FMOP problem. Comparing with
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conventional FMOP methods, the proposed method can directly solve a quasi-concave FMOP problem by
using standard LP techniques. Besides, there is no requirement to add extra zero–one variables or to divide
the original problem into several sub-problems for solving a quasi-concave FMOP problem. Without tiresome
solution process, the proposed method can be extended to solve more general non-concave FMOP problems
by adding less number of zero–one variables.
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