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Abstract: Providing higher degree superscalar instruction fetching is a major concern in a high
performance superscalar processor design. In x86 architectures, the variable-length instructions
make fetching multiple instructions in a cycle dif®cult. A common practice is to use predecoded
information to help in instruction fetching, while the complex instruction formats induce high
redundancies in storing and processing the pre-decoded information in the cache. In the paper, the
authors propose to use an Instruction Identi®er to predict instruction length and store the
instruction pointers as superscalar instruction group indicators. With this method, the dif®culty
of achieving a high instruction fetch degree (>3) can be overcome. Simulation results suggest that
the Instruction Identi®er with a 64-entry table is a good performance=cost choice. In the
meantime, as the table size decreases, the prediction scheme becomes increasingly important.
Moreover, simulation and circuit synthesis show that this design is feasible for high clock rate
design.
1 Introduction

The goal of a superscalar design is to simultaneously issue,
execute and complete as many instructions as possible [1],
and the functions of an instruction fetcher are to identify
instructions and to provide them to the decoders at a
suf®cient rate. Unfortunately, the variable-length instruc-
tion format, such as in the x86 architecture, makes it
dif®cult to achieve this goal [2]. There are two approaches
about instruction-fetch mechanisms which are proposed to
improve the instruction fetch and decode bandwidth. The
one is a dynamically scheduling instruction sequence to
match the parallel decoding rules [3]. The other is enlar-
ging the instruction window with trace prediction to fetch
multiple contiguous basic blocks in a cycle [4]. But, in x86
architectures, we consider the basic points of the instruc-
tion fetch problem that are the variable-length instruction
and the complex instruction format. These will cause high
routing-path complexity for selecting a sequent instruction
[2], which may be a barrier to approaching high clock-rate
design. So, in current x86 processors, the parallel decoding
rules are used to limit the fetched-instruction-sequence
type and to simplify the instruction-selected routing-path
complexity [5]. In the ®xed-length instruction architec-
tures, the design of trace cache microarchitecture will just
consider the assembly problems of the noncontiguous-
location instructions from alternative basic blocks [6].
But, in x86 architectures, each instruction is noncon-
tiguous. That will cause the trace cache mechanisms to
be hardly used in the design of x86 architectures.
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The variable-length instruction denotes that the next
instruction cannot be decoded, or even fetched, until the
length of the previous instruction is known. In a traditional
x86 processor, a sizer is used to identify instruction lengths
within the latency of a pipeline stage [7, 8]. Hence,
identifying the starting points of the second and subse-
quent instructions in a cycle remains an issue in the
x86 superscalar design. Some AMD series products imple-
ment instruction identi®cation by using predecode infor-
mation in its instruction cache [9±11]. Instead of
instruction pointers, boundary bits are usually used to
save cache space, and simple bit-vector scanning can be
used to construct the instruction pointers and to identify
each instruction. A large amount of time latency and
hardware cost may be needed to implement these methods.
Therefore, we intend to discuss about how to fetch multiple
instructions quickly from a traditional instruction cache.
The basic idea is that, by predicting instruction lengths and
storing instruction pointers with a table, one can simulta-
neously provide a sequence of instruction pointers to the
fetcher. This pointer storage is independent of the cache;
hence its design and operation are independent as well.
Instruction fetch parallelism can then be boosted without
sacri®cing the design ¯exibility or clock rate.

2 Characteristics of identifying instructions with
instruction boundary bits

Most of the current x86 processors, such as P54C [12],
Pentium II [13], K5 [9], K6 [10] and K7 [11], use
boundary bits to identify individual instructions. This
method is illustrated in Fig. 1 to show its hardware and
time complexities. The lookup window selects w boundary
bits out of the l instruction queue boundary bits. The
boundary bit scanner scans these selected boundary bits
and shows each instruction pointer with an instruction
displacement. The number of displacements shown is
equal to the superscalar degree, d, and they are for the
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next stage to identify d instructions and to pass them to the
decoders. Two methods can be used to design this scanner.
The ®rst is the sequential scan method, and the other is the
bit-lookahead method.

2.1 Sequential scan method

Fig. 2 illustrates the organisation of the sequential scan
method. The selected boundary bits are input to the ®rst
priority encoder to ®nd the second instruction displace-
ment, and then a bit mask masks this boundary bit off and
sends the remaining bit vector to the next priority encoder
as the process repeats. The above procedures repeat until N
instruction displacements are found. With the COMPASS
0.6 mm library version 2.31 in the synthesis, the delay time
of an optimised priority encoder is 1.5 ns, which means at
least 1.5 ns in a 0.6 mm process technology is spent to ®nd
its next instruction pointer using the priority encoder
technique. Therefore, an N-way processor must spend
(N7 1)� 1.5 ns to identify all N instructions. This latency
can incur multiple stages of overhead in the fetch unit as
well as making the higher recovery penalty in a high
degree superscalar processor.

2.2 Bit-lookahead method

Fig. 3 illustrates the organisation of the bit-lookahead
method. Where there is a large fan-out problem, as the
number of fan-outs increases, several characteristics of
interconnects, such as the propagation delay and the
effective characteristic impedance, are affected [14]. With
this method, each boundary bit will be sent to all the higher
order bit positions to generate the instruction-selected bits
simultaneously (ISB). Let ISBdi be the dth instruction-
selected bit in the boundary bit-i position. The ISBdi is
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described by the following Boolean equation for
w> i� d7 1 and d� 2:

ISBdi � �NOR�b1; b2; . . . ; bdÿ2; bdÿ1; . . . ; biÿ1�
� NOR�b1; b2; b3; . . . ; bdÿ1; bd; . . . ; biÿ1�
� � � � � NOR�b1; b2; . . . ; b�iÿ1�ÿ�dÿ2�; . . . ; biÿ1�� � bi

The fan-outs of b1 , F1 can be evaluated by the following
equation:

F1 �
Pd
j�2

Pwÿ1

i�jÿ1

Ciÿ1
jÿ2

The distribution conditions are shown as Fig. 4. When the
d and w are increased, the number of fan-outs of b1 , F1

grows faster. This fact makes this method inadequate for
use in the high degree superscalar instruction fetch.

3 Fetching multiple instructions using the
Instruction Identi®er

To achieve a high superscalar degree in variable instruction
length architectures to conduce to instruction execution
parallelism, we propose the idea using an Instruction
Identi®er. By means of predicting instruction lengths and
recording instruction pointers to a table, our design can
simultaneously provide a sequence of instruction pointers
for the fetcher to fetch a group of N instruction cycle by
cycle.
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3.1 Procedure

As previously described, key ideas of our design are as
follows:

1. If a program counter (PC) is not found in the table, then
we will predict its corresponding length to generate the
next instruction pointer.
2. If a PC is found in the table, then we can simultaneously
get multiple recorded instruction pointers, and predict the
®rst unknown instruction length if an insuf®cient number
of instruction pointers are available.

Fig. 5 shows that when the Instruction Identi®er receives a
PC from the fetcher, it responds with the instruction
pointers and the next sequential fetch address (NSFA) to
the fetcher. To implement the above-mentioned framework,
the Instruction Identi®er has ®ve operations, namely the
access, the prediction, the commitment, the placement and
the address generation.

3.1.1 Access to Instruction Pointer Table: Access
is the operation by which the instruction pointers are read
from the table when a PC hits in the table. In each cycle,
the Instruction Identi®er will look up the table for the PC
from the fetcher. If the PC hits in the table, a sequence of
instruction pointers following the PC will be provided to
the fetcher simultaneously.

3.1.2 Prediction of instruction length: This opera-
tion predicts the ®rst unknown instruction length. Cases in
which the prediction will take place are as follows:

� PC does not hit in the table, or
� PC hits in the table but the instruction length is
unknown.

The instruction whose length needs to be predicted is
named the predicted instruction P, and the instruction that
follows the predicted instruction is named the speculative
instruction S.

3.1.3 Commitment of speculated instruction
length: In order to avoid fetch restart caused by length
misprediction, the length veri®cation is done in the Instruc-
tion Identi®er, not the decoder. Commitment is the opera-
tion that will decide whether the speculative instruction
pointer is correct by checking the actual length of the
predicted instruction. If the length prediction is right, then
the speculative instruction pointer is correct, and this
instruction can be sent to the decoder when there is not
any branch-taken instruction before it. In addition, this
operation also checks the actual length of the speculative
instruction at the same time. All of these results help to
generate the next sequential fetch address.

3.1.4 Address generation: The next sequential fetch
address is generated according to the results of access and
commitment operations. For example, if the PC does not

I-cache fetcher decoder

inst.

line
PC O0-n NSFA

instruction

identifier

Fig. 5 Role of Instruction Identi®er

O� offset (instruction pointer); NSFA� next sequential fetch address
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hit in the table and the instruction length is predicted
correctly, then the next sequential fetch address is set to
be the next sequential instruction pointer of the speculative
instruction. This is the address from which the Instruction
Identi®er expects the fetcher to fetch next.

3.1.5 Placement of instruction pointers: Place-
ment is the operation of storing the instruction pointers
in the appropriate ®elds in the table. In this operation, we
will allocate a new table entry under the following condi-
tions:

1. PC does not hit in the table and is not equal to NSFA.
2. PC does not hit in the table and is equal to NSFA, but
without empty ®eld in the entry used last cycle.
3. PC is an address of a split-line instruction.

Fig. 6 shows the ¯owchart of our design algorithm in
detail.

3.2 Instruction Identi®er design

The Instruction Identi®er consists of the Instruction Pointer
Table (IPT), the Instruction Identi®er Controller and the
Speculation Commit Unit. Fig. 7 shows the block diagram
of the Instruction Identi®er.

3.2.1 Instruction Identi®er Controller: The Instruc-
tion Identi®er Controller is responsible for controlling all
of the operations in the Instruction Identi®er. These opera-
tions, presented in the previous section, include the follow-
ing:

(i) access: looks up IPT
(ii) prediction: predicts the instruction length
(iii) commitment: noti®es the Speculation Commit Unit to
check the instruction length
(iv) placement: stores the instruction pointers to IPT
(v) address generation: generates the next sequential fetch
address.

3.2.2 Instruction Pointer Table: The Instruction
Pointer Table stores a sequence of instruction pointers.
Each entry in the Instruction Pointer Table consists of N
®elds to store a PC ®eld and (N7 1) offset ®elds, as Fig. 8
shows. Here N is the superscalar degree of the processor. In
addition, each ®eld needs two extra bits. One of them is the
valid bit that indicates whether the instruction length is
known. The other is the split-line bit that indicates whether
the instruction is a split-line instruction.

From Fig. 9, the most common (or frequent) instruction
length is 3 bytes, and nearly 65% of the instructions are 2
or 3 bytes. According to these results, we propose three
prediction schemes, namely ®xed_3, global and private
predictions, respectively, to predict the unknown instruc-
tion length. The ®xed_3 prediction scheme is a very simple
scheme that always predicts an unknown instruction length
to be 3 bytes. The global prediction scheme is similar to
the 1-bit scheme that depends on whether the prediction
was correct recently. The private prediction scheme is a
1-bit table scheme that uses a table, indexed by several
least signi®cant bits, to record the recent prediction results.
We simulate the performance of these schemes and analyse
them in the next section.

3.2.3 Speculation Commit Unit: For a fetched
instruction with unknown length, the prediction mechan-
ism will predict its instruction length and generate the
subsequent instruction pointer. Two sizers in the Specula-
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tion Commit Unit are responsible for checking the lengths
of the predicted and speculative instructions. The task of
the Speculation Commit Unit is to check whether the
speculative instruction pointer is correct by checking
whether the prediction length is right. If the prediction
length is right, the next sequential fetch address equals the
next subsequent instruction pointer of the speculative
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instruction; otherwise it equals the next sequential instruc-
tion pointer of the predicted instruction.

4 System performance evaluation

In this section we present the simulation and synthesis
results under our architecture. By the fetch rate view [2] we
focus the performance evaluation only in the natural
barriers, namely the branch instruction barrier and split-
instruction barrier.

4.1 Simulation environment

The experiments to evaluate the performance of the
Instruction Identi®er are run through a trace-driven simu-
lation. In this simulation, eight SPECint95 benchmarks,
the go, m88ksim, gcc, compress, li, jpeg, perl and vortex,
are used. When a benchmark is executed, we use a Linux-
system-call `ptrace' to extract the traces of all instructions,
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store the traces in a ®le, then feed their trace ®les into our
simulator.

The assumptions of the simulation model are as follows:

1. The accuracy rate of the branch prediction is 100%.
2. The miss penalty of the instruction buffer is zero cycle.
3. When a taken-branch instruction is encountered, it will
be the last fetched instruction in that cycle.
4. The size of the reorder buffer is unlimited.
5. The instruction cache is perfect.

These assumptions will make the unbounded instruction
issued-and-executed environments to focus on evaluating
the effects of fetch mechanisms. For the following reasons,
we let the assumption of perfect branch prediction that
cannot affect our evaluation results.

1. The number of IPT entries is much greater than a basic
block (� 5 instructions).
2. The replacement policy of the IPT is FIFO (®rst-in-®rst-
out).

4.2 Prediction scheme analysis

There are tree schemes described in Section 3.2, namely
the ®xed_3, the global and the private predictions. The
simulation results of these schemes are shown in Fig. 10.
In this ®gure, the x-axis represents different numbers of
entries in the IPT table and the y-axis represents the
average fetch rate. Furthermore, `perfect' means that the
prediction is always correct, and `worst' means that there is
not any prediction scheme in our design. These two values
are used as the performance upper and lower bounds.

From Fig. 10, two observations are made. One of them is
that the performance of ®xed_3 is better than other
proposed schemes. So, in the following experiments, we
use the ®xed_3 prediction scheme to predict the unknown
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instruction length. The other observation is that the less the
IPT entries are, the more important the prediction scheme
becomes.

4.3 Number of IPT entries analysis

In this section, we study the performance due to number of
entries and superscalar degree. The results of the perfor-
mance evaluations are shown in Fig. 11. In this ®gure, the
x-axis represents different numbers of entries in the IPT
table, ranging from 8 to 1024, and the y-axis represents the
average fetch rate. The 11 lines represent different super-
scalar degrees, ranging from 2 to 12.

From Fig. 11 we ®nd that, for any ®xed number of
IPT entries, when the superscalar degree increases, the
average fetch rate also increases. Meanwhile, for any
®xed superscalar degree, increasing the number of IPT
entries increases the average fetch rate, which will
eventually reach a saturation point. From the simulation
results we ®nd that a 64-entry IPT is a good choice under
performance=cost consideration.

4.4 Instruction cache line size analysis

In this section, we study the impact of different instruction
cache line sizes on performance. The performance evalua-
tion results are shown in Fig. 12. In this ®gure, the x-axis
represents different instruction cache line sizes, ranging
from 16 to 2048 bytes, and the y-axis represents the
average fetch rate. In this experiment, the number of IPT
entries is 2048 and the superscalar degree ranges from
2 to 12.

In Fig. 12 it is obvious that, when the instruction cache
line size increases, the average-fetch rate increases and
eventually reaches a saturation point. The reason is simply
that increasing the instruction cache line size gives the
fetcher to fetch more instructions to the decoders at a time.

4.5 Delay time estimation

In discussing the delay time of a chip, the critical path is
very important because it limits the maximum clock
frequency. We use the Synopsys synthesiser to synthesise
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our design. This synthesiser uses the COMPASS 0.6 mm
library to time the critical paths. Fig. 13 shows the access
delay against number of IPT entries ranging from 1 to 64.
When the IPT entry number is 64, the access delay is
2.33 ns. This delay is less than the latency of the sequential
method or bit-lookahead method.

An instruction length is determined through a sequence
of checks on the Pre®x, Op1, Op2, Mod R=M and SIB.
Thus, the longest path of the sizer is the path that includes
11 Pre®x, 1 Op1, 1 Op2, 1 Mod R=M and 1 SIB. The
estimated delay of the critical path is 1.58 ns. From these
estimated synthesis results we ®nd that our design can run
at 200 MHz in a 0.6 mm process technology. Much higher
clock rates can be achieved if more up-to-date technologies
are to be used.

5 Conclusions

The goal of the superscalar microprocessor design is to
simultaneously issue and execute the maximum allowable
number of instructions as often as possible. But the
variable-length x86 instruction encoding makes it very
dif®cult for the instruction fetcher to ef®ciently fetch
several instructions from a stream of raw instruction
bytes at a time. Current x86 superscalar microprocessors
employ several different strategies to handle this problem,
but these strategies may all soon reach a superscalar degree
limit. The idea of the Instruction Identi®er to overcome this
dif®culty is hence proposed.

The simulation results show that, when the number of
IPT entries increases, the average fetch rate increases. From
the simulation results we ®nd that a 64-entry table is a
good choice under performance=cost consideration. The
simulation results also show that, when the number of IPT
entries decreases, the prediction accuracy becomes very
118
important. In addition to the simulation results, we also
present the synthesis results to illustrate that our design is
feasible because it can run at least 200 MHz in 0.6 mm
process technologyÐa very competitive speed in that
technology.
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