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Dynamic Optimal Learning Rates of a Certain Class of
Fuzzy Neural Networks and its Applications with Genetic

Algorithm

Chi-Hsu Wang, Han-Leih Liu, and Chin-Teng Lin

Abstract—The stability analysis of the learning rate for a two-layer
neural network (NN) is discussed first by minimizing the total squared
error between the actual and desired outputs for a set of training vectors.
The stable and optimal learning rate, in the sense of maximum error
reduction, for each iteration in the training (back propagation) process can
therefore be found for this two-layer NN. It has also been proven in this
paper that the dynamic stable learning rate for this two-layer NN must be
greater than zero. Thus it is guaranteed that the maximum error reduction
can be achieved by choosing the optimal learning rate for the next training
iteration. A dynamic fuzzy neural network (FNN) that consists of the
fuzzy linguistic process as the premise part and the two-layer NN as the
consequence part is then illustrated as an immediate application of our
approach. Each part of this dynamic FNN has its own learning rate for
training purpose. A genetic algorithm is designed to allow a more efficient
tuning process of the two learning rates of the FNN. The objective of the
genetic algorithm is to reduce the searching time by searching for only
one learning rate, which is the learning rate of the premise part, in the
FNN. The dynamic optimal learning rates of the two-layer NN can be
found directly using our innovative approach. Several examples are fully
illustrated and excellent results are obtained for the model car backing up
problem and the identification of nonlinear first order and second order
systems.

Index Terms—Backpropogation, fuzzy neural networks, genetic algo-
rithm, learning rate.
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I. INTRODUCTION

During the past decade, fuzzy neural networks (FNNs) have found
a variety of applications in various fields [1]–[3]. Most notably, a
FNN system has been applied to control nonlinear, ill-defined systems
[4]. These systems used the back-propagation (BP) algorithm to
tune the parameters of fuzzy sets and the weights of neural network
(NN). Basically the BP algorithm is of descent type, which attempts
to minimize the difference (or error) between the desired and actual
outputs in an iterative manner. For each iteration, the parameters and
weights are adjusted by the algorithm so as to reduce the error along a
descent direction. In doing so, values, which are called learning rates,
should be properly set in the BP algorithm. Authors in [5] proposed
dynamic optimization of the learning rate using derivative information.
In [5], it was shown that the relatively large or small learning rates
may affect the progress of BP algorithm and even may lead to failure
of the learning process. However, the analysis of stable learning rates
was not discussed in [5]. Recently genetic algorithms (GAs) [6]–[10]
have emerged as a popular family of methods for global optimization.
GAs perform a search by evolving a population of potential solutions
through the use of its operators. The authors in [9] proposed GAs to
tune the parameters of the Gaussian membership functions. Although
reasonable results have been obtained in [9], the analysis of stable
learning rate was also not discussed at all.

In order to perform the stability analysis of the learning rate [11]
in FNN, we start from the stability analysis of the learning rate for a
two-layer neural network (NN) by minimizing the total squared error
between the actual and desired outputs for a set of training vectors.
The stable and optimal learning rate, in the sense of maximum error
reduction, for each iteration during the back propagation process can
be found for this two-layer NN. It is proven in this paper that the stable
learning rate for this two-layer NN must be greater than zero. Following
Theorem 1, it is guaranteed that the maximum error reduction can be
achieved by choosing the optimal learning rate for the next training
iteration. We then propose a dynamic fuzzy neural network that con-
sists of the fuzzy linguistic process as the premise part and the two-layer
NN as the consequence part. Each part has its own learning rate to be
decided. The stable and optimal learning rate of the two-layer NN in
the proposed FNN can also be found directly by our method, provided
that the output of the premise part (or the input of the consequent
part) remains the same during the training process of the consequent
part. In order to find the best learning rate for the premise part, a new
genetic search algorithm is proposed together with the stable and op-
timal learning rate in the consequent part. The major advantage of this
new genetic algorithm is to reduce the searching time by searching only
one learning rate, which is the learning rate of the premise part, in the
dynamic FNN. In comparison with the searching process proposed in
[9], our proposed GA has the benefit of reducing the searching com-
plexity dramatically.

It is well known that backing up control of a truck is a very difficult
exercise for all but the most skilled truck drivers since its dynamics
are nonlinear and unstable. Based on our new methodology, a FNN
controller for backing up a truck is successfully designed. Using the
optimal learning rates, the trained FNN system can indeed let the
truck reach its loading zone successfully. Also the nonlinear system
identifications of first and second order systems are fully illustrated
with excellent results. For the applicability of other FNN models,
such as Horikawaet al. [12], we will consider them as future research
topics.

1083–4419/01$10.00 © 2001 IEEE
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Fig. 1. Two-layer NN.

II. DYNAMIC OPTIMAL LEARNING RATES FOR ATWO-LAYER NN

Consider the following simple two-layer NN in Fig. 1, which will
form the consequent part of the FNN adopted in this paper where

r = [r1 r2 � � � rL]
T 2 RL

the training data vector (1)

W = [w
1

w
2

� � � wZ ] 2 RL�Z

the weighting matrix (2)

wi = [w1i w
2

i � � � w
L
i ]

T 2 RL

theith weighting vector (3)

y = [y1 y2 � � � yZ ]
T 2 RZ

the actual output vector (4)

d = [d1 d2 � � � dZ ]
T 2 RZ

the desired output vector (5)

and “T ” denotes matrix transpose.
Given a set of training vectors, which forms the training matrixR

in (7), it is desired to use the back propagation technique to train the
above NN so that the actual outputs converge to the desired outputs.
The actual outputyz is defined as

yz =

L

l=1

rlw
l
z = r

T
wz : (6)

GivenP training vectors, there should beP desired output vectors.
In matrix notations, we let

R = [r1 r2 � � � rP ] 2 RL�P

the input training matrix (7)

Y = [y
1

y
2

� � � y
P
]T 2 RP�Z

the actual output matrix (8)

D = [d
1

d
2

� � � dP ]
T 2 RP�Z

the desired output matrix. (9)

The actual output matrixY (8) can be shown as

Y = R
T
W: (10)

It is desired to update (or train) the weighting matrixW so that the
actual outputyz will converge to a desired outputdz . To do so, we
define the total squared errorJ as follows:

J =
1

2P � Z

P

p=1

Z

z=1

(ypz � d
p
z)
2
: (11)

The aboveJ can also be reorganized using matrix notation. To do
so, we define error functionE as

E = Y �D = R
T
W �D: (12)

Then we have

J =
1

2P � Z
Tr(EET ): (13)

Equation (13) actually considers all theP training vectors to yield
the total squared error. Other approaches [4], [14], [15], only consid-
ered the squared error for a single training vector.

To updateW , we apply the back propagation method as follows:

Wt+1 =Wt � �t
@J

@W
t

(14)

wheret denotes thetth iteration. Using chain rule, we get

Wt+1 =Wt � �t
1

P � Z
RE: (15)

After training, assuming zero error, we should have matrix form
D = RTW . It should be noted we assume that the learning rate for
each iteration during the back propagation process is different, i.e., the
learning rates are not fixed. In order to find the optimal learning rate
for �t, we have the following theorem.

Theorem 1: The optimal learning rate�t defined in (15) can be
found from the minimum of a quadratic polynomialA�2 + B� = 0,
whereA(> 0) andB(< 0) can be obtained from the training vectorr,
desired output vectord and the weighting matrixW .

Proof: First, we must find the stable range for�t. To do so, we
define the Lyapunov function as

V = J
2 (16)

whereJ is defined in (13). The change of the Lyapunov function is
�V = J2t+1 � J2t . It is well known that if�V < 0, the response of
the system is guaranteed to be stable. For�V < 0 we have

Jt+1 � Jt < 0: (17)

Here we consider all theP training vectors asfri =
[r1i r2i � � � rLi ]

T ji = 1; � � � ; Pg. From (15) (forwl
z(t + 1)) and

the fact that the training vectors remain the same during the training
process, i.e.,rpl (t + 1) = r

p

l (t) = r
p

l ), we haveJJJttt+1 [from (13)] as
follows:

Jt+1 = (2PZ)�1Tr(Et+1E
T
t+1)

= (2PZ)�1Tr[(RT
Wt+1 �D)(RT

Wt+1 �D)T ]

= (2PZ)�1Trf[(RT (Wt � �t(PZ)
�1
REt)�D)]

� [(RT (Wt � �t(PZ)
�1
REt)�D)T ]g

= (2PZ)�1Tr[(RT
Wt � �t(PZ)

�1
R
T
REt �D)

� (WT
t R� �t(PZ)

�1
E
T
t R

T
R�D

T )]

= (2PZ)�1Trf[(RT
Wt �D)� �t(PZ)

�1
R
T
REt]

� [(W T
t R�D

T )� �t(PZ)
�1
E
T
t R

T
R]g

= (2PZ)�1Tr[(Et � �t(PZ)
�1
R
T
REt)

� (ET
t � �t(PZ)

�1
E
T
t R

T
R)]

= (2PZ)�1Tr[EtE
T
t � 2�t(PZ)

�1
R
T
REtE

T
t

+ �
2

t (PZ)
�2
R
T
REtE

T
t R

T
R]

= Jt + �t(�PZ)
�1
Tr[(PZ)�1RT

REtE
T
t ]

+ �
2

t (2PZ)
�1
Tr[(PZ)�2RT

REtE
T
t R

T
R]

= Jt + �t(�PZ)
�1
Tr[(PZ)�1ET

t R
T
REt]

+ �
2

t (2PZ)
�1
Tr[(PZ)�2RT

REtE
T
t R

T
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Fig. 2. Parabolic trajectory ofJ � J (orA� +B�) versus�.

Hence

Jt+1 � Jt = �t(�PZ)
�1Tr[(PZ)�1ET

t R
TREt]

+ �2t (2PZ)
�1Tr[(PZ)�2RTREtE

T
t R

TR]

= A�2t +B�t (18)

where

A = 1

2
(PZ)�3Tr[RTREtE

T
t R

TR]

= 1

2
(PZ)�3

P

p=1

Z

z=1

�

L

l=1

rpl (t)

P

i=1

ril(t)(y
i
z � diz)

2

(19)

B = �(PZ)�2Tr[ET
t R

TREt]

= �(PZ)�2
P

p=1

Z

z=1

(ypz � dpz)

L

l=1

rpl (t)

P

i=1

ril(t)(y
i
z � diz) : (20)

It is obvious that (19) and (20) contain quadratic matrices, therefore,
theA should be greater than zero andB should be less than zero.
Therefore we have

Jt+1 � Jt = A�2 +B� < 0:

Fig. 2 shows the parabolic trajectory ofA�2 + B� versus�. In
order to satisfy (17), we must haveA�2 +B� < 0. SinceA > 0, it
is obvious that the stable range of� is (�l; �u), where�l and�u are
the two roots ofA�2 + B� = 0. From Fig. 2, we also know that the
optimal�(= �opt) is the median of�l and�u, i.e., when

�opt = (�u + �l)=2 (21)

A�2opt + B�opt is at its minimum. This is due to the symmetrical
property of the parabola in Fig. 2. The�opt will not only guarantee
the stability of the training process, but also has the fastest speed of
convergence. Q:E:D:

By inspecting (19) and (20), it is obvious that the stable range of�
is a function ofr, d andW . Theorem 2 shows that the stable learning
rate should be positive in the two-layer NN with a set of fixed training
vectors.

Theorem 2: For the two-layer NN defined in Fig. 1, the stable
learning rate should be positive, i.e.,� > 0.

Proof: From Theorem 1, we know thatA > 0 andB < 0.
ThereforeA�2 + B� < 0 implies thatB� < �A�2 < 0. Since
B < 0, we have the end result of� > 0. Q:E:D:

Algorithm I shows the overall computational aspects for the back
propagation training process of the above two layer NN.

Fig. 3. Two-layer NN with three inputs and two outputs.

Algorithm I: Dynamic Optimal Learning Rates for a Two-Layer NN
Step1: Given the initial weighting matrixW0, training matrixR and

desired output matrixD, find the initial actual output matrixY0 (10)
and optimal learning rate�0 (Theorem 1).

Step2: Start the back propagation training process. Iteration count
t = 0.

Step3: Find if theD andYt (10) are close enough or not? If Yes,
GOTO Step 7.

Step4: Update the weighting matrix to yieldWt+1 by (15).
Step5: Find the optimal learning rate�t+1 (Theorem 1) for the next

iteration.
Step6: t = t + 1. GOTO Step 3.
Step7: End.

The following Example 1 illustrates the major concept in this
section.

Example 1: Fig. 3 shows a two-layer NN with three inputs and two
outputs.

Given input training matrixR, desired output matrixD (defined in
(7) and (9)) as

R = [r1 r2 r3 r4]

=

�3:0852 1:0449 2:9027 5:0642

�4:1030 �4:3199 0:5842 1:4118

�5:0811 6:31611 �0:9816 1:2853
L(=3)�P (=4)

D =

�0:9346 �0:0882

1:0108 0:1857

0:0664 �0:9783

0:4995 �1:3264
P (=4)�Z(=2)

:

The initial weighting matrixWi is chosen to be

Wi =

�0:0531 0:1050

�1:7333 1:3398

�0:9498 �1:2728
L(=3)�Z(=2)

:

The initial J is 28.1832. After 30 iterations, the stable range of
learning rate� for each iteration can be found from (14)–(20) and are
listed in Table I.

After finding the stable range of each iteration, we choose0:5�u to
be the real learning rate for that iteration and perform the update of
the weighting matrixW . Fig. 4 shows the trajectory of total squared
errorJ . It is obvious that the values of total squared error decreased as
expected.

The final weighting matrixWf is

Wf =

0:0657 �0:3169

�0:0039 0:0852

0:1461 0:1396
L(=3)�Z(=2)

:
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TABLE I
COEFFICIENT B, THE LEARNING RATE �,

ITS STABLE RANGES, AND J

Fig. 4. Total squared errorJ via iterationt.

In the end, we have

D =

�0:9346 �0:0882

1:0108 0:1857

0:0664 �0:9783

0:4995 �1:3264

� RT
�Wf

=

�0:9295 �0:0814

1:0083 0:1823

0:0452 �1:0071

0:5153 �1:3050

:

III. FNN WITH DYNAMIC STABLE LEARNING RATE

The FNN in Fig. 5 was proposed in [4] for the control of a model car
to follow a specified path, but without the stability analysis of learning
rates. Here we adopt the identical structure as shown in [4] but re-
place the B-spline membership functions with Gaussain membership
functions. Fig. 5 contains the premise part and consequent part. Each
part has its own learning rate. The learning rate in the premise part is
to fine-tune the Gaussian membership functions, whereas the learning
rate in the consequent part is to adjust the weighting factors. Fig. 6
redraws the consequent part of Fig. 5, which clearly shows that the
two-layer NN in Fig. 1 is the consequent part of Fig. 5. The stability
analysis in Section II will be used to analyze the stability of the FNN
and then a more efficient GA is devised in Section IV to tune this FNN.

The reasoning rule can be established by the following:

Rule lll: If xxx1 is F l
1 and � � � and xxxNNN is F l

N then

yyy
1
is wl

1 and � � � and yyyZZZ is wl
Z

wherel = 1; 2; � � � ; L, F l
q ’s are fuzzy membership functions of the

antecedent part, andwl
z 2W are neural network weights of the conse-

quent part. TheF l
q ’s, whose functions are Gaussian functions, and�l

are

F l
q(xq) = exp �

xq � �q
�q

2

(22)

Fig. 5. Proposed FNN in this paper.

Fig. 6. Another look at the consequent part in Fig. 5.

rl = �l =

N

i=1

F l
i (xi) (23)

where�l is the truth value of the premise of thelth rule. The outputyz
of the fuzzy reasoning can be derived from the following equation:

yz = a=b

a =

L

i=1

wi
z�i; b =

L

i=1

�i (z = 1; 2; � � � ; Z)

y = [y1 y2 � � � yZ ]
T : (24)

By adjusting the weighting factors and the parameters of the
Gaussian functions of the neural network, the learning algorithm can
be derived to minimize the total squared errorJ defined in (11). To
update�li, we use

�li(t+ 1) = �li(t)� �t
@J

@�
t

: (25)

Using the chain rule, we get

�li(t+ 1) = �li(t)� �t
1

P � Z

P

p=1

Z

z=1

(ypz � dpz)

�
wl
� ypz
b

�l
(xpi � �li(t))

(�li(t))
2

(26)

where�t is a current learning rate for tuning�. Again, using a similar
method, we have the following for�li, w

l
z :

�li(t+ 1) = �li(t)� �t
1

P � Z

P

p=1

Z

z=1

(ypz � dpz)

�
wl
� ypz
b

�l
(xpi � �li(t))

2

(�li(t))
3

; (27)

wl
z(t+ 1) = wl

z(t)� �t
1

P � Z

P

p=1

ypz � dpz
b

�l (28)
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Fig. 7. Training process of the proposed FNN.

where�t is a current learning rate for tuningwl
z , b defined in (24).

Hence the input matrixR of the consequent part, i.e., the two layer
NN, becomes

R =

�11

L

i=1

�1i �21

L

i=1

�2i � � � �P1

L

i=1

�Pi

�12

L

i=1

�1i �22

L

i=1

�2i � � � �P2

L

i=1

�Pi

...
...

. . .
...

�1L

L

i=1

�1i �2L

L

i=1

�2i � � � �PL

L

i=1

�Pi
L�P

:

(29)

For each iteration during the back propagation training process of
the premise part (with a chosen learning rate), we can have the above
R matrix for the consequent part. Then we can apply the results of
Theorems 1 and 2 to find the dynamic optimal learning rates for all
the iterations during the training process of the consequent part. The
following Fig. 7 shows the proposed training process of the whole FNN
in Fig. 5.

The number of iterationsM in the consequent part of Fig. 7 depends
upon the convergent rate set by the designer. In order to find the optimal
learning rate of the premise part, we rely on a genetic search algorithm.
The following section will explain the details of the proposed new ge-
netic search algorithm based on Fig. 7.

IV. TUNING FNN USING A GENETIC ALGORITHM

GAs are iterative search algorithms based on an analogy with the
process of natural selection (Darwinism) and evolutionary genetics.
The main goal is to search for a solution, which optimizes a user-de-
fined function called the fitness function. To perform this task, it main-
tains a population or a gene pool of randomly encoded chromosomes
(or individuals, solution candidates),Popt = f�1t ; � � � ; �

Pop size
t g for

each generationt. Each�it is selected randomly following a uniform
distribution over search space and can be binary strings or a real value.
It represents a potential solution to the problem at hand and is evaluated.
Then, a new population (generationt + 1) is formed by selecting the
more fit chromosomes. Some members of the new population undergo
transformation by means of genetic operators to form new solutions.
After some generations, it is hoped that the best chromosome repre-
sents a near-optimal solution.

There are three operators: selection, crossover, and mutation. The se-
lection decides which of the chromosomes in a population are selected
for further genetic operations. Each chromosomei in a population is
assigned a value'i of fitness. The fitness values are used to assign a

probability value�i to each chromosome. The probability value�i is
defined as

�i = 'i

Pop size

k=1

'k: (30)

The chromosome with a larger fitness value has a larger probability
of selection. The crossover operation combines the features of two
parent chromosomes to form two similar offspring by swapping
corresponding segments of the parents. The parameters defining
the crossover operation are the probability of crossoverPc and the
crossover position. Mutation is a process of occasional alternation
of some gene values in a chromosome by a random change with a
probability less than the mutation ratePm.

GAs [10] are used to maximize a function or to do a minimization. In
our application, the error functionJ needs to be scaled and transformed
into another function to meet the fitness evaluation requirement. For a
given J , J =  10�, 1 <  < 10, the fitness function (J) is
defined as [8]

 (J) = '( 10� =
��+ 1�

 

10
; if � < 0

10�(�+1) +
1�  =10

10(�+1)
; if � � 0:

(31)

Equation (31) finds a larger fitness value for smallerJ . In other
words, if the value ofJ is larger, it will be mapped to a smaller fit-
ness value and vice versa. For example, ifJ is 0.007, then� = �3 and
(31) will yield a fitness value of 3.3. IfJ is 10238, then� = 4 and (31)
will be mapped to 1.8976e-005.

Following the training process as explained in Fig. 7, we start with an
initial learning rate�0 in the premise part and proceed to train the NN
with the dynamic optimal rates obtained from Theorems 1 and 2 in the
consequent part. By choosing the optimal�opt in each iteration in the
training process of the NN, the total squared errorJ can be found for
this initial �0. The search must then be continued to yield the optimal
�opt such that the total squared errorJ is a minimum. It is obvious that
we only have to search for�opt in the FNN. The determination of�opt
is from Theorems 1 and 2. Otherwise, the FNN with two learning rates
(to be searched for by GAs, [9]) will require much more searching time.
The overall search algorithm, which summarizes the whole concept, is
listed below.

Algorithm II: Tuning of FNN via Genetic Algorithm
Step 1: Initialize weighting matrixW randomly. Initialize centers
�’s, and widths�’s. Set values toIteration, �l, �u, Pop size,
Max gen, andThreshold.

Step 2:
For t = 1: Iteration

Initialize population Pop = f�ig, �i 2 (�l; �u), i =
1; � � � ; P op size.
For generation= 1:Max gen % GA

For i = 1: Pop size
Get ith �.
Compute centersith �t+1’s in (26), and widthsith �t+1’s in

(27).
Establish a new matrixR
While jJt;min � Jt�2;minj=Jt�2;min >Threshold%update

Wt+1

Compute matrixE in (12).
ComputeA in (19),B in (20).
Computeith�opt in (21),ithWt+1 in (28), andithJt+1;min

in (11).
end
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Fig. 8. Diagram of simulated truck and loading zone.

Putith Jt+1;min into fitness vector.
End
Perform selection, crossover, and mutation. % for next generation

End
Optimal�opt is found.
For premise part: centers(�t+1), widths(�t+1), and matrixR are
found.
For consequent part:(�l= 0; �u) of �, �opt, Wt+1, andJt+1;min.
are found.

End

The performance of the algorithm will be illustrated using three pop-
ular examples.

V. EXAMPLES

The applications of the above GAs will be fully illustrated in this
section. Example 2 is the truck back up problem. Examples 3 and 4 are
nonlinear system identifications.

Example 2: Truck Back Up Problem: The well-known problem of
backing up a truck into a loading dock via the FNN controller [9], [13],
[14] will be considered in this section. The FNN in Fig. 5 will be fully
utilized and tuned by our GAs. Fig. 8 shows the truck and loading zone.

The truck is located by three variablesx, y, and�, where� is the
angle of the truck with the horizontal axis and0 � x � 20,�115� �
� � 295�. The steering angle� is within [�40�; 40�], which is to
control the truck. The truck moves backward by a fixed unit distance
at every step. Because we assume enough clearance between the truck
and the loading zone,y is not considered. We must first prepare many
pairs of data forx, �, and� as the training data such that the final
state(xf ; �f) is equal or close to (10, 90�). In this simulation, we
normalized [�40�; 40�] into [0, 1].

To cover the whole situation, the following 14 initial states are used
to generate desired input-output (I/O) pairs:(x0; �0) = (1, 0�), (1, 90�),
(1, -90�), (7, 0�), (7, 90�), (7, 180�), (7,�90�), (13, 0�), (13, 90�),
(13, 180�), (13, 270�), (19, 90�), (19, 180�), and (19, 270�). Also, the
following approximate kinematics are used:

xt+1 = xt + cos(�t + �t) + sin(�t) sin(�t) (32)

yt+1 = yt + sin(�t + �t)� sin(�t) sin(�t) (33)

�t+1 = �t � sin�1
2 sin(�t)

l
(34)

wherel is the length of truck. In this simulation, we assumedl = 4.
Equations (32)–(34) will be used to obtain the next state when the
present state and control are given. Sincey is not considered, (33) will
not be used. Further we let the Ts be the fuzzy membership functions

TABLE II
CENTER AND WIDTH FOR FUZZY SETS OFx

TABLE III
CENTER AND WIDTH FOR FUZZY SETS OF�

TABLE IV
FUZZY RULES

(Gaussian functions) of steering angle�. The centers of T1, T2, T3, T4,
T5, T6, and T7 are�40�, �20�, �7�, 0�, 7�, 20�, and40�, respec-
tively. Table II shows the initial fuzzy sets ofx (Q1� Q5) which are
represented by the centers and widths of Gaussian functions.

The centers and widths of membership functions of�(R1� R7) are
listed in Table III. Table IV shows the fuzzy rules.

We use 16 bits to form the chromosome pattern. The chromosomes
will be mapped to the real values in range(�l; �u). To increase the
efficiency, we define mutation ratePm and crossover ratePc [9] as

Pm = exp(0:05k=Max gen)
�1 (35)

Pc = exp(�k=Max gen) (36)

wherek denotes thekth generation. Table V shows all the parameters
in the GAs process.

The value of initialJ is 0.051 76. After five iterations, we have an
excellent result as shown in Fig. 9. Fig. 9 also shows the performance
comparison with other cases(bbb � ddd) in which the learning rates are
fixed.

Tables II and III show that final centers and widths of the member-
ship functions have not been changed a lot from the initial ones. The
optimal learning rates�opt, �opt, (�l; �u) andJ of 5 iterations are
shown in Table VI.

From the above table, the values of�opt is very close to one, which is
�’s upper bound�u, and�opt is derived from (21). The final weighting
factors of the fuzzy rules are shown in Table IV. During the simulation,
the tolerated ranges ofx and� are defined as [9.85, 10.15], [89�, 91�],
respectively. The truck trajectories of this simulation are shown in Figs.
10 and 11 with different initial positions (case:aaa � jjj).

Example 3: Nonlinear System Identification Second Order System:
The plant to be identified is described by the second-order difference
equation [14]–[17]

y(k + 1) = g[y(k); y(k(1)] + u(k) (37)
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TABLE V
PARAMETERS FORGA

Fig. 9. Performance comparison for Example 2.Casea: Our optimal�, �;
Caseb: � = 0, � = 0:6. Casec: � = 0:2, � = 0:7; Cased: � = 0:9,
� = 0:1.

TABLE VI
LEARNING RATE � , � , (� ; � ), AND J

where

g[y(k); y(k(1)] =
y(k)y(k� 1)[y(k) + 2:5]

1 + y2(k) + y2(k � 1)
: (38)

A series-parallel FNN identifier [14], [15] described by the following
equation

ŷ(k + 1) = f̂ [y(k); y(k � 1)] + u(k) (39)

will be adopted, wherêf [y(k); y(k � 1)] is in the form of (24) with
two fuzzy variablesy(k) andy(k� 1). Training data of 500 points are
generated from the plant model, assuming a random input signalu(k)
uniformly distributed in the interval [�2, 2]. The data are used to build
fuzzy model forf̂ . They(k) andy(k�1) are allocated with four fuzzy
sets (Q’s and R’s) in Tables VIII and IX, respectively. Hence 16(= 42)
fuzzy rules are required. The initial centers and widths ofy(k) and
y(k � 1) are shown in Tables VII and VIII. The mutation ratePm in
(35) and crossover ratePc in (36) are applied again. The parameters
for the GA are listed in Table IX.

The initial value ofJ is 3.2268. After 606 iterations, the trajectory of
J of first 29 iterations via iterationt is shown in Fig. 12. It also shows
the performance comparison with other cases(bbb � eee).

After the training process is finished, the model is tested by applying
a sinusoidal input signalu(k) = sin(2�k=25) to the fuzzy model.
Fig. 13 shows the output of both fuzzy model and the actual model.
The total squared errorJ using 120 data items is 0.0023. This example
once again shows the tremendous effect of using optimal learning rates.

The final centers and widths of membership functions fory(k) and
y(k � 1) are also listed in Tables VIII and IX, respectively. Table X
shows the fuzzy rules and final weighting matrix.

Fig. 10. Truck trajectories using fuzzy neural network controller.

Fig. 11. Another five truck trajectories using fuzzy neural network controller.

TABLE VII
CENTER AND WIDTH FOR FUZZY SETS OFy(k)

TABLE VIII
CENTER AND WIDTH FOR FUZZY SETS OFy(k � 1)

TABLE IX
PARAMETERS OFGA

The optimal learning rates�opt, �opt, (�l; �u) andJ of certain it-
erations are shown in Table XI.
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Fig. 12. Performance comparison for Example 3.Casea: Our optimal�, �.
Caseb: � = 0:5, � = 0:8. Casec: � = 0:4, � = 0:4. Cased: � = 0,
� = 0:6. Casee: � = 0:1, � = 0:2.

Fig. 13. Outputs of the planty (solid line) and the identification model̂y
(dashed line).

Example 4: Nonlinear System Identification First Order System: In
Example 3, the input is seen to occur linearly in the difference equation
describing the plant. In this example [15], the plant to be identified is
of the following nonlinear form:

y(k + 1) = g[y(k); u(k)] (40)

where the unknown functiong has the following nonlinear form:

g(x1; x2) =
x1

1 + x2
1

+ x32 (41)

andu(k) = sin(2�k=25)+ sin(2�k=10), y(k) is distributed in range
[�7.3713, 7.4410]. The series-parallel identification model is

ŷ(k + 1) = f̂ [y(k); u(k)] (42)

wheref̂ is in the form of (24) with two fuzzy variablesxxx1 andxxx2.
The fuzzy variablesxxx1 andxxx2 are defined to have five fuzzy sets re-
spectively. Hence 25(= 52) fuzzy rules are required. Also 60 training
data items are generated for training purposes. The initial centers and
widths of two fuzzy variablesx1 andx2 are shown in Tables XII and
XIII. Mutation ratePm in (35) and crossover ratePc in (36) are ap-
plied again. The parameters for GAs are listed in Table XIV.

After 589 iterations, the trajectory ofJ of first 29 iterations via iter-
ationt is shown in Fig. 14. It also shows the performance comparison
with other cases(bbb � eee) in which the learning rates are fixed.

TABLE X
FUZZY RULES AND FINAL WEIGHTING FACTORSw

TABLE XI
LEARNING RATE � , � , (� ; � ), AND J

TABLE XII
CENTER AND WIDTH FOR FUZZY SETS OFx

TABLE XIII
CENTER AND WIDTH FOR FUZZY SETS OFx

Fig. 15 shows the outputs and the model after the identification pro-
cedure was terminated. After recall, the total squared errorJ using 120
data items is 0.0131.

The final centers and widths of membership functions ofx1 andx2
are listed in Tables XII and XIII, respectively. Table XV shows the
fuzzy rules and final weighting matrix.

The optimal learning rates�opt, �u andJ of certain iterations are
shown in Table XVI. Due to�opt = [�l(= 0) + �u]=2, we avoid
showing the value of�opt.

VI. CONCLUSION

The stability analysis of a dynamic learning rate in a simple
two-layer neural network is first explored in this paper. It has been
found that the dynamic stable optimal learning rates in the sense of
maximum error reduction must be positive. This result can be used
in any dynamic FNN that includes the simple two-layer NN as the
consequent part. In order to demonstrate this effectiveness, a genetic
algorithm is devised to fully utilize this result to fine-tune the two
learning rates in a dynamic FNN. In this case, we only have to search
for the optimal learning rate in the premise part of the FNN. The
other optimal learning rate for the consequent part can be determined
immediately from the proposed innovative approach for the two-layer
NN in this paper. Several popular examples are considered and it
has been found that in all the examples the FNNs are trained in a
convergent way as expected. Performance comparisons with different



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 3, JUNE 2001 475

TABLE XIV
PARAMETERS FORGA

Fig. 14. Performance comparison for Example 4.Casea: Our optimal�, �.
Caseb: � = 0:5, � = 0:8. Casec: � = 0, � = 0:6. Cased: � = 0:4,
� = 0:4. Casee: � = 0:1, � = 0:2.

Fig. 15. Outputs of the planty (solid line) and the identification model̂y
(dashed line).

TABLE XV
FUZZY RULES AND FINAL WEIGHTING FACTORSw

learning rates in all examples are also presented. It is believed that
the new results presented in this paper can be applied to any other

TABLE XVI
LEARNING RATE � , � , (� ; � ), AND J

applications that utilize the dynamic FNNs, which includes two-layer
NNs.
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