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Abstract—The stability analysis of the learning rate for a two-layer
neural network (NN) is discussed first by minimizing the total squared
error between the actual and desired outputs for a set of training vectors.
The stable and optimal learning rate, in the sense of maximum error
reduction, for each iteration in the training (back propagation) process can
therefore be found for this two-layer NN. It has also been proven in this
paper that the dynamic stable learning rate for this two-layer NN must be
greater than zero. Thus it is guaranteed that the maximum error reduction
can be achieved by choosing the optimal learning rate for the next training
iteration. A dynamic fuzzy neural network (FNN) that consists of the
fuzzy linguistic process as the premise part and the two-layer NN as the
consequence part is then illustrated as an immediate application of our
approach. Each part of this dynamic FNN has its own learning rate for
training purpose. A genetic algorithm is designed to allow a more efficient
tuning process of the two learning rates of the FNN. The objective of the
genetic algorithm is to reduce the searching time by searching for only
one learning rate, which is the learning rate of the premise part, in the
FNN. The dynamic optimal learning rates of the two-layer NN can be
found directly using our innovative approach. Several examples are fully
illustrated and excellent results are obtained for the model car backing up
problem and the identification of nonlinear first order and second order
systems.

Index Terms—Backpropogation, fuzzy neural networks, genetic algo-
rithm, learning rate.

——, “Interactive decision making for multiobjective nonlinear pro-

(NN). Basically the BP algorithm is of descent type, which attempts
to minimize the difference (or error) between the desired and actual
outputs in an iterative manner. For each iteration, the parameters and
weights are adjusted by the algorithm so as to reduce the error along a
descent direction. In doing so, values, which are called learning rates,

— "An interactive fuzzy satisficing method for multiobjective non-should be properly set in the BP algorithm. Authors in [5] proposed

dynamic optimization of the learning rate using derivative information.
In [5], it was shown that the relatively large or small learning rates
may affect the progress of BP algorithm and even may lead to failure
of the learning process. However, the analysis of stable learning rates
was not discussed in [5]. Recently genetic algorithms (GAs) [6]-[10]
have emerged as a popular family of methods for global optimization.
GAs perform a search by evolving a population of potential solutions
through the use of its operators. The authors in [9] proposed GAs to
tune the parameters of the Gaussian membership functions. Although
reasonable results have been obtained in [9], the analysis of stable
learning rate was also not discussed at all.

In order to perform the stability analysis of the learning rate [11]
in FNN, we start from the stability analysis of the learning rate for a
two-layer neural network (NN) by minimizing the total squared error
between the actual and desired outputs for a set of training vectors.
The stable and optimal learning rate, in the sense of maximum error
reduction, for each iteration during the back propagation process can
be found for this two-layer NN. It is proven in this paper that the stable
learning rate for this two-layer NN must be greater than zero. Following
Theorem 1, it is guaranteed that the maximum error reduction can be
achieved by choosing the optimal learning rate for the next training
iteration. We then propose a dynamic fuzzy neural network that con-
sists of the fuzzy linguistic process as the premise part and the two-layer
NN as the consequence part. Each part has its own learning rate to be
decided. The stable and optimal learning rate of the two-layer NN in
the proposed FNN can also be found directly by our method, provided
that the output of the premise part (or the input of the consequent
part) remains the same during the training process of the consequent
part. In order to find the best learning rate for the premise part, a new
genetic search algorithm is proposed together with the stable and op-
timal learning rate in the consequent part. The major advantage of this
new genetic algorithm is to reduce the searching time by searching only
one learning rate, which is the learning rate of the premise part, in the
dynamic FNN. In comparison with the searching process proposed in
[9], our proposed GA has the benefit of reducing the searching com-
plexity dramatically.

It is well known that backing up control of a truck is a very difficult
exercise for all but the most skilled truck drivers since its dynamics
are nonlinear and unstable. Based on our new methodology, a FNN
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Then we have

J Tr(EE"). (13)

. 1

TPz
Equation (13) actually considers all tiietraining vectors to yield

the total squared error. Other approaches [4], [14], [15], only consid-

ered the squared error for a single training vector.
To updatelil’, we apply the back propagation method as follows:

S O
Fig. 1. Two-layer NN. Wers = We = e aw |, (14
Il. DYNAMIC OPTIMAL LEARNING RATES FOR ATWO-LAYER NN wheret denotes theth iteration. Using chain rule, we get
Consider the following simple two-layer NN in Fig. 1, which will i 1
form the consequent part of the FNN adopted in this paper where Wipr = We = ¢ P. ZRE (15
. L After training, assuming zero error, we should have matrix form
r=[n o -] €R D = RTW. It should be noted we assume that the learning rate for
the training data vector (1) each iteration during the back propagation process is different, i.e., the
W=w, w, - w,]eR"™ learning rates are not fixed. In order to find the optimal learning rate
_the;vei hin r;atrix 2 for 3;, we have the following theorem.
L N ghting g . Theorem 1: The optimal learning rate, defined in (15) can be
w, =[w; wi - wi]T €R found from the minimum of a quadratic polynomiaB? + Bj3 = 0,
theith weighting vector (3) whereA(> 0) andB(< 0) can be obtained from the training vecior
y=[n v - yz]' €R? desired output vectat and the weighting matri%y’.

Proof: First, we must find the stable range fér. To do so, we

the actual output vector ) define the Lyapunov function as
d=1[dy dy --- dz]" eR?
the desired output vector (5) V=J (16)

and_T denotes ma_trl_x transpose. . - . where J is defined in (13). The change of the Lyapunov function is
Given a set of training vectors, which forms the training mafix 12 9 1. ) .

. . . . . . V = Jiw — Ji. Itis well known that ifAV < 0, the response of

in (7), it is desired to use the back propagation technique to train t € system is quaranteed to be stable.&6F < 0 we have

above NN so that the actual outputs converge to the desired outputs. y g "

The actual outpuy. is defined as

Jip1 —J < 0. a7
L
Nl T
Y= = Z”wﬂ L. ©) Here we consider all theP training vectors as{r, =
_ N =1 _ P! #2 o #F)T}i = 1,---, P}. From (15) (forw (t + 1)) and
Given P> training vectors, there should iedesired output vectors. the fact that the training vectors remain the same during the training
In matrix notations, we let process, i.ex?(t + 1) = rP(t) = r7), we haveJ, 1 [from (13)] as
R=[r, r, - r,]€ RIXP follows:
the input training matrix (7) Joi1 = (2PZ)*1T7'(Et+1EfT+1)
- , T _ 5PxZ .
Y=1ly, v, - ypl €R = (2PZ) 'Tr[(R"Wiy1 — D)(R* W1 — D)']
the actual outputlmatrlxp 4 (8) = (2PZ) 'Tr{[(R* (W, — .(PZ) 'RE,) - D)]
B P
D=[dy do - dp] €R (R (W, — «(PZ)""RE)) - D)}
the desired output matrix. 9) — (2PZ)"'T+[(R"W, — 3.(PZ)"'R"RE, — D)
The actual output matrix” (8) can be shown as W/ R—-p(P2)""E/R"R—D")]
Y = R'W. (10) = (2PZ)"'Tr{{(R"W: — D) - 3:(PZ)"'R" RE,]

_ _ _ o JAWEIR - DTy = s(P2Z) *EF RTR]}

It is desired to quate (or train) the vyelghtlng matiix so that the — (2PZ) "' Tr[(E: — D,t(PZ)fl-HTREt)
actual outputy. will converge to a desired outpdt. To do so, we o g
define the total squared errdras follows: (Ef = 08(PZ) " Ei B R)]

= (2PZ) 'Tv[E.E} —25.(PZ) 'R' RE,E/

P Z
1 » Py 2 22/ =2 pT T pT
J = y? —db)”. PZ)" "R RE\E, R" R
J= 55— > (=) (11) +5.(PZ) CREE R ]T .
p=12=1 =Ji+ B(—PZ)" Tr[(PZ)" R RE.E; ]
The aboveJ can also be reorganized using matrix notation. To do +3i(2PZ)"'Tr[(PZ)*R" RE,E/ R" R)
so, we define error functio®’ as = J + /ﬁ’t(—PZ)_‘ T'r[(PZ)_1 EtTRTREf,]

E=Y-D=R"W-D. (12) +822PZ)" ' Tr[(PZ) *R" RE.E R"R).
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JmJi 4

Pop=(fr+ )2

) . . Fig. 3. Two-layer NN with three inputs and two outputs.
Fig. 2. Parabolic trajectory of,, — J; (or A3? + B3) versusg.

Hence Algorithm |: Dynamic Optimal Learning Rates for a Two-Layer NN
Stepl: Given the initial weighting matrix¥y, training matrix? and
Jisi = Ji = B(=PZ)""T+[(PZ)" E' R" RE,] deziredt_outi)lut matrip, ftlgd(t_?ﬁ initial alc)tual output matriXo (10)
2 —1, —o T T T and optimal learning ratéy eorem 1).
+ ’jt (2PZ)"Tr[(PZ)"R RE.E, R F] Step2: Start the back propagation training process. Iteration count
= Af; + Bp: (18) = 0.
Step3: Find if the D andY; (10) are close enough or not? If Yes,
where GOTO Step 7.
Step4: Update the weighting matrix to yield’;+, by (15).
A=HPZ)*Tr[R" REE{ R R| Step5: Find the optimal learning raté, , (Theorem 1) for the next
. L Pz iteration.
=3P D Step6: t = t + 1. GOTO Step 3.
p=1z=1 Step7: End.
L P 2 -
: (Z () S r((E - di)) (19)
=1 i=1 The following Example 1 illustrates the major concept in this
B=—(PZ)*Tr|E R"RE/] section.
P =z Example 1: Fig. 3 shows a two-layer NN with three inputs and two
=—(Pz)™? Z Z outputs.
p=12=1 Given input training matribx®, desired output matrixD (defined in
L P v v (7) and (9)) as
<<yf =) S > iyl - di)) . (20
= = R=[r, ry 13 14]
Itis obvious that (19) and (20) contain quadratic matrices, therefore, [—3.0852  1.0449  2.9027 5.0642
the A should be greater than zero aftdshould be less than zero. = | -4.1030 —-4.3199  0.5842 1.4118
Therefore we have | —5.0811 6.31611 —0.9816 1.2853

L(=3)x P(=4)
r—0.9346 —0.0882
1.0108 0.1857
0.0664 —0.9783
0.4995 —1.3264

Jigr —Ji = A+ B3 < 0.

Fig. 2 shows the parabolic trajectory df3®> + B3 versusf. In
order to satisfy (17), we must havis® + B3 < 0. SinceA > 0, it
is obvious that the stable range @fis (3, 3..), whereg; and 3, are
the two roots of43? + B3 = 0. From Fig. 2, we also know that the ~ The initial weighting matrix7’; is chosen to be
optimal 3(= 3.,+) is the median off, andj.,, i.e., when

P(=4)x Z(=2)

—0.0531 0.1050
Bopt = (Bu + B1)/2 (21) Wi = | -1.7333  1.3398
) —0.9498  —1.2728 | _4)y 7(=2)
A,@’ﬁpt + Bf.pe is at its minimum. This is due to the symmetrical )
property of the parabola in Fig. 2. Th&,. will not only guarantee
the stability of the training process, but also has the fastest speed of . - .
converger?ée gp QE Dp (iearnlng rate? for each iteration can be found from (14)—(20) and are
i ; - . “ o listed in Table I.
By inspecting (19) and (20), it is obvious that the stable range of After finding the stable range of each iteration, we chddsg,, to
is a function ofr, d andW. Theorem 2 shows that the stable Iearning7 9 9 ’ o

he initial J is 28.1832. After 30 iterations, the stable range of

rate should be positive in the two-layer NN with a set of fixed trainin e the real learning rate for that iteration and perform the update of
e weighting matriX¥’. Fig. 4 shows the trajectory of total squared

vectors. . .
Theorem 2: For the two-layer NN defined in Fig. 1, the Stableerror.J. Itis obvious that the values of total squared error decreased as

learning rate should be positive, i.8.,> 0. expecte_d. _ L
Proof: From Theorem 1, we know that > 0 andB < 0. The final weighting matriXVy is
Therefored3® + B3 < 0 implies thatB3 < —A3*> < 0. Since
B < 0, we have the end result gf > 0. Q.E.D. 0.0657 —0.3169
Algorithm | shows the overall computational aspects for the back Wy =1-0.0039  0.0852
propagation training process of the above two layer NN. 0.1461 0.1396 ] 1 (—yyx z(=2)
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TABLE |
COEFFICIENT B, THE LEARNING RATE 3,
ITS STABLE RANGES, AND J

B Bi | Pow S J
11-3982670 | 0 0.1260| 0.2520 3.0903
2§ -343532 | 0 [0.1240| 0.2481 0.9596
3| -5.6185 0 10.1834 0.3668 0.4444
281-9.2024e-8 | 0 10.1422 0.2844 | 1.29765¢-4
291-3.5148¢-8 | 0 10.1806| 03612 | 1.29762¢-4
30{-2.1644e-8 | 0 {0.1422| 0.2844 | 1.29761e-4

LayerI LayerIl LayerIlII LayerIV

3 \
281832
085 Premise Consequence
Total
Squared i i i
qﬁ;‘f 20 | Fig. 5. Proposed FNN in this paper.
J
18
10
5 1.2976e-004—\
0
¢ 5 10 15 20 25 30
Fig. 4. Total squared errof via iterationt.
Fig. 6. Another look at the consequent part in Fig. 5.
In the end, we have
N
r—0.9346 —0.08827 ro= =[] Fl(xo) (3)
1.01 1857 : i=1
p— | LOI08 OIS pr W,
0.0664 _0-9" 83 wherey; is the truth value of the premise of thid rule. The outpuy.
0.4995 —1.3264 ] of the fuzzy reasoning can be derived from the following equation:
[—0.9295 —0.08147
. 1.0083 0.1823 y: =afb
| 0.0452 —1.0071 | Lo L
0.5153 —1.3050 o= wip b=) m  (=12--.2)
=1 =1
y=[n v - yz'. (24)

Il. FNN wiTH DYNAMIC STABLE LEARNING RATE . L
By adjusting the weighting factors and the parameters of the

The FNN in Fig. 5 was proposed in [4] for the control of a model cagaussian functions of the neural network, the learning algorithm can

to follow a specified path, but without the stability analysis of learninge derived to minimize the total squared erfodefined in (11). To
rates. Here we adopt the identical structure as shown in [4] but igydater!, we use

place the B-spline membership functions with Gaussain membership

functions. Fig. 5 contains the premise part and consequent part. Each l oy oJ
. . i : ! ) n(t+1)=mnt) —ar —— (25)
part has its own learning rate. The learning rate in the premise part is |,
to fine-tune the Gaussian membership functions, whereas the learning
rate in the consequent part is to adjust the weighting factors. Fig. 6Using the chain rule, we get
redraws the consequent part of Fig. 5, which clearly shows that the L P
two-layer NN in Fig. 1 is the consequent part of Fig. 5. The stability l R VA p_ p
analysis in Section Il will be used to analyze the stability of the FNN milt 1) =) —a pP-Z ;;(y” )
and then a more efficient GA is devised in Section IV to tune this FNN. I |
The reasoning rule can be established by the following: Y ; L (1507(;7;)(5)) (26)
Rule I: If 1 is F| and - and zx is Fy then whereq, is a current learning rate for tuning Again, using a similar
y, is w! and---and y, is wh method, we have the following for!, w!:
r Zz
wherel = 1,2,---, L, Fi’s are fuzzy membership functions of the Ji(f"l‘ 1) = Ug(t) — o 1 ZZ(”I: —d7)
antecedent part, and. € T are neural network weights of the conse- ' P-zee"
quent part. TheF,’s, whose functions are Gaussian functions, and w =g (o =)
are . Ep Gt M (27)

b Tl

2

! Tq — T)q 2 1 1) = 4 1 Pl/'z)—dg 1 28
F(xq)=exp|—| — (22) w (t+1) = w.(t) -/ tp. g Z M (28)

Tq p=1
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probability valuep; to each chromosome. The probability vajueis

Optimal learning defined as
xll xl2 ,x{ rates f (i=1,..., Y Pop_size
X= : Leaming rate o M;foracemtaing [ pi =i Z Pl (30)
x;/ x:, xh (for a certain /) (Eq.29) (Algorithm 1) (Ea.(8) k=1
Training Matrix X @ The chromosome with a larger fithess value has a larger probability
» of selection. The crossover operation combines the features of two
Premise Part Conseauent Part parent chromosomes to form two similar offspring by swapping
corresponding segments of the parents. The parameters defining
Fig. 7. Training process of the proposed FNN. the crossover operation are the probability of crossdverand the

crossover position. Mutation is a process of occasional alternation
of some gene values in a chromosome by a random change with a
where 3, is a current learning rate for tuning’, b defined in (24). probability less than the mutation rafon.
Hence the input matrid? of the consequent part, i.e., the two layer Gas[10]are used to maximize a function or to do a minimization. In
NN, becomes our application, the error functiohneeds to be scaled and transformed
into another function to meet the fitness evaluation requirement. For a

© L ) ) L , » L = givenJ, J = ¢10*,1 < ¢ < 10, the fitness function)(.J) is
pi /> bl Sy e ul [ defined as [8]
2?1 2?1 171 L/'
pe [ opkows [y e pd )Y e , v )AL= ifA <0
R= = = = - () = (wl0” = Cogn , 1-w/10 (31)
L L L
m leri w2 Z”% vt Z#f EquaFion (31) finds a larger fiFne§s value for smallerin otherl
L = = =1 T Lxp words, if the value off is larger, it will be mapped to a smaller fit-

(29) nessvalue and vice versa. For exampld, i 0.007, therh = —3 and
(31) will yield a fitness value of 3.3. I is 10238, therh = 4 and (31)
) ) ) ) o will be mapped to 1.8976e-005.

For each iteration during the back propagation training process ofg|iowing the training process as explained in Fig. 7, we start with an
the premise part (with a chosen learning rate), we can have the abpygy) learning raten, in the premise part and proceed to train the NN
1t matrix for the consequent part. Then we can apply the results ji, the dynamic optimal rates obtained from Theorems 1 and 2 in the
Theorems 1 and 2 to find the dynamic optimal learning rates for @nsequent part. By choosing the optirda), in each iteration in the
the iterations during the training process of the consequent part. Fﬁﬂning process of the NN, the total squared erfaran be found for
following Fig. 7 shows the proposed training process of the whole FNWis initial . The search must then be continued to yield the optimal

in Fig. 5. ] ] ) ) wope SUCh that the total squared errbis a minimum. It is obvious that
The number of iteration3/ in the consequent part of Fig. 7 dependse only have to search far,,,+ in the FNN. The determination af, ¢

upon the convergent rate set by the designer. In order to find the optimakom Theorems 1 and 2. Otherwise, the FNN with two learning rates
learning rate of the premise part, we rely on a genetic search algonth(lfg.be searched for by GAs, [9]) will require much more searching time.

The following section will explain the details of the proposed new gerhe gyerall search algorithm, which summarizes the whole concept, is
netic search algorithm based on Fig. 7. listed below.

Algorithm 1I: Tuning of FNN via Genetic Algorithm
IV. TUNING FNN USING A GENETIC ALGORITHM Step 1: Initialize weighting matriX4” randomly. Initialize centers
n's, and widthso’s. Set values tdteration, «;, a,,, Pop_size,
GAs are iterative search algorithms based on an analogy with thelM az_gen, andThreshold
process of natural selection (Darwinism) and evolutionary genetiGtep 2:
The main goal is to search for a solution, which optimizes a user-desrt = 1: Iteration

fined function called the fitness function. To perform this task, it main- Initialize population Pop = {a;}, a; € (o, o0), i@ =
tains a population or a gene pool of randomly encoded chromosomes, - - -, Pop_size.

(orindividuals, solution candidatesypp; = {ai,---,al °P="**} for For generation= 1: Maz_gen % GA

each generation Eacha is selected randomly following a uniform Fori = 1: Pop_size

distribution over search space and can be binary strings or areal value.  Getith «.

Itrepresents a potential solution to the problem athand and is evaluated. =~ Compute centerah #,’s in (26), and widthgth o¢1’s in
Then, a new population (generatior- 1) is formed by selecting the 27).

more fit chromosomes. Some members of the new population undergo  Establish a new matri®

transformation by means of genetic operators to form new solutions.  While | J: win — Jt—2 min|/Jt—2,min >Thresholdupdate

After some generations, it is hoped that the best chromosome repre- Wi
sents a near-optimal solution. Compute matrixE in (12).
There are three operators: selection, crossover, and mutation. The se- ComputeA in (19), B in (20).
lection decides which of the chromosomes in a population are selected Computeth 3., in (21),ith W4 in (28), andith Ji41 min
for further genetic operations. Each chromosonire a population is in (11).

assigned a valug; of fitness. The fitness values are used to assign a end
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x=10,¢=90" TABLE I
CENTER AND WIDTH FOR Fuzzy SETS OFx
y Tnitial Final
Center Width Center Width
Q1 1.5 2.1 1.49968 2.09907
Q2 7 1 7.00496 1.00494
Q3 10 0.3 9.98299 0.34094
Q4 13 1 12.98543 1.02156
Q5 18.5 2.1 18.49925 2.10107

x,y)
% TABLE I

CENTER AND WIDTH FOR FUZZY SETS OF¢

=0  x=20
Initial Final
Fig. 8. Diagram of simulated truck and loading zone. Center Width Center Width
R1 65 17 -64.99998 | 17.00004
R2 0 15 0.00002 15.00005
. . ) R3 52.5 14 52.50135 | 14.00273
Putith .J:41 min into fitness vector. R4 90 3 90.00288 3.00629
End R5 127.5 14 127.50041 | 14.00024
) . . R6 130 15 179.99598 | 15.00007
Perform selection, crossover, and mutation. % for next generation R7 245 17 245.00001 | 17.00008
End
Optimal «.,¢ is found.
P vt TABLE IV

For premise part: centefg,+1 ), widths (o,+1), and matrixR are FUZZY RULES

found.
B0/ 3 . Qi @ & o 5
For consequent partss;= 0, 5.) of 3, Bopt, Wi, @ndJet1 min. RI | T2x0.5651 | T2x0.8270 | 0x0.8480 | 0x0.3945 | 0x0.6629
are found. R2 | T2x0.6847 | TIx0.8553 | T1x0.7884 | TIx0.1012 | 0x0.9979
End R3_| T5x0.9738 | T3x1.0657 | T2x1.1486 | T1x0.2397 | T2x0.9525

R4 | T6x1.0639 | T6x1.0785 | T4x1.0118 | T2x1.4621 | T2x0.8656
R5 | T7x0.9739 | T7x0.9330 | T6x0.9005 | T5x0.9724 | T3x1.0264
R6 | 0x0.1407 | T7x0.8863 | T7x0.8771 | T7x0.8454 | T6x1.0043
R7 | 0x0.4147 | 0x0.8072 | 0x0.9578 | T7x0.8545 | T6x0.9961

The performance of the algorithm will be illustrated using three pop-
ular examples.
(Gaussian functions) of steering angléhe centers of T1, T2, T3, T4,
T5, T6, and T7 are-40°, —20°, —7°, 0°, 7°, 20°, and40°, respec-
tively. Table 1l shows the initial fuzzy sets af (Q1 ~ Q5) which are

The applications of the above GAs will be fully illustrated in thisrepresented by the centers and widths of Gaussian functions.
section. Example 2 is the truck back up problem. Examples 3 and 4 argpe centers and widths of membership functions@21~ R7) are
nonlinear system identifications. listed in Table I1l. Table IV shows the fuzzy rules.

Example 2: Truck Back Up Probleriihe well-known problem of  \ye yse 16 bits to form the chromosome pattern. The chromosomes
backing up a truck into a loading dock via the FNN controller [9], [13}yi|| pe mapped to the real values in range., «.,). To increase the

[14] will be considered in this section. The FNN in Fig. 5 will be fullygfficiency, we define mutation ratm and crossover ratBe [9] as
utilized and tuned by our GAs. Fig. 8 shows the truck and loading zone.

The truck is located by three variablesy, and¢, where¢ is the
angle of the truck with the horizontal axis abd& = < 20, —115° <
¢ < 295°. The steering anglé is within [—40°,40°], which is to Pe= exp
control the truck. The truck moves backward by a fixed unit distance
at every step. Because we assume enough clearance between the whekek denotes théth generation. Table V shows all the parameters
and the loading zoneg, is not considered. We must first prepare manin the GAs process.
pairs of data forr, ¢, andf as the training data such that the final The value of initial.J is 0.051 76. After five iterations, we have an
state(z ¢, ¢¢) is equal or close to (10, 99. In this simulation, we excellent result as shown in Fig. 9. Fig. 9 also shows the performance

V. EXAMPLES

Pm = eXp(O,DSk’/]\/[ax_gen) -1 (35)

(—k/Max_gen) (36)

normalized F40°,40°] into [0, 1]. comparison with other caséé ~ d) in which the learning rates are
To cover the whole situation, the following 14 initial states are usdiked.
to generate desired input-output (1/O) paitss, ¢0) = (1, @), (1, 9C), Tables Il and 11l show that final centers and widths of the member-

@1, -90), (7, @), (7, 90), (7, 180), (7, —90°), (13, C), (13, 90), ship functions have not been changed a lot from the initial ones. The
(13, 180), (13, 270), (19, 90), (19, 180), and (19, 270). Also, the optimal learning ratespt, Jopt, (31, 5.) and.J of 5 iterations are
following approximate kinematics are used: shown in Table VI.

From the above table, the valuesof,. is very close to one, which is
o y PR a’s upper bound,,, and3, ¢ is derived from (21). The final weighting
k1 = @t cos(d + et;) t sin(@d) sin(6:) (32)  factors of the fuzzy rules are shown in Table IV. During the simulation,
i1 = Yo +sin(@e 4 0:) — sin(¢,) sin(fe) (33)  the tolerated ranges efande are defined as [9.85, 10.15], [B91°],

, a1 <2 sin(é’t)> respectively. The truck trajectories of this simulation are shown in Figs.
G1+1 = &¢ — sin _— (34) L e - .
l 10 and 11 with different initial positions (case~ j).

Example 3: Nonlinear System Identification Second Order System
wherel is the length of truck. In this simulation, we assunieg 4. The plant to be identified is described by the second-order difference
Equations (32)—(34) will be used to obtain the next state when tRguation [14]-[17]
present state and control are given. Sigiée not considered, (33) will
not be used. Further we let the Ts be the fuzzy membership functions y(k+ 1) = gly(k), y(k(1)] + u(k) (37)
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TABLE V
PARAMETERS FORGA
60
Pop_size | Max_gen | Chromosome size & A Threshold
(bits) (Algorithm IT) 504
14 16 16 0.01 1 0.1
40|
30
20
10
0
30 25 400 __10 20 30 4060
Initial (x, y, §)—Final (x, y, §) No of Steps
Caseg | (1,-5,2)>(9.8724, 35.5243, 89.1725) [
Caseb | (8,2, 180)(10.0321, 68.9107, 90.9788") 68
Casec | (12,-8,0)->(9.8595, 50.6700, 89.4093") 59
Cased | (18, 10, 269 )—(10.0559, 54.0981, 90.8841") 60
Casee | (16, 16, 185')5(9.9185, 68.1484, 90.8965) 55
Fig. 10. Truck trajectories using fuzzy neural network controller.
7
1 2 3 4 5

6
Fig. 9. Performance comparison for ExampleCasea: Our optimala, 3; 50
Caseb: a = 0,3 = 0.6. Casec: « = 0.2, 3 = 0.7; Cased: « = 0.9,
8 =0.1. 40
3
TABLE VI 2
LEARNING RATE @opt, Bopts (315 Bu ), AND J ]
! Olopt yii Lot B J 9
1 ]0.9992 0 33.5857 | 67.1714 | 0.00818 4
2 | 09698 0 54.7069 | 109.4139 | 0.00769 3
3 {09356 | 0 [33.9742] 67.9483 | 0.00743 0 0 30 G0 o 1o 20 % 40 @ e
4 | 09974 0 55.3503 | 110.7006 | 0.00729 Initial (x, y, §)—>Final (x, y, ¢) No of Steps
5 | 0.9945 0 34.1053 | 68.2106 | 0.00719 Case £ [(10,-10, 270")—(10.0864, 48.5556, 90.8445") 7
Caseg | (3,6,45)—>(9.8727, 46.9418, 89.2060") 42
Case b | (8,0, -60")—(9.8668, 34,2177, 90.9225)) 39
Casei | (15,20, 145)->(10.1420, 67.5033, 90.9323") 48
where Case] | (12,15, -45 )(9.8667, 69.2272, 89.1791) )
y(k)y(k — D[y(k) + 2.5] Fig. 11. Another five truck trajectories using fuzzy neural network controller.
gly(k), y(k(1)] = 3 3 (38)
L+ y2(k) +y2(k — 1)
. . - . . TABLE VII
Asgrles-parallel FNN identifier [14], [15] described by the following CENTER AND WIDTH FOR FUzzY SETS OF (k)
equation
R Center Width
(1 — f _ Initial { Final | Initial | Final
g(k+1) = fly(k), y(k — D] + u(k) (39) TR E N R
. R L. . Q2 0 07933 | 03 | 0.6060
will be adopted, wherg[y(k),y(k — 1)] is in the form of (24) with 03 15 [ 17889 | 04 | 0.908¢
two fuzzy variableg (k) andy(k — 1). Training data of 500 points are Q4 3 | 26810 | 06 | 1.1325
generated from the plant model, assuming a random input sigkal
uniformly distributed in the intervaH 2, 2]. The data are used to build TABLE VIl

fuzzy model forf. They(k) andy(k — 1) are allocated with four fuzzy

h . CENTER AND WIDTH FOR FUzzY SETS OFy(k — 1)
sets (Q’s and R’s) in Tables VIl and IX, respectively. Hence 16{(F 4

fuzzy rules are required. The initial centers and widthy @f) and Center Width
y(k — 1) are shown in Tables VIl and VIII. The mutation ralen in Initial | Final | Initial | Final
(35) and crossover ratBc in (36) are applied again. The parameters Rt | -1 |05926) 05 | 09207

Rz 0 | 04880 | 03 | 08982
R3 | 15 | 17165 | 04 | 06837
R4 3 | 28133 | 06 | 09412

for the GA are listed in Table IX.

The initial value of/ is 3.2268. After 606 iterations, the trajectory of
J of first 29 iterations via iteration is shown in Fig. 12. It also shows
the performance comparison with other cades e).

After the training process is finished, the model is tested by applying TABLE IX
a sinusoidal input signat(k) = sin(27k/25) to the fuzzy model. PARAMETERS OFGA
Fig. 13 shows the output of both fuzzy model and the actual model. Forse T Hingor [ Coomowome T | o T Thweshold
The total squared errof using 120 data items is 0.0023. This example = = sdee bty | dlgorithuc

once again shows the tremendous effect of using optimal learning rates.
The final centers and widths of membership functionsyfdr) and

y(k — 1) are also listed in Tables VIII and IX, respectively. Table X The optimal learning rates.p¢, Jopt, (51, 3.) @and.J of certain it-

shows the fuzzy rules and final weighting matrix. erations are shown in Table XI.
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35 TABLE X

S::at:; P Fuzzy RULES AND FINAL WEIGHTING FACTORS w;
3

Error

R1 R2 R3 R4

Q1 0.4117 0.4045 0.2002 0.2612
Q2 | -1.1727 1.1728 0.9774 0.6328
Q3 | -17721 1.6982 1.9583 1.1646
Q4 | -1.9223 1.3623 2.1867 3.0141

TABLE XI
LEARNING RATE avopt, Bopt, (81, Bu), AND J

! Qopt Ji Sont Bu J
1_| 00158 | 0 113.0182] 26,0363 | _0.0536
2 00102 0 [12.8502] 25.7005 | _0.0290
, 3 13099921 0 | 13.1265] 26.2530 | _0.0198
604 [ 37506 |0 | 22,7768 45.5536 | 7.50450-003
Fig. 12. Performance comparison for ExampléCasea: Our optimala, 3. 605 | 3.5131 0 6.3826 | 12.7652 | 7.5041e-003
Caseb: « = 0.5, 3 = 0.8. Casec: « = 0.4, 3 = 0.4. Cased: « = 0, 606 | 3.9377 0 1242665 | 485329 |7.5037¢-003
3 =10.6.Caseea =0.1,3 =0.2.
TABLE XiIl
4 CENTER AND WIDTH FOR FUZzY SETS OF r;
3 Center Width
¥ Initial Final | Initial Final
i o1 5 | -58543 | 05 | 45812
2 Q2 3 [ 2371 | 03 | 2057
Q3 0 04524 | 03 1.7701
1 04 3 30177 | 04 | 05958
Q5 5 53000 | 06 | 22813
0
1 TABLE Xl
1 CENTER AND WIDTH FOR FUZZY SETS OF 75
N P Center Width
% 20 40 60 80 100 120 Initial | Final | Initial | Final
R1 2 20591 [ 06 [ 09166
Fig. 13. Outputs of the plang (solid line) and the identification modél R2 -1 -1.2908 [ 06 | 0.7372
(dashed line). R3 0 -0.0064 0.6 0.6909
R4 1 1.1998 06 | 0.7644
RS 3 2,0915 06 | 08010

Example 4: Nonlinear System Identification First Order System
Example 3, the input is seen to occur linearly in the difference equation . o
describing the plant. In this example [15], the plant to be identified is Fig. 15 shows the outputs and the model after the identification pro-

of the following nonlinear form: cedure was terminated. After recall, the total squared grrging 120
data items is 0.0131.
y(k+ 1) = gly(k), u(k)] (40) The final centers and widths of membership functions oandz:

are listed in Tables XII and XIIl, respectively. Table XV shows the
fuzzy rules and final weighting matrix.

where the unknown functiog has the following nonlinear form: B . o .
g g The optimal learning rates.,,:, 3. and.J of certain iterations are

1 3 shown in Table XVI. Due tQ3.,: = [Ai(= 0) + 5.]/2, we avoid
glrr,w2) = 7 T + 2 (41) " showing the value 0B,
andu(k) = sin(2wk/25) + sin(27k/10), y(k) is distributed in range VI. CONCLUSION

[—7.3713, 74410]The series-parallel identification model is The stability analysis of a dynamic Iearning rate in a simple

) two-layer neural network is first explored in this paper. It has been
Gk +1) = fly(k),u(k)] (42)  found that the dynamic stable optimal learning rates in the sense of
maximum error reduction must be positive. This result can be used
where f is in the form of (24) with two fuzzy variableg; andz.. in any dynamic FNN that includes the simple two-layer NN as the
The fuzzy variables:; andz- are defined to have five fuzzy sets re-consequent part. In order to demonstrate this effectiveness, a genetic
spectively. Hence 25(=?9 fuzzy rules are required. Also 60 trainingalgorithm is devised to fully utilize this result to fine-tune the two
data items are generated for training purposes. The initial centers égmtning rates in a dynamic FNN. In this case, we only have to search
widths of two fuzzy variables; andz: are shown in Tables Xl and for the optimal learning rate in the premise part of the FNN. The
XIll. Mutation rate Prn in (35) and crossover ratBc in (36) are ap- other optimal learning rate for the consequent part can be determined
plied again. The parameters for GAs are listed in Table XIV. immediately from the proposed innovative approach for the two-layer
After 589 iterations, the trajectory of of first 29 iterations via iter- NN in this paper. Several popular examples are considered and it
ationt is shown in Fig. 14. It also shows the performance comparistvas been found that in all the examples the FNNs are trained in a
with other casegb ~ e) in which the learning rates are fixed. convergent way as expected. Performance comparisons with different
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TABLE XIV
PARAMETERS FORGA

Pop_size

Meax_gen

Chromosome
size (bits)

4

Threshold

20

30

18

0.01

0.08

25

20

10 15

t

30

Fig. 14. Performance comparison for Examplé&Césea: Our optimala, 5.
Caseb: o« = 0.5, 3 = 0.8.Casec: « = 0,3 = 0.6. Cased: « = 0.4,
B =04.Casee o = 0.1,3 = 0.2.

-8 k
0 20 4 60 80 100 120

Fig. 15. Outputs of the plang (solid line) and the identification model
(dashed line).

TABLE XV
Fuzzy RULES AND FINAL WEIGHTING FACTORS w;
R1 R2 R3 R4 RS
Qi | -12475 | 3.4060 | -3.0671 | -2.0815 | 3.0663
Q2 | 112106 | 0.6830 | -1.0486 | -1.3534 | 2.3886
Q3 | 84582 | 11653 | 09901 | 0.6677 | 11.0607
Q4 | 25946 | 29471 | -1.1356 | 0.6394 | 84535
Q5 | -1.1667 | 68722 | 3525 | -1.1096 | 10.8100

NNs.

(1]

(2]

(3]

(4]

(3]

(6]
(7]

(8]

(9]

(20]
[11]

[12]

[13]
[14]

[15]

[16]

17
learning rates in all examples are also presented. It is believed thi[i'[ !
the new results presented in this paper can be applied to any other
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TABLE XVI

LEARNING RATE avopt, Bopt, (31, Bu), AND J
N o (5] 2w | & J

T 10,0646 | 0 |12.9452] 25.8005 | 0.093%
7 10069 | 0 | 144257 28.8514 | 0.0409
3 706018 | 0 | 104365 208751 | 0.0225
335 0.0375 | 0 [ 82795 | 165590 | 5.897603
440 7.9881 | 0 | 16.1084 | 322168 | 5.8626e-3
341] 0.1206 | 0 | 10.4802] 209604 | 5.846403
387] 02126 | 0 | 9.9095 | 19.8190 | 5.5508 03
5881 02517 | 0 1103565 | 20.7129 | 5.5493 o3
5891 02202 | 0 | 100279 20.0558 | 3.5473¢3

applications that utilize the dynamic FNNs, which includes two-layer
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