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Output Feedback Sliding-Mode Controller
Design for Minimum Phase Linear Systems*

Yon-Ping CHEN**, Jeang-Lin CHANG***
and Keh-Tsong LI**

This paper proposes an output sliding-mode control under three assumptions given
to the system matrices and the matching uncertainty. Based on these assumptions,
first one important transformation matrix is introduced and then a state-estimator is
constructed. The output sliding-mode control is designed when the system state is well
estimated. Finally, a numeric example is included to demonstrate the developed

controller.
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1. Introduction

In general, the sliding-mode controller design is
based on the assumption that all the system states are
available!®. In most physical systems, this is not the
case. Often, controller designers face a system that
only output information is obtainable. To deal with
such stringent situation, recently several output slid-
ing-mode control algorithms have been proposed for
systems restricted to some assumptions on system
matrices and disturbance®~®. The work presented
here is still limited to the assumptions mentioned
above ; however, a novel transformation matrix is
introduced and then a state-estimator. Based on this
state-estimator, an output sliding-mode control is
proposed to suppress the matching disturbance depen-
ding on all the system state variables.

In output sliding-mode controller design, a suit-
able transformation matrix is important to appropri-
ately transform the original system into a new model
with two sub-systems, one is related to the control
input and the other is not®@®(®  Based on this new
model, estimator and controller are designed to
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achieve the control goal. The main contribution of
this paper is to propose a simple and straightforward
procedure to find such kind of transformation matrix.

In the next section, a class of system to be
controlled is first introduced with three important
assumptions related to the system matrices and the
matching disturbance. Section 3 presents the state-
estimator in accordance with a novel transformation
matrix. Once the system’s state is well estimated, the
output sliding-mode control algorithm is proposed in
Section 4. To demonstrate the developed controller, a
numeric example is shown in Section 5. Finally,
Section 6 gives the concluding remarks.

2. System Description

This paper considers the problem of designing the
sliding-mode control in such a way that only output
feedback is available. The system discussed is ex-

pressed as
r=Ax+ Bu+ B¢(t, x) (1)
y=Cx (2)

where x€R", ueR™, and yER" with m<#u. Only the
output information ¥ is obtainable. Besides, there are
three assumptions required for the state-estimator
and sliding-mode controller design, listed as below :

Al. The input and output matrices B and C are
both of full rank and rank (CB)=m.

A2. The system (1) and (2) is minimum phase.
It follows that (I,— B(CB)™'C)A has n— m non-zero
eigenvalues A, 1=1,2, -+, n—m, satisfying Re{A;}<0.
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A3. ¢(f, x) is a matching uncertainty satisfying
lg(t, ol <a+Blxl, a>0, 5>0. (3)
where | * | indicates the vector’s Euclidean norm.

The assumption Al can be found in most of the
researches related to output feedback sliding-mode
control®® The assumption A2 is important for the
state-estimator design. As for the assumption A3, it
is different from many other researches in that the
matching uncertainty ¢(¢, x) depends on the system
state x, not the output ¥y®. In order to suppress the
uncertainty £(f, x), the system state x must be
effectively estimated.

3. State Estimator Design

Based on the assumptions Al and A2, a new state
space model for the system (1) and (2) can be

obtained. Define a new system state sS&R" of the
form
s=(CB) 'y=(CB) 'Cx (4)
Now, by direct calculation, we obtain
C(I,—B(CB)'C)=C—C=0 (5)
(I,—B(CB)'C)B=B—-B=0 (6)

According to the assumption A2, there exists a full
rank matrix We C"™" ™ such that
(I,—B(CB) 'C)AW=WA (7)

where A is the Jordan form of eigenvalues {Ai, A, -,
An-n} and W contains the right eigenvectors corre-
sponding to A. As for the other m eigenvalues of
(In—B(CB)'C)A, they are all zeros. This can be
easily seen from Eq.(5) that C(I,—B(CB)'C)A=0
and rank (C)=wm. Also, pre-multiplying C into Eq.

(7) yields

C(I,—B(CB) 'C)AW=CWA=0 (8)
Because A is of full rank, we have

CW=0 (9)

Now, let’s focus on WEC™" ™ 4 complex matrix
possessing 7 — m complex eigenvectors in accordance
with A, i=1,2, -, n—m, satisfying Re{A:}<0. It is
known if a complex eigenvalue A belongs to {4, A, -+,
An-n}, so is its conjugate A; therefore, WW"&R™"
where W#=W7, the conjugate and transpose matrix
of WYY Therefore, applying the singular-value de-
composition technique to W leads to

W= U[ 3] vH (10)
where USR™" is orthogonal, ie. U'U=I, V&
Ccrmmxemm e unitary, ie. VAV=IL,_n, and Q€
R-mxn=m g invertible. Let U=[U; U,] where Ui&
=™ then from Eq.(10) we obtain

wW=U0,QV" (11)
Note that U"Ui=1I,-» since UU =1I,. Substituting
Eq.(11) into Eq.(9) leads to CU,QV ¥ =0, Obviously,

CU=0 (12)
since V#V =1I,_» and @ is invertible. Based on Eqgs.
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(6), (12) and U/ U= I,-n, we have
(CB)'C ] _

{Ul’uﬂ—ﬁ( CB)™'C) (B UJ=1, (13)

Define
B (CB)'C } _

MV{UIT(IH “B(CB)'C) and N=[B U]
(14)

then both # X # square matrices M and N are real and

M=N"'. Most significantly, M can be used as a

transformation matrix. Let z=U/"(I,—B(CB) 'C)x,

which is not measurable, then

B (CB)'C Ts
Mx_[U]T(In—B(CB)”C)}x_L] 15
or
I:M"'[S]ZN[S}ZBS%— Uz (16)
z z
Pre-multiplying M into (1) becomes
1 (CB)'C
u_[UIT(In—B(CB)”C)](A(BSJr tiz)
+Bu+ B¢(¢t, x)) a7
Obviously,
$§=(CB)'CABs+(CB)'CAUz+u+¢(t, x)

(18)
zZ= ULT(In - B( C’B)v1 C)A Uz
+ U/ (I,-B(CB)'C)ABs (19)
From Egs.(7), (11), V*V=1IL,_», and U'Ui=1I._n,
we have
U(I,—B(CB)'C)AU=QV'A(QV )"
(20)
Evidently, U(I.—B(CB)™'C)AU, has eigenvalues
related to A, i.e., {4, A2, -+, An-n}, all located in the left
~half complex plane, as given in the assumption AZ2.
Viewing from Eq.(19), an estimator for z can be built
up as
Z=U"(I,—B(CB)"'C)AU:z
+ UI,—B(CB)'C)ABs 2n
From Eqgs.(19) and (21), we have
z—z=U"I,—B(CB)'C)AU(z—2) (22
where all the eigenvalues of U/'(I,—B{(CB)'C)AU,
possess negative real part, shown in Eq.(20). As a
result, we can conclude
z—>z for t—o (23)
This completes the design of state-estimator (21) for
z. In addition, from Eqgs.(3) and (16), as ¢ — © the
matching uncertainty is then bounded by
le(t, o)< a+BIE), a>0, B>0. (24)
This is the reason why the matching uncertainty can
be considered depending on the whole system state x,
not just the output y.

4. Output Sliding-Mode Control

With the use of the state-estimator (21), the total

system is rewritten as
F=Ax+ Bu+Bt(¢, x) (25)
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y=Cx _ (26)
z=U"I,-B(CB)'C)AU 2

+ U(I,—B(CB)'C)ABs 27

where

z —>z=U'I-B(CB)'C)x for t —> oo

(28)

le(t, o)< a+BlE], a>0, 8>0, for ¢ >

(29)

Now choose the sliding vector as s=(CB)™'Cx=
(CB) 'y in Eq.(4), then from Eq.(18) we obtain
$=(CB)"'CABs+(CB)'CAU,z+u+§(t, x)
(30)
Note that although z cannot be directly measured, it
can be estimated by Eq.(27). Therefore, with the
estimation of Z, the sliding-mode control law is
established as
u=—(CB)'CA(Bs+ U z)
—(a+ B||Bs+ U 2|+ 8)sat(s, €), €>0,8>0
(31)

ﬂ%W for |s|>e€

S for |sl=e

sat(s, €)= (32)

where 6 >0 is a constant decided by the designer and
is used to guarantee the reaching and sliding condi-
tion®. For |is|>e¢, substituting Eq.(32) into Eq.(31)
results in

§=(CB)'CAU(z— %)

(a+BIBs+ U2+ &) g+ 8t 2() (33)
From Egs.(28) and (29), it is obvious that
§~ —(a+pB|Bs+ U,2||+a)ﬂ—':]r

+¢&(¢4,Bs+ U %) for t > © (34)

Pre-multiplying s’ yields
s"sx~ —|s|(a+ BlBs+ U 2|+ 9)
+s7¢(t, Bs+ U 2)< — 8] sl for t = oo
(35)

It shows that, as the time ¢ is getting larger and larger
or ¢ — o, the sliding and reaching condition s’s§<
—68|s| in Eq.(35) is guaranteed. In other words, when
the system is in the region | s| > ¢, its trajectory will be
controlled to reach and then stay in the layer [s|<e.
Now, from Eq.(19) and the assumption A2, the state z
will be bounded due to the fact ||s|<e. It can be also
concluded from Eq.(16) that the system state [x|=
|Bs+ U.z|<|Bl||s|+[ Uil z] is also bounded. Clearly,
the system is successfully stabilized by the output
sliding-mode control law (31) and (32).

5. Numerical Example

In order to demonstrate the developed output
sliding-mode control, a numerical example of Egs.
(1) and (2) is given below :
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Fig. 1 Estimation error of z
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A=|—-2140 —29| B=|2|C=[3 —1—3] (36)
—1222 —16 1

Since CB=1, the assumption Al for rank (CB)=1 is
true. Besides, (I.—B(CB)'C)A has eigenvalues —2
and —3. The assumption A2 is guaranteed. For the
matching disturbance, it is assumed that | §(¢, x(#))[ <

05+0.8-|x(t), ie, @a=05 and 3=08. Now, the
sliding vector in Eq.(4) is chosen as
s=y (37
The matrix W in Eq.(7) is obtained as
—0.6075 0.5976
W=|—-0.7009 0.7171 (38)

—0.3738 0.3586
The singular value decomposition of W= U.QVvV*" in
Eq.(11) results in

—0.6026 0.4040

U=| —07091 —0.6668 |, Q:[1'4341 000172]’
—0.3662  0.6263 '
0.7071 —0.7071
H__ : '
v Lo,7071 —0.7071] o

Then we can use these matrices to construct the state
estimator, described by Eq.(21). By using the sliding-
mode control law (31) with €=0.05, §=0.5, the numer-
ic simulation results are given in Fig.1 to Fig. 4.
Besides, the system initial condition is a(0)=[1 1
0.6]7, the initial condition of the state-estimator is
2(0)=[0 0]” and the matching disturbance is §(¢,
x(t))=04sin (0.5¢)+0.8x.

Figure 1 shows the estimation error z— 2. Clear-
ly, the state z is well estimated after t=3sec. In Fig.
9, it can be seen that the reaching and sliding condition
s"s$< —4&||s|| is satisfied after #=1sec. Most impor-
tantly, the system is restricted in the sliding layer s
<0.05 after =3 sec, i.e., the state z is well estimated.
The control law is given in Fig. 3 without any chatter-
ing. The success of this developed output sliding-
mode control is demonstrated by the state variables in
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Fig. 4, where x — 0.
6. Conclusions

An output sliding-mode control has been success-
fully developed to deal with the situation that only
output information is available. It is still restricted to
three assumptions concerning the system matrices and
the matching uncertainty. However, the matching
uncertainty depends on all the system state variables,
not just the output. By adopting a state-estimator,
the system state can be well estimated and then the
sliding-mode control succeeds in suppressing the
matching disturbance that fulfills the control goal.
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