
*Corresponding author. Tel.: #886-7-381-4526 ext. 5636;
fax: #886-7-389-9382.
E-mail address: jspan@cc.kuas.edu.tw (J.-S. Pan).

Signal Processing 81 (2001) 1513}1523

Vector quantization based on genetic simulated annealing

Hsiang-Cheh Huang�, Jeng-Shyang Pan��*, Zhe-Ming Lu�, Sheng-He Sun�,
Hsueh-Ming Hang�

�Department of Electronic Engineering, National Chiao-Tung University, Taiwan
�Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung, Taiwan

�Department of Automatic Test and Control, Harbin Institute of Technology, Harbin, China

Received 18 November 1999; received in revised form 25 February 2001

Abstract

Genetic algorithm (GA) has been successfully applied to codebook design for vector quantization (VQ). However, most
conventional GA-based codebook design methods need long runtime because candidate solutions must be "ne tuned by
LBG. In this paper, a partition-based GA is applied to codebook design, which is referred to as genetic vector
quantization (GVQ). In addition, simulated annealing (SA) algorithm is also used in GVQ to get more promising results
and the corresponding method is referred to as GSAVQ. Both GVQ and GSAVQ use the linear scaling technique during
the calculation of objective functions and use special crossover and mutation operations in order to obtain better
codebooks in much shorter CPU time. Experimental results show that both of them save more than 71}87% CPU time
compared to LBG. For di!erent codebook sizes, GVQ outperforms LBG by 1.1}2.1 dB in PSNR, and GSAVQ
outperforms LBG by 1.2}2.2 dB in PSNR. In addition, GVQ and GSAVQ need a little longer CPU time than, the
maximum decent (MD) algorithm, but they outperform MD by 0.2}0.5 dB in PSNR. � 2001 Elsevier Science B.V.
All rights reserved.

Keywords: Vector quantization; Codebook design; Genetic algorithm; Simulated annealing

1. Introduction

As an e!ective method for data compression, VQ
has been successfully used in speech coding and
image compression. The k-dimensional,N-level vec-
tor quantizer is de"ned as a mapping from a
k-dimensional Euclidean space R� into a certain
"nite set C"�c

�
, c

�
,2, c

�
�. The quantizer is com-

pletely described by the codebook C together with

the partitioned set consisting of subspaces of R�,
S"�s

�
, s

�
,2, s

�
�, and the mapping function Q(z):

Q(X)"c
�
, if X3s

�
. (1)

The elements of the partitioned set S satisfy
��

���
s
�
"R� and s

�
�s

�
"�, if iOj. If the squared

Euclidean distortion measure is used, the output of
the vector quantizer is the index i of the codeword
c
�

which satis"es

i"arg min
�

�
�
���

(x�!c�
�
)�. (2)

Codebook design is the key problem of VQ and
the generated codebook has more e!ect on the

0165-1684/01/$ - see front matter � 2001 Elsevier Science B.V. All rights reserved.
PII: S 0 1 6 5 - 1 6 8 4 (0 1) 0 0 0 4 8 - 2

Nomenclature

VQ vector quantization
GA genetic algorithm
GVQ genetic vector quantization
GSAVQ genetic simulated annealing vector

quantization
SA simulated annealing
LBG conventional codebook design

algorithm
Unit j the jth partitioned set or the jth

cluster
P(t) population of the tth generation
A

�
(t) the lth individual for population P(t)

A
���

(t) the best individual that has minimal
overall distortion in population P(t)

n�
�
(t) the number of genes that belong to

unit j for individual l in population
P(t)

a�
��
(t) the ith gene of unit j for individual

l in population P(t)
X

�
�
�� ���

the training vector whose label is
a�
��
(t)in the chromosome

>	
�
(t) the rth codeword for individual l

in population P(t)
C

�
(t) the corresponding codebook of

individual A
�
(t)

D
�
(t) the overall distortion of

individualA
�
(t)

D
���

(t) the overall distortion of the best
individualA

���
(t)

S
�
(t) the inverse of the overall distortion

D
�
(t)

f
�
(t) the "tness function of individual A

�
(t)

p
�
(t) the selected probability of individual

A
�
(t)

compression performance. The traditional code-
book design method*LBG algorithm [7] is a!ec-
ted by the initial codebook, often generates the
local optimal codebook and needs intensive com-
putation. Research e!orts in codebook design have
been concentrated in two directions: to generate
a better codebook that approaches the global opti-
mal solution, and to reduce the computational
complexity.

To generate better codebooks, SA has been pro-
posed in [13]. The SA method attempts to obtain
a better codebook by shaking the codebook o! the
local valley in the hope that it will converge to
another valley that gives less error. The SA method
makes the LBG algorithm converge again and
again to obtain a lower overall error. Thus, the
computation time of SA is much longer in compari-
sion with LBG. The stochastic relaxation approach
[14] is also proposed to improve the codebook
design. The basic idea of stochastic relaxation ap-
proach is to add some values to the codewords
de"nitely for each iteration. In addition, determin-
istic annealing [12] has been used for codebook
design recently. However, these methods need
a great deal of time in order to obtain better code-
books.

To reduce the codebook generation time, many
methods have appeared in the literatures. The
subspace distortion method [11] attempts to
reduce the computation time by reducing the
dimension measure in the LBG algorithm. The
pairwise nearest neighbor (PNN) algorithm
[2] generates a codebook by merging nearest
training vector clusters until the desired number
of codewords is obtained. The codebooks gener-
ated by both methods are slightly degraded even
though the computation time is reduced by several
times.

Maximum decent algorithm [8] was also pro-
posed for VQ codebook design. The algorithm be-
gins with treating the training vector set as a global
cluster. The algorithm generates the required num-
ber of clusters one by one using the maximum
criterion until the desired number of codewords are
obtained. Compared with the LBG algorithm, the
codebook performance is improved and the com-
putation time is substantially reduced. However,
this algorithm can hardly obtain a global optimal
codebook.

The aim of the codebook design is to "nd the best
classi"cation of training vectors. Given the number
of the training vectors M and the number of

1514 H.-C. Huang et al. / Signal Processing 81 (2001) 1513}1523

Fig. 1. Individual A
�
(t).

codewords N, codebook design problem is an NP-
hard problem to classify M training vectors into
N clusters. For larger M and N, a traditional search
method can hardly "nd the global optimal classi-
"cation. GA [4}6,10] is an e$cient, parallel and
near global optimum search method based on the
ideas of nature selection and nature genetics. Dur-
ing the search processing, it can automatically
achieve and accumulate the knowledge about the
search space, and adaptively control the search
process to approach the global optimal solution.
However, the convergence speed of GA is a little
slower because of its poor local optimum search
ability. Genetic algorithm [1,9] has been used to
generate better codebooks in recent years. Delport
and Koschorreck proposed the partition-based GA
codebook design algorithm [1] whose coding
string is the codebook indices of the training data.
The codebook vectors were also used as the coding
string to design the codebook [9] which can be
referred to as the codebook-based codebook design
algorithm. However, previous GA-based codebook
design algorithms have the same shortcoming, i.e.,
long runtime. This shortcoming is caused by the
following two reasons: (1) all candidates are iter-
ated by LBG, and (2) the crossover operation is not
e$cient. In order to improve the crossover opera-
tion, genetic algorithm with deterministic crossover
[3] has been used to improve the e!ectiveness of
the crossover operation, but this algorithm still
needs much more CPU time than LBG algorithm.
SA is a near global optimum search method based
on the idea of physical annealing, whose operation
object is not a group of approximate solutions like
GA but a single approximate solution. The conver-
gence speed of SA is higher than GA, but the
performance of SA is a!ected by a lot of factors and
it is not so easy to approach the global optimal
solution. Because of this, we can make full use of
the virtues of GA and SA and present a better
codebook design method referred to as genetic
simulated annealing vector quantization (GSAVQ).

In the next section, both GVQ and GSAVQ algo-
rithms are intensively discussed.

2. GVQ and GSAVQ algorithms

2.1. Genetic vector quantization

In this section, we will introduce a partition-
based GVQ codebook design algorithm. Suppose
that the number of training vectors, the codebook
size and the vector dimension are M, N, and K,
respectively. The label i (i"1,2,2, M) of the train-
ing vector is viewed as a gene. A basic object for
genetic operations is a classi"cation of training
vectors. The basic object is made up of N units, and
each unit is made up of several labels that belong to
this unit. N codewords are used to represent
N units; here, a codeword is the centroid of the
vectors whose indices belong to a certain unit.
Suppose a population is made up of ¸ individuals,
then the population at the tth generation can be
described as P(t)"�A

�
(t), A

�
(t),2, A

(t)�. Indi-

vidual A
�
(t)(l"1,2,2, ¸) of population P(t) can

be illustrated as in Fig. 1. In Fig. 1,
n�
�
(t)(j"1,2,2, N) is the number of genes in unit j,

and ��
���

n�
�
(t)"M. (a�

��
(t)i"1,2,2, n�

�
(t)) is the ith

gene of unit j. If the training set can be described as
S"(X

�
, X

�
,2, X

�
), then a�

��
(t) is the label of vec-

tor X
�
�
�� ���

. Suppose the corresponding codebook
of individual A

�
(t) can be described as C

�
(t)"

�>�
�
(t),>�

�
(t),2,>�

�
(t)�, then codeword >	

�
(t)(r"

1,2,2, N) can be calculated by the following
formula

>	
�
(t)"

��
	
� ���

���
X

�
	
�� ���

n	
�
(t)

. (3)

The main idea of GVQ is to "nd the training vector
with maximum distance from the centroid (code-
word) of a unit for one individual and then ran-
domly move this training vector to the other unit or

H.-C. Huang et al. / Signal Processing 81 (2001) 1513}1523 1515

move this training vector to the other unit accord-
ing to the condition of the second individual. The
GVQ algorithm can be stated as follows:
Step 1: Population initialization. GA is strongly

robust; so, how to generate the initial population
has little e!ect on the codebook performance but
may have some e!ect on the runtime. The popula-
tion is required to include enough number of
individuals to ensure the great diversity of
individuals in the population. In this paper, the
initial population P(0) is made up of ¸(¸'1) indi-
viduals, which are randomly generated, namely,
P(0)"�A

�
(0), A

�
(0),2, A

(0)�.

Step 2: Fitness function computation. The overall
distortion D

�
(t) of individual A

�
(t) can be expressed

as

D
�
(t)"

�
�
	��

�
	
� ���
�
���

�X
�
	
�� ���

!>	
�
(t)��, (4)

where >	
�
(t) is the rth codeword in codebook C

�
(t),

X
�
	
�� ���

is the training vector whose label is a	
��
(t), and

�X
�
	
�� ���

!>	
�
(t)�� is the squared Euclidean distance

between X
�
	
�� ���

and >	
�
(t), i.e., the distortion of the

input vector X
�
	
�� ���

. Because the ultimate aim of VQ
is to obtain the best classi"cation that has the least
overall distortion, the objective function S

�
(t) can

be directly de"ned as the inverse of the overall
distortion, namely, S

�
(t)"1/D

�
(t).

Fitness function is usually used to evaluate the
"tness of an individual for the environment. In this
paper, "tness function is used to evaluate the code-
book performance. The more "tness the individual
has, the higher performance its corresponding
codebook has. Thus, "tness function can be de"ned
as the objective function S

�
(t), as de"ned above. In

order to restrain the probable misguided inclina-
tion of `super-individuala at the beginning of the
search process and avoid converging too early, the
linear scaling technique is used in this paper.
Suppose the maximum objective function of
Population P(t) is S

���
(t), and the average objective

function of population P(t) is S
��	

(t)"�

���

S
�
(t)/¸,

then the "tness function f
�
(t) (l"1,2,2, ¸) of indi-

vidual A
�
(t) can be de"ned as

f
�
(t)"

S
��	

(t)

S
���

(t)!S
��	

(t)
(S

�
(t)#S

���
(t)!2S

��	
(t)). (5)

Step 3: Selection. The individuals with more "t-
ness ought to have more opportunity to be selected
as the mother individuals of next generation. The
selection probability p

�
(t)(l"1,2,2, ¸) of indi-

vidual A
�
(t) can be de"ned as

p
�
(t)"

[f
�
(t)!f

���
(t)]�

�

���

[f
�
(t)!f

���
(t)]�

, (6)

where f
���

(t)"min(f
�
(t), f

�
(t),2, f

(t)). Then L

pairs of mother individuals are selected according
to the probability p

�
(t)(l"1,2,2, ¸).

Step 4: Crossover. Each pair of mother indi-
viduals generates a new individual by the crossover
operation, thus ¸ pairs generate a new population.
As shown in Fig. 2, the crossover approach of
mother individual 1 and mother individual 2 can be
described as follows: (a) In individual 1, select a cer-
tain unit m randomly and "nd vector j in unit
m which has maximum distortion. (b) In individual
2, "nd unit p including vector j and select another
vector u in this unit randomly. (c) In individual 1,
"nd unit n including vector u. (d) In individual 1, if
mOn, push vector j from units m to n with certain
crossover probability p

�
. (e) Repeat the above

operations for several times. The "nally obtained
individual 1 is the individual of child population. In
this paper, the number of repeated times equals the
population size.
Step 5: Mutation. In order to avoid the local

optimum problem, the mutation operation is essen-
tial. As shown in Fig. 3, for each individual of the
child population which is obtained by crossover
operations, select two units randomly, for example,
units m and n, move vector j in unit m which has the
maximum distortion in unit n with certain prob-
ability p

.

Step 6: Termination. Two termination criteria are
used here. For the "rst one, the process is executed
for "xed number of iterations and the best solution
obtained is taken to be the optimal one. For the
second one, the algorithm is terminated if no fur-
ther improvement in the "tness value of the best
solution is observed for "ve iterations, and the
best solution is take as an optimal one. If one
of the above termination criteria is satis"ed,
then the algorithm is terminated. Otherwise, go to
Step 2.

1516 H.-C. Huang et al. / Signal Processing 81 (2001) 1513}1523

Fig. 2. Crossover approach of GVQ.

Fig. 3. Mutation approach of GVQ.

From above, we know that the proposed GVQ is
partition-based, i.e., each solution is not a code-
book but a partition of the training vectors. Sec-
ondly, the genetic operations are di!erent from the
conventional GA-based VQ. The conventional
SA-based VQ and GA-based VQ often include
LBG iterations in each iteration of SA or GA.
However, in this paper, GLA iterations are not
included in GA. Moreover, in the proposed semi-
deterministic and semi-random crossover and
mutation operations, the labels whose correspond-
ing vectors have maximum distortion are moved in
order to let the child solution approach the global

optimal solution with more opportunities. In addi-
tion, no codeword search process is required in the
calculation of the objective function. So the pro-
posed GVQ is fast and e$cient.

2.2. Genetic simulated annealing algorithm

In order to improve the local optimum search
ability of GA and avoid the `premature phenom-
enoa of GA, SA is introduced in GVQ algorithm.
SA is a global optimum search method based on
the idea of physical annealing, whose operation
object is not a group of approximate solutions like

H.-C. Huang et al. / Signal Processing 81 (2001) 1513}1523 1517

Fig. 4. Exchange approach of GSAVQ.

GA but a single approximate solution. The conver-
gence speed of SA is higher than GA, but the initial
temperature and the decreasing speed of the an-
nealing temperature a!ect the performance of SA.
If the initial temperature is high enough and the
annealing temperature decreases slowly enough,
the obtained solution approaches the global solu-
tion with probability one but the convergence
speed is very low. On the other hand, SA is easy to
fall into local optimum if the annealing temperature
decreases quickly. If SA is used in the environment
of a group of approximate solutions and made
some modi"cation, the performance of SA can be
improved. The genetic simulated annealing vector
quantization (GSAVQ) can be described as follows:
Step 1. Initialize parameters ¹

�
and threshold

� (0(�(1), set t"0, i"0, D
���

(!1)"R.
Step 2. Generate an intial population

P(0)"�A
�
(0), A

�
(0),2, A

(0)�(¸'1).

Step 3. Calculate the overall distortion for each
individual in P(t).
Step 4. In P(t), "nd the best individual A

���
(t) that

has minimum overall distortion. If the overall dis-
tortion D

���
(t) of A

���
(t) satis"es �(D

���
(t)!

D
���

(t!1))�/D
���

(t)(� or the iteration times t is
larger than a given value, the algorithm is termin-
ated with the corresponding codebook C

���
(t)"

�>�
���

(t),>�
���

(t),2,>�
���

(t)� whose codeword
>	

���
(t) (r"1,2,2, N) can be calculated by

>	
���

(t)"
��

	
��� ���
���

X
�
	
���� ���

n	
���

(t)
, (7)

otherwise continue.

Step 5. Decrease the annealing temperature in
a certain way, i.e. ¹

���
"¹

�
!�¹

�
(�¹

�
'0), set

i"i#1.
Step 6. Generate a new individual A�

���
(t) in the

neighbourhood of individual A
���

(t). As shown in
Fig. 4, A�

���
(t) is generated as follows: (1) select two

units randomly, for example, units i and j; (2) "nd
the vector which has maximum distortion in each
unit, for example, vector m in unit i and vector n in
unit j; (3) exchange vector m with vector n; (4) repeat
the above operations for several times. Here, the
number of repeated times is set to be the same as
the population size.
Step 7. Compute the overall distortionD�

���
(t) for

A�
���

(t) and D
���

(t) for A
���

(t), then calculate the
di!erence �D(t)"D�

���
(t)!D

���
(t). If �D(t)(0,

accept A�
���

(t) as a new individual of P(t), else if
�D(t)*0, accept A�

���
(t) as a new individual of P(t)

with probability exp(!�D(t)/¹
�
).

Step 8. If A�
���

(t) is accepted, add it into P(t) as
a new individual. Otherwise, randomly select an
individual in P(t) and add it into P(t) as a new
individual.
Step 9. For the previous population P(t), generate

a new population P(t#1) using genetic operations
(steps 3}5 of GVQ). Remove the individual that has
the worst performance from P(t#1). Set t"t#1,
go to step 3.

From above, we know that GSAVQ applies
simulated annealing method to decide whether
a training vector with maximum distance from the
center (codeword) of a unit is suitable to be
exchanged with the other training vector, and then
combine with GVQ algorithm to get a better

1518 H.-C. Huang et al. / Signal Processing 81 (2001) 1513}1523

codebook. Indeed, the incorporation of SA into GVQ
can be viewed as the additional mutation operation
besides genetic mutation operations, which can fur-
ther reduce the opportunities of the algorithm getting
into the local minimum. So GSAVQ can obtain bet-
ter performance than GVQ in theory.

3. A concrete example

To explain the crossover and mutation
operations of the proposed algorithms, we give
a concrete example here. Suppose there are 16
two-dimensional training vectors, the aim is to
generate four codewords. Thus M"16, N"4 and
K"4. Here, we assume the 16 training vectors to
be X

�
"(13,14), X

�
"(7,8), X

�
"(0,3), X

	
"(2,7),

X

"(3,6), X

�
"(1,7), X

�
"(15,14), X

"(2,11),

X
�
"(6,14), X

��
"(5,10), X

��
"(10,4), X

��
"

(1,2), X
��

"(5,8), X
�	

"(10,14), X
�

"(11,9) and
X

��
"(15,12).

First, we explain how an individual corresponds
to a codebook. Assume a certain individual can be
expressed as A

�
"�(16,9,4,7,5), (2,10), (13,6,14,1,3,

12),(8,11,15)�, with each element being the label of
a training vector, e.g., the element &16' denotes the
training vector X

��
. The labels are classi"ed into

four units, and the numbers of elements in four
units are n�

�
"5, n�

�
"2, n�

�
"6 and n	

�
"3, respec-

tively. The codeword of a unit is the centroid of the
training vectors whose labels belong to this unit,
thus the individual A

�
corresponds to a codebook

C
�
"�>

�
,>

�
,>

�
,>

	
�, where >

�
"(X

��
#X

�
#

X
	
#X

�
#X

)/5"(8,11), >

�
"(X

�
#X

��
)/2"

(6,9), >
�
"(X

��
#X

�
#X

�	
#X

�
#X

�
#

X
��

)/6"(5,8), >
	
"(X

#X

��
#X

�

)/3"(8,8).

Then we turn to explain the crossover operation
used in GVQ and GSAVQ. Assume two indi-
viduals A

�
"�(16,9,4,7,5),(2,10),(13,6,14,1,3,12),

(8,11,15)� and A
�
"�(2,4,8,5),(3,15,7),(11,14,1,3,12),

(6,10,13,9)� are selected to perform the crossover
operation. Firstly, in individual A

�
, select a cer-

tain unit m randomly and "nd vector j in unit
m which has maximum distortion. Assume unit 1 is
selected, i.e., m"1, then vector X

�
(j"7) has

maximum distortion in unit (16, 9, 4, 7, 5), i.e.,
d(X

�
,>

�
)"max�d(X

��
,>

�
), d(X

�
,>

�
), d(X

	
,>

�
),

d(X
�
,>

�
), d(X

,>

�
)�. Secondly, in individual A

�
,

"nd unit p including vector j and select another
vector u in this unit randomly. Based on the above
assumption, i.e., j"7, then p"2. And assume we
select vector X

�
(u"3) in unit 2. Thirdly, in indi-

vidual A
�
, "nd unit n including vector u. Based on

the above assumptions, we know that vector X
�

is
in unit 3 of individual A

�
, i.e., n"3. Fourthly, In

individual A
�
, if mOn, push vector j from unit m to

unit n with certain crossover probability p
�
. Based

on the above assumptions, because m"1, n"3,
mOn, then we can push vector X

�
from units 1

to 3 in individual A
�
. After the above four steps,

we can obtain new individual A�
�
"�(16,9,4,5),

(2,10), (13,6,14,1,7,3,12),(8,11,15)�. Repeat the above
four steps for several times, then we can obtain the
"nal child individual A

�
.

Finally, we turn to explain the mutation opera-
tion. Assume the individual A

�
"�(16,9,4,7,5),

(2,10),(13,6,14,1,3,12),(8,11,15)� is selected to per-
form the mutation operation. The operation is
performed as follows: select two units randomly, for
example, units 1 and 4, move vector X

�
in unit

1 which has the maximum distortion into unit
4 with certain probability p

�
. If the move is per-

formed, then the individual A
�

becomes another
new individual A�

�
"�(16,9,4,5),(2,10),(13,6,14,1,3,

12),(7,8,11,15)�.

4. Experimental results

To evaluate the e$ciency of the proposed
algorithms, GSAVQ and GVQ, accompanied with
SA, MD and LBG, were coded in Visual C##

language and run on Pentium II computer. Two
images, Lena and Peppers, with resolution
512�512 pixels, 8 bits per pixel, were used in this
paper. The Lena image was used to generate the
codebooks of di!erent sizes with dimension 16
(4�4), the Peppers image was used to test the
performance of the codebook. For LBG, the initial
codebook is generated randomly and no speeding
up methods are used in LBG and �"0.001. In the
MD algorithm, the successive search method is
used for searching the optimal partitioning hyper-
plane. For both GVQ and GSAVQ, the crossover
probability p

�
is 0.9 and the mutation probability

p
�

is 0.01, the population size is 40, the number of

H.-C. Huang et al. / Signal Processing 81 (2001) 1513}1523 1519

Table 1
The CPU time(s) comparisons of LBG, SA, MD, GVQ and
GSAVQ for di!erent codebook sizes

Codebook
size LBG SA MD GVQ GSAVQ

64 132 3300 11 37 36
128 256 6656 23 59 54
256 485 12 271 45 97 90
512 965 23 374 89 162 123

Table 2
Performance (PSNR) comparisons of LBG, SA, MD, GVQ and
GSAVQ for the image inside the training set

Codebook
size

LBG
(dB)

SA
(dB)

MD
(dB)

GVQ
(dB)

GSAVQ
(dB)

64 27.68 28.32 28.24 28.75 28.83
128 28.78 29.50 29.41 29.95 30.01
256 30.23 31.97 31.86 32.38 32.41
512 32.47 34.13 34.02 34.50 34.56

Table 3
Performance (PSNR) comparisons of LBG, SA, MD, GVQ and
GSAVQ for the image outside the training set

Codebook
size

LBG
(dB)

SA
(dB)

MD
(dB)

GVQ
(dB)

GSAVQ
(dB)

64 26.58 27.44 27.35 27.65 27.70
128 27.81 28.67 28.54 28.85 28.87
256 29.33 31.27 31.20 31.48 31.52
512 31.13 33.09 33.01 33.30 33.35

Table 4
Performance (MSE and time) comparisons of LBG, GVQ and
GSAVQ for coding four-dimensional Guass}Markov sources
with di!erent codebook sizes

Codebook
size

Perfor-
mance (s) LBG GVQ GSAVQ

8 Time 12.16 3.86 3.84
MSE 0.679 0.543 0.539

16 Time 25.26 6.74 6.72
MSE 0.342 0.277 0.276

32 Time 51.15 12.32 12.28
MSE 0.169 0.151 0.147

iterations is limited to 150. For GSAVQ, the initial
temperature ¹

�
is 50 and the temperature is de-

creased by 0.6% after each iteration until the num-
ber of iterations reaches 150, �"0.001. For SA
[14], the initial temperature ¹

�
is 35 and the tem-

perature is decreased by 1% after each iteration
step until the number of iterations reaches 30. Ex-
perimental results are shown in Tables 1}4. As
shown in Table 1, the "ve algorithms are compared
in CPU time by generating di!erent codebook
sizes. Table 2 compares the "ve algorithms in
PSNR for di!erent codebook sizes using Lena as

the test image. For the image outside the training
set, Table 3 shows the performance of codebooks
with di!erent sizes generated by di!erent algo-
rithms. Fig. 5 shows the comparison of the test
picture and pictures recovered by di!erent algo-
rithms. Fig. 6 shows the relationship of PSNR and
computation time for codebook sizes 128 and 256,
and because the CPU time of SA is nearly 25}27
times that of LBG, the relationship of PSNR and
computation time of SA is excluded in Fig. 6. Com-
pared with LBG method for codebook sizes 64, 128
and 256, GVQ and GSAVQ both save more than
71%, 77% and 80% CPU time, respectively. For
codebook size 512, GVQ saves more than 83%
CPU time and GSAVQ saves more than 87% CPU
time compared with LBG. For di!erent codebook
sizes, the codebooks obtained by GVQ outperform
those by LBG method by 1.1}2.1 dB in PSNR, and
the codebooks obtained by GSAVQ outperform
those by LBG method by 1.2}2.2 dB in PSNR. For
di!erent codebook sizes, the codebooks obtained
by GVQ and GSAVQ outperform those by the SA
method by 0.2}0.5 dB in PSNR. Thus the e!ec-
tiveness of GVQ and GSAVQ is proven. Although
MD algorithm can obtain the codebook in a much
shorter time than GVQ and GSAVQ, its PSNR is
lower than SA, GVQ and GSAVQ. In addition, we
can see that the di!erence in the performance be-
tween GVQ and GSAVQ is slight after limited
iteration times. However, if the iteration time is
unlimited, the performance of GSAVQ will be
much better than GVQ.

In order to demonstrate the e!ectiveness of
the proposed algorithms, we also made another

1520 H.-C. Huang et al. / Signal Processing 81 (2001) 1513}1523

Fig. 5. Comparisons of pictures recovered by di!erent algorithms for 256 codewords. (a) Original picture. (b) Picture recovered by LBG.
(c) Picture recovered by SA. (d) Picture recovered by MD. (e) Picture recovered by GVQ. (f) Picture recovered by GSAVQ.

H.-C. Huang et al. / Signal Processing 81 (2001) 1513}1523 1521

Fig. 6. Relationship between PSNR and CPU time for di!erent codebook sizes for LBG, GVQ and GSAVQ algorithms (a) size 128 and
(b) size 256.

experiment. In this experiment, the proposed
algorithms together with the LBG algorithm were
used to design VQ codebooks using 1000 four-
dimensional Guass}Markov vectors with unit
variance and zero mean and 	"0.5 in each dimen-
sion. Each algorithm generates three codebooks
with sizes 8, 16 and 32. The experimental results
(MSE and time) are shown in Table 4. From Table
4, we can see that the proposed algorithms can
obtain better performance in a shorter time com-
pared to LBG.

5. Summary and conclusion

In this paper, two methods for codebook design
are presented. These two algorithms are genetic
vector quantization (GVQ) and genetic simulated
annealing vector quantization (GSAVQ). For both
algorithms, the label of the training vector is viewed
as a gene and the basic object for genetic operations
is a classi"cation of training vectors. The basic
object is made up of a certain number (equals to
codebook size) of units, and each unit is made up of
several labels that belong to this unit. A certain
number of codewords are used to represent these
units; here a codeword is the centroid of a unit. In
order to restrain the probably misguided inclina-
tion of `super-individuala at the beginning of the
search process and avoid converging too early, the
linear scaling technique is used in both algorithms.
Both GVQ and GSAVQ make full use of the near
global optimum ability of genetic algorithm (GA),

and GSAVQ also utilizes the virtues of simulated
annealing (SA) in order to avoid the `premature
phenomenona of GA and obtain a near global
optimum codebook in a much shorter time. Experi-
mental results show that GVQ and GSAVQ both
have better performance and need shorter com-
puter time than SA and LBG algorithms, and
GSAVQ is superior to GVQ. In addition, although
GVQ and GSAVQ need a little longer CPU time
than maximum decent (MD) algorithm, they out-
perform MD in PSNR.

References

[1] V. Delport, M. Koschorreck, Genetic algorithm for code-
book design in vector quantization, Electron. Lett. 31 (2)
(1995) 84}85.

[2] W.H. Equitz, A new vector quantization clustering algo-
rithm, IEEE Trans. Acoust. Speech Signal Process 37 (10)
(1989) 1568}1575.

[3] P. Franti, Genetic algorithm with deterministic crossover
for vector quantization, Pattern Recognition Lett. 21
(2000) 61}68.

[4] M. Gen, R. Cheng, Genetic Algorithms and Engineering
Design, Wiley, New York, 1997.

[5] D.E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion and Machine Learning, Addison Wesley Publishing
Company, Reading, MA, 1989.

[6] J.H. Holland, Adaptation in Natural and Arti"cial Systems,
The University of Michigan Press, Ann Arbor, MI, 1975.

[7] Y. Linde, A. Buzo, R.M. Gray, An algorithm for vector
quantizer design, IEEE Trans. Commun. 28 (1) (1980) 84}95.

[8] C.K. Ma, C.K. Chan, Maximum descent method for image
vector quantization, Electron. Lett. 27 (12) (1991)
1772}1773.

1522 H.-C. Huang et al. / Signal Processing 81 (2001) 1513}1523

[9] J.S. Pan, F.R. McInnes, M.A. Jack, VQ codebook design
using genetic algorithms, Electron. Lett. 31 (17) (1995)
1418}1419.

[10] J.S. Pan, F.R. McInnes, M.A. Jack, Application of parallel
genetic algorithm and property of multiple global optima
to VQ codevector index assignment, Electron. Lett. 32 (4)
(1996) 296}297.

[11] L.M. Po, Novel subspace distortion measurement for e$-
cient implementation of image vector quantizer, Electron.
Lett. 26 (29) (1990) 480}482.

[12] K. Rose, Deterministic annealing for clustering, compres-
sion, classi"cation, regression and related optimization
problems, Proc. IEEE 86 (1998) 2210}2239.

[13] J. Vaisey, A. Gersho, Simulated annealing and
codebook design, Proceedings ICASSP'88, 1988, pp.
1176}1179.

[14] K. Zeger, A. Gersho, Stochastic relaxation algorithm for
improved vector quantizer design, Electron. Lett. 25 (14)
(1989) 896}898.

H.-C. Huang et al. / Signal Processing 81 (2001) 1513}1523 1523

