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Abstract—P-channel metal-oxide—semiconductor field-effect for reliable silicided contact to the junction [5]-[9]. In these
transistors with Si;_.Ge, raised source and drain (RSD) have regards, Si_,Ge, is better suited than pure Si. Si.Ge,
been fabricated and further studied for low temperature ap- can not only be selectively deposited onto the exposed source

plications. The Si_.Ge, RSD layer was selectively grown by . L . )
ANELVA SRE-612 ultra-high vacuum chemical vapor deposition and drain (S/D) area, similar to pure Si, it also enjoys a lower

(UHVCVD) system. Compared to devices with conventional Si deposition temperature, which is beneficial for device appli-
RSD, improved transconductance and specific contact resistance cation. Besides, $i ,Ge, can be selectively etched with high

were obtained, and these improvements become even more dra-selectivity to Si and Si@ [10]. More importantly, Si_.Ge,
matic with reducing channel length. Well-behaved short channel has a lower Schottky barrier height with respect tojpnction

characteristics with reduced drain-induced barrier lowering b f th duced band hich Its i |
(DIBL) and off-state leakage current are demonstrated on devices ecause or the reduced band gap, which resufts in a lower

with 100 nm S, _.Ge. RSD, due to the resultant shallow junction contact resistivity and higher current drive, when compared to
and less implantation damage. Moreover, temperature measure- pure Si [11]-[13]. Recently, we have successfully fabricated

ments reveal _thaé Si—wGexf RSD deViCEIS show more dra(Tg(t)iC p-channel metal oxide semiconductor field effect transistor
|mprovement In aevice pertormance at low temperature i H H P
°C) operation, which can be ascribed to the higher temperature .(PMOtSFET) Wlt:] Sti_“’GefE as the (;aldseq SiD Iafyer, and |ths
sensitivity of the Si, ., Ge, sheet resistance. Ibmpac f gn dcolnSaCI res'f{ arl‘ce an o eV'C:tEe{t?rmancle nave
n i . In particular, w Wi mployin
Index Terms—Low temperature measurements, PMOSFET, se- S_ee éu eR[SD] dpa cular, i € showe d a _yez rp\;)y 9
lective epitaxial growth (SEG), short channel effect, strained-SiGe, l0.865€.14 » @ drive curren (measure.iéj) = 749
ultra-high vacuum chemical vapor deposition. andVg — Vr = —2.5 V) of 246 nA/pm, which represents a
17% improvement, compared to the counterpart with pure Si
RSD, is achieved for an effective channel length of Q.24.
Furthermore, the improvement is found to increase with
O MEET the stringent demand of sub-Q.in devices, reducing channellength. For example, the improvement is only
shallow junctions fabricated by out-diffusion from anl5% whenL.g = 0.5 pm. However, the improvement can
in situ doped or ion-implanted nt Si;_,Ge, layer have reach 29% whet..q is reduced to 0.1am. This demonstrates
been reported [1]-[4]. Previously, pure Si selective epitaxtfre importance of maintaining a low series resistance as device
has been proposed to fabricate elevated source/drain (d$sscaled down, thus makes the device withssGey 14 RSD
known as raised source/drain) metal oxide semiconductor figlden more attractive for future sub-Quin technologies.
effect transistor (MOSFET) to simultaneously achieve shallow In this work, we report, for the first time, the temperature
junction for better device operation, and a thick sacrificial layelependence on the ;Si.Ge, RSD device performance. De-
tailed electrical characteristics of PMOSFETSs with and without
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Fig. 2. Transconductance as a function of Ge mole fraction for various device
channel length. The specific contact resistivity as a function of Ge mole fraction
Fig. 1. Ip — Vi and transconductance characteristics of a conventional iSialso plotted in this figure.

RSD and a Sis¢Gey 14 RSD devices, both with gate oxide thickness of 4 nm.

0.25 . . :
(RTA) were performed for dopant activation. Afterwards, a ; gg{t‘gf{;ﬁ";?‘?},ﬁ;m)
150 nm sidewall spacer was formed. Next, wafers were split to = 0% v Siyg,Geg e (100nm) ]
receive either SiGe or Si selective epitaxial growth (SEG) on 3% 015 v SiygsGe;, (100nM) ]
the exposed S/D regions by an ANELVA SRE-612 cold-wall <5

ultra-high vacuum chemical vapor deposition (UHVCVD) 'g 0.10

system [14]. The standby base pressure was keptat0—10 >

torr. For growing B-doped strained ;Si,Ge, layers, SiHg, 005 ¢

GeH,, and 1% BHg diluted in H, were introduced to achieve

) . . 0.00
a growth rate of 41 A/min for Sis; Gey.0o and 43 A/min for

Sin.s6G&.14 at 550°C, respectively. The maximum operation

time for maintaining selective epitaxial growth of,3i G&y. o9 ! . ) ) i i

. . . : . Fig. 3. Drain-induced barrier lowering DIBG/rs a7 — Vrr1n) for PMOS
or Si.ssGen.14 layer (i.e., epitaxy on Si region only, but N0ty ansistors with various RSD structures.
on field oxide region) at 550C is above 90 min. Samples
with epitaxial thickness of 50 nm and 100 nm were process&d

in order to study the effects of the epitaxial layer thickne:is:e Schpttky barrier height (S.BH) o metaf/@l,xe% junc-
. ! . n, which leads to the reduction of sheet resistance and specific
on the device performance. For comparison, conventional 5

. . ) . contact resistivity [6]. The energy band gap (Eg) af SiGe, is
MO.S trans]stors (i.e., without any ra.lsed. S/D layer) were al own to changgf[rgm 1.12to (g)D(/SG eV v?/itrr: i(ncgr)easing Ge mole
fabricated in the same run. To obtanj higher degree of borﬂﬁction [15]. For pseudomorphic p<SisGey 14 layer, the SBH
concentration in S/D region, & x 10*® cm™2, 20 KeV BFR, i y

) o is expected to be lower than that of metdi&i by 0.07 eV [16],
implant was adopted, which is followed by a 900, 30 S RTA ;g effectively reduces the specific contact resistigjty ).

for activation. Afterwards, a 500 nm TEOS was deposited, a5 shown in Fig. 2, the transconductance and relative con-
and a TITIN/AI-SI-CU/TIN 4-layer metal was depositeqyct resistivity measured by transmission line method (TLM) are
and patterned to complete contact metallization. Electricgiyited as a function of Ge mole fraction for devices with various
characterizations at various temperatures ranging #@0°C  channel lengths. The thickness of the epitaxial RSD layer is 50
to 100°C were performed with a HP4156 system, which wagm_ |t can be seen that the effectspef on device performance
equipped with a thermal controller connected to the Cascagiécome more dramatic when the devices are scaled down. For
semi-auto probe station. Sheet resistance was extracted um’gig = 0.24 pm, a 13% improvement ig,,, value could be ob-
bridge resistor test structures, while the contact resistance waed for PMOSFET with 50 nm $isGey 14 RSD, compared
measured by Kelvin cross-bridge structures. to the device with Si RSD.

With a thicker epitaxial RSD layer (e.g., 100 nm), shallower
pT S/D junction could be obtained, especially for, SiGe,
layer with higher Ge mole fraction [2], [17], [18]. Thus the sus-

Fig. 1 compares thg, — V; and transconductan¢e,,, ) char-  ceptibility to punch-through and short channel effect could be
acteristics of MOS transistors with (3sG&).14 and Si RSD alleviated, which is advantageous especially for subz@ide-
samples. Both devices have the same epitaxial RSD thickngges. Fig. 3 shows the drain-induced barrier lowering (DIBL)
of 100 nm and the same effective channel length of .24 effects for PMOSFETSs with various structurég:;,;y is de-

By using SjssGey.14 RSD, g,, and I values (measured atfined as the threshold voltage extracted at maximum transcon-
Vps = —25VandVg — Vr = —1.8 V) of 127 mS/mm and ductance atthe drain voltage of 0.1V, whilgs 47 is the satura-
158.6u:A/pm, which are 19.02% and 16.11% higher than thosen threshold voltage extracted at drain voltage of 2.5 V. While
of the counterpart device with Si RSD device, are obtainethe device with a thin 50 nm Si RSD displays essentially the
These improvements are believed to be due to the loweringsafme DIBL characteristics as the conventional Si PMOSFET

I1l. RESULTS AND DISCUSSIONS
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Fig. 4. Drain leakage curredt, as a function of drain biak€p s in off-state

! r { ¢ Fig. 6. Subthreshold characteristics and transconductance, af G&, o9
(Ve = 0 V) for conventional Si RSD and SiGe RSD devices.

RSD PMOS transistor measured at various temperatures.
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Fig. 7. Drain current versus drain voltage for conventional ancS6e) 14
RSD PMOS transistors.

Fig. 5. Subthreshold characteristics and transconductance of conventional Si
PMOS transistor measured at various temperatures. temperature due to increased carrier mobility.-480 °C, the
transconductance value is 145 mS/mm and 169 mS/mm (mea-
without any RSD, improvement in DIBL is observed for the desured al/’p s = —2.5 V) for the conventional device and the de-
vice with 100 nm Si_,Ge, RSD because the junction depthvice with Sp gsGey.14 RSD, respectively. Leakage current also
of the 100 nm Si_xGex RSD in the source and drain re-achieves its lowest value at the lowest measurement temperature
gion would be as shallow as the depth of the extension regifire., —50 °C), because of reduced scattering rate and increased
(<800 A). In addition, the improvement in DIBL indeed in-carrier mean free path. Generally, all aspectd-6f charac-
creases with increasing Ge mole fraction. It is worthy to noteristics approach their optimum conditions with reducing tem-
that for device with a thick 100 nm Si, Ge, RSD, the implant perature. Threshold voltadgg- decreases while temperature in-
damage could be alleviated, because the damage region isclteases due to increased number of intrinsic carriers. Finally,
cated away from the®p-n S/D junction. Thus no high tempera-the thermal behavior of the parasitic components in a transistor
ture anneal:$900°C) is necessary to anneal out defects causeduld also affect the output characteristics of the transistors.
by the implant damage, as is required in conventional Si PMOStandard!, versusVps characteristics for the conventional
FETs. The remarkable leakage current reduction at¥gw non-RSD device and the device with 100 nm_SiGe, RSD
level is indeed confirmed in Fig. 4 for devices with; SiGe, are shown in Fig. 7 for two operation temperatures, i.e., 223 K
RSD, all devices with an effective channel length of O:24. (—50°C) and 298 K (25°C). The channel width of the transis-
On the other hand, there is essentially no difference in the gaébes is 100:m. In the figure, solid and dotted lines denote the
induced drain leakage current (GIDL) that is measured at higbnventional device and the device with §Gey.14 RSD op-
Vps bias. This is because the interface quality between gate ardting at—50 °C (coarse lines) and 25C (thin lines), respec-
drain region for all samples remains essentially the same. tively. The improvements with reduced temperature are more
The effects of Si_,Ge, RSD on the low temperature oper-dramatic for the device with §ksGey 14 RSD, as compared
ation of the transistors were also studied. Figs. 5 and 6 showeith the conventional device. The drain current (measured at
the subthreshold and transconductance characteristics measufgd = —2.5V, Vg — Vpr = —2.5 V) are 286.5:A/um and
at three different temperatures (i.e., 223, 298, and 373 K) fo2&4.8 uA/um for RSD Sp.ssGey.14 and the conventional de-
conventional p-channel device (i.e., without any RSD) and tlhéce at—50°C. In order to confirm this phenomenon further, the
device with 100 nm Sig; Gey.09 RSD, respectively. Both the saturation transconductangg versus effective channel length
transconductance and the drain current increase with reducing is plotted in Fig. 8. It reveals the superior room tempera-
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Fig. 10. Normalizedlo~[—50 °C]/Iox[100 °C] versus effective channel
Fig. 8. Saturated transconductange versus effective gate length measuredength for conventional and §i1 Gey.09 RSD, and Sj.s6Ge,.14 RSD devices.
at various temperatures for conventional angs$iGe, .14 RSD devices.

reducingL.g. This is because when the device is operating in

o 1:gg o bpnventionl'Si ' linear region (e.g.Vps = —0.1 V), carrier velocity is under
g 166F° Sig 86G€0.14 100nM low electric field condition, mobility.. » which is independent
- 164 o of channel length plays an important role in maximum linear
g %1:2(2) o, o E .'o~ 00 o gm- AS a result, a constant value in maximum lingarversus
2 90458 o’ L that is dependent only on temperature is observed for all
O =156 p devices. However, when the device is operating in saturation
§ }gg /_M mode (e.g.Vg = —2.5V, andVps = —2.5 V), a high electric
g 150 (m:(ar) ~Corr1nsr:]t:(nt f|_eld is generated along the channel and vv_ould l:_)ecome even
o 1.48 W= 100 um higher asL.; decreases. Several factors, including velocity
1.46 0-2 > 0'4 saturation, reduced carrier mobility caused by carrier scattering,

and extrinsic component at high current drive would dominate
Leff (um) and determine thé,,[—50 °C]/I,,[100 °C] behavior, thus
reduces the enhancement ratio as devices are scaled down.

In order to study further the temperature variations in in-
trinsic and extrinsic components of the transistors, sheet resis-

ture and low-temperature performancegip value for the de- tanceps and contact resistivityc as a functlon. of tgmperature
were measured, and the results are shown in Figs. 11 and 12,

vice with Sj ssGey.14 RSD. For an effective channel length

of 0.17 um, the transconductance increases from 166 to 1é%spectively. Generally, sheet resistance in source and drain re-
mS/mm as temperature changes fron?25to —50 °C for the gion, extension layer, and channel resistance decreases with re-

device with S ssGey.14 RSD, which represents a 12.5% im-ducing temperature due to enhanced mobility. On the contrary,
provement ing. In 6ontrast they,, value changes from 135 specific contact resistivity increases with reducing temperature
t0 146 under the same condition for the conventional devid¥cause less number of carriers would be able to overcome the
which represents only 7.8% improvement for |0W_temperatufgetallsemiconductor energy barrier (SBH) by thermionic emis-
operation. sion. This is especially true for the conventional device with

To calculate the degree of improvements in transcondUgher energy barrier. The superior low-temperature behavior
tance, the normalized maximum linegs, value measured Of the Si_.Ge, RSD device can be elucidated by the basic
at —50 °C with respect to the same parameter measured MPSFET model [19]. AMOSFET can always be broken down
100°C is plotted as a function of the effective channel lengtito an intrinsic MOS device and extrinsic source and drain re-
in Fig. 9. The average ratio of enhancement is roughly 1.6 afi§tive components. The entire extrinsic transconductance is

Fig. 9. Normalizedg,, max[—50 °C]/gm max[100 °C] versus effective
channel length for conventional and, 8 Ge,.14 RSD devices.

1.54 for the SjssGey.14 RSD device and the conventional 1

device, respectively. For device operation in saturation mode, I =1 1)
normalized drive currenk,,,[—50 °C]/1.,[100 °C] (measured + Rsource

atVps = —2.5VandVg = —2.5 V) as a function of the Grmo

effective channel length..g is shown in Fig. 10. A remarkable where g¢,,, is the transconductance of the intrinsic device,
improvement in the normalized drive current as temperatufgs,.... denotes the parasitic resistance including sheet re-
varied from 100°C to —50 °C is again observed for devicessistance, contact resistance, and extension resistanc, etc. The
with Si;_,Ge, RSD, as compared with the conventional demeasured contact resistance values f&& & 2 um contact
vices. Itis worthy to note here that the normalized drive curreate 45.82, 3.17, and 1.94, while the sheet resistance values
I, [-50 °C]/I,,[100 °C] reduces with decreasinf.s for at 298 K are 132.5, 84.6, and 96.45/] for conventional,

all devices. This trend is different from that of the normalize8iy 91 Gey.09 RSD, Sp.ssGey.14 RSD, respectively. Since the
maximum linearg,, which remains essentially constant withcontact resistance is relatively small, the entiRg, ., c. IS
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temperature operation, which can be explained by the higher
temperature sensitivity of the resistance of_SiGe, RSD.
These performance improvements thus make Ste, RSD
structure very attractive for future sub-Quin p-channel MOS

160
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a
%120~
k7 Si, G, 4, 100NM__. ¥
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Fig. 11. Sheet resistance as a function of temperature for various structures.
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Fig. 12. Specific contact resistivity as a function of reciprocal temperature
(1/T) for metal with different contact layer structures.

(7]
mainly determined by the sheet resistafge) and extension
resistance. So the temperature dependence of the devicels]
electrical performance would basically follow the temperature
behavior of the sheet resistance. However, the temperature de-
pendence of the sheet resistance is more sensitivefor. Sk, [9]
RSD device than that of the conventional device. For example,
ps changes from 132.47 to 118.86 as temperature chang
from 298 K to 223 K, which represents a 10.27% reduction, for
the conventional device. In comparison, a 10.98% and 11.21%
reduction ratio could be obtained for devices with &iGe) 91
RSD and Sj.ssGey.14 RSD, respectively. The more sensitive [12]
temperature behavior of Si,Ge, RSD devices can thus
explain their dramatic improvement in device performance aflS]
low temperature.

IV. CONCLUSION

In this paper, the drain-induced barrier lowering effects[14]

and low-temperature characteristics of p-channel transistors
with Si;_,Ge, raised source and drain (RSD) were studied.[15]
We found that Si_,Ge, RSD devices show better device
performance including better drive current, transconductanceg)
and reduced short-channel effects, compared to pure Si RSD
devices. The improvements, which become more dramatic Witﬂn
reducing channel length, are believed to be mainly due to the
lowering of the Schottky barrier height in metat/gi; _,, Ge, [18]
junction, which leads to the reduction of sheet resistance and
specific contact resistivity. Moreover, Si.Ge, RSD devices g
are also found to depict a larger improvement rate under low

transistors.
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