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Efficient Computation of Marginal
Reliability-Importance for Reducible+ Networks

Steen J. Hsu, Member, IEEE,and Maria C. Yuang, Member, IEEE

Abstract—Marginal reliability importance (MRI) of a link
with respect to terminal-pair reliability (TR) is the rate to which
TR changes with the modification of the success probability of
the link. It is a quantitative measure reflecting the importance
of the individual link in contributing to TR of a given net-
work. Computing MRI for general networks is an NP-complete
problem. Attention has been drawn to a particular set of networks
(reducible networks), which can be simplified to source-sink
(2-node) networks via 6 simple reduction rules (axioms). The
computational complexity of the MRI problem for such networks
is polynomial bounded. This paper proposes a new reduction
rule, referred to as triangle reduction. The triangle reduction
rule transforms a graph containing a triangle subgraph to that
excluding the base of the triangle, with constant complexity.
Networks which can be fully reduced to source-sink networks
by the triangle reduction rule, in addition to the 6 reduction
rules, are further defined as reducible+ networks. For efficient
computation of MRI for reducible + networks, a 2-phase (2-P)
algorithm is given. The 2-P algorithm performs network reduction
in phase 1. In each reduction step, the 2-P algorithm generates the
correlation, quantified by a reduction factor, between the original
network and the reduced network. In phase 2, the 2-P algorithm
backtracks the reduction steps and computes MRI, based on the
reduction factors generated in phase 1 and a set of closed-form TR
formulas. As a result, the 2-P algorithm yields a linearly bounded
complexity for the computation of MRI for reducible+ networks.
Experimental results from real networks and benchmarks show
the superiority, by two orders of magnitude, of the 2-P algorithm
over the traditional approach.

Index Terms—Marginal reliability importance (MRI), network
reduction technique, reducible network, terminal-pair reliability
(TR).

ACRONYMS1

iff if and only if
2-P our 2-phase algorithm in this paper
TR terminal-pair reliability
MRI marginal reliability importance

Notation:
graph/network whose links can fail-independently
of each other, with known probabilities
number of links in a network

Rel terminal-pair reliability of network
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MRI marginal reliability-importance of link
[source, sink] vertex
[success, failure] probability of link

“‘ , - [compressing, deleting] operation on links
with link compressed
with link deleted

transformation factor
reduction factor
triangle subgraph of graph
graph

, the 2 sides of

, the base of .

Definitions: Terminal-pair reliability : Proba-
bility that 2 specified terminals (source and sink) are connected
by at least 1 path.

Marginal reliability importance : Rate to
which TR changes in association with the modification of the
success probability of a link.

Source-sink network : Network which contains only 2
nodes (source and sink) and the link connecting them.

Reducible network : Network which can be fully re-
duced to a source-sink network by recursively applying the 6
traditional reduction rules.

Reducible network : Network which can be reduced to
a source-sink network by recursively applying the 6 traditional
reduction rules and the triangle reduction rule.

Triangle subgraph : Subgraph which contains the
source and 2 1-way or 2-way connected nodes to which only
the source is connected.

Assumptions:

1) Each link has 2 states: success or failure.
2) The are known for all links.
3) Nodes are fault free.
4) All failure events are mutually-independent.

I. INTRODUCTION

T HE ANALYSIS of TR [1]–[14] of a network has consider-
able attention in network management. MRI [4], [15]–[19]

of a link with respect to TR has been defined as the rate to which
TR changes in association with the modification of the success
probability of the link. It is a quantitative measure reflecting the
importance of the individual link in contributing to TR of the
given network. In essence, a network achieves maximal relia-
bility gain if the link with the highest MRI is upgraded [16]:

MRI
Rel

Rel Rel (1)

0018–9529/01$10.00 © 2001 IEEE



HSU AND YUANG: EFFICIENT COMPUTATION OF MARGINAL RELIABILITY 99

Fig. 1. 6 existing reduction rules.

Computation of MRI involves the evaluation of the TR, e.g.,
Rel . The computation of TR for general networks is
an NP-complete problem [5]. Nevertheless, for a particular set
of networks, called reducible networks [14], which can be fully
reduced to source-sink (2-node) networks by 6 simple reduction
rules [6], [7], [10], [14], TR can be computed in [14].
This yields a combinatorial complexity of for computing
MRI of all links for a reducible network.

This paper presents a new reduction rule: triangle reduction.
The triangle reduction rule basically transforms a graph, in
which the source is connected only to 2 1-way or 2-way con-
nected nodes, forming a triangle subgraph, to a simpler graph
with the link(s) connecting the 2 nodes removed. The resulting
success probabilities of the corresponding links, connecting
the source to the 2 nodes, are reassigned via closed-form
equations. Another set of networks, called reduciblenetworks
is introduced; they can be fully reduced to source-sink networks
by the triangle reduction rule, in addition to the 6 existing re-
duction rules. For efficient computation of MRI for reducible
networks, a 2-phase (2-P) algorithm is presented. The 2-P
algorithm reduces the network in phase 1. In each reduction
step, the 2-P algorithm generates the correlation, quantified
by a reduction factor, between the original network and the
reduced network. In phase 2, the 2-P algorithm backtracks the
reduction steps and computes MRI, based on the reduction
factors generated in phase 1, and a set of closed-form TR
formulas. The 2-P algorithm, as shown in this paper, yields

a linearly bounded complexity, . Experimental results
demonstrate that, compared to a traditional MRI-computation
approach [7] and (1), the 2-P algorithm improves run-time by 2
orders of magnitude.

Section II first overviews reducible networks. A new notion of
reducible networks and the new reduction rule are introduced.

Section III presents the 2-P algorithm. All proofs are in the
Appendix.

II. REDUCIBLE NETWORKS

A network is a source-sink network iff it contains only 2
nodes (the source and sink) and the link connecting them. A
network is reducible iff it can be fully reduced to a source-sink
network by recursively applying 6 existing reduction rules [6],
[10], summarized in Fig. 1. With any 1 of the 6 reduction rules
applied, a given network can be transformed to another net-
work , such that,

Rel Rel

In rule r4, for instance, the transformation factor is the success
probability of the essential link going out of the source (or into
the sink). For the rest of the 6 rules, the transformation factor
is simply 1. By repeatedly applying these 6 reduction rules, a
reducible network can be reduced to a source-sink network. As
a result, the TR of such network can be computed in linear time
and is simply the product of the “success probability of the only
link in the source-sink network” and; is the product of the
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Fig. 2. Example of a reducible networkG.

Fig. 3. Triangle subgraphs.

“transformation factor corresponding to the current reduction
step,” and the “reduction factor generated from the previous re-
duction step.”

Fig. 2 is an example of a reducible network. According to
rule r4, network is reduced to by compressing the essen-
tial link, , with . Based on rule r5, is transformed
to by replacing 2 pairs of series-link, , and ,
with 2 new links, , respectively. The new success prob-
abilities are recomputed, as shown in Fig. 2. , because
of a transformation factor of 1 in this step. According to rule r6,

are further reduced to with success probability , and
is re-derived. The network TR can be directly computed and

expressed as the product ofand the reduction factor,

Rel

A new reduction rule, called the triangle reduction rule [20],
is introduced. The triangle reduction rule takes effect if there
exists a triangle subgraph in a graph representing the network
under consideration. Fig. 3(a) shows the subgraph. The notion
of the triangle subgraph can be similarly applied to a subgraph
including the sink instead (sink-based), as shown in Fig. 3(b).
For simplicity, without further declaration, the triangle subgraph
is referred throughout the rest of the paper as source-based.

Fig. 3(a) denotes the 2 nodes to which the source is connected
as . The 2 links emanating from to , referred to
as the sides of the triangle, are labeled, , with suc-
cess probabilities , respectively. The link connecting

to , referred to as the base of the triangle, is la-
beled with success probability . If and

are 2-way connected, the base of the triangle is comprised
of 2 links. As a result, the 3 nodes , the 2 sides

, and the base and/or constitute the tri-
angle subgraph, . The rule for the 2-link base is formally

Fig. 4. Triangle reduction rule.

stated and proved in this paper. For the 1-link base, similar re-
sults can be obtained by replacing either or with 0.

A. Triangle Reduction Rule

In a given graph , see Fig. 4, if there exists a triangle sub-
graph with 3 nodes , 2 sides , and the
base and/or , can be transformed to with the
base removed. The new of link connecting to , and
of link connecting to , are reassigned as

(2)

(3)

Rel becomes the product of the terminal-pair reliability of
the transformed graph and the :

Rel Rel (4)

(5)

Proof: See the Appendix, Section 1.
The computational complexity of triangle-reduction rests

on “examining the existence of triangle subgraphs” and “com-
puting the transformation.” Apparently, both tasks require
computation complexity of constant time: .

B. Reducible Networks

Incorporating the triangle reduction rule, another set of
networks (reducible networks) is introduced. A network is
reducible if it can be reduced to a source-sink network by
recursively applying the 6 reduction rules and the triangle
reduction rule. Fig. 5 is an example of a reduciblenetwork.
According to the triangle reduction rule, networkis reduced
to by replacing the triangle subgraph with 2 new links,

. The new success probabilities and the reduction factor
are recomputed, as shown in Fig. 5. By applying serial and

parallel reductions, reduces to , a source-sink network.
The TR of network can be directly computed.

III. T HE 2-P ALGORITHM

To compute efficiently the MRI for reduciblenetworks, the
2-P algorithm is presented. It has a reduction phase (reduction is
performed), and a backtracking phase (the MRI are derived). In
the reduction phase, the algorithm generates the reduction factor
between the original network and the reduced network in each
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Fig. 5. Example of a reduciblenetwork,G.

reduction step. In the backtracking phase, when the algorithm
is backtracking reduction-step, it computes Rel
and Rel of link ; is replaced (or removed) in
reduction step , based on a set of closed-form (backward-TR)
formulas. The MRI are then computed based on the reduction
factor and the backward-TR formulas. Section III-A introduces
6 backward-TR formulas as lemmas. Section III-B provides the
MRI computation.

A. Backward TR Formulas

Lemma 1: If link is valueless in network , then

Rel Rel Rel

Proof: See the Appendix, Section 2.
Lemma 2: If is the essential link going out of the source

(or into the sink) in network , then

Rel Rel
Rel

Proof: See Appendix, Section 3.
Lemma 3: If network with two series links, , is re-

duced (rule r5) to a new network , with the replaced link ,
then

Rel Rel Rel

Rel Rel Rel

Rel Rel Rel

Proof: See the Appendix, Section 4.
Lemma 4: If network with 2 parallel links, , is re-

duced (rule r6) to a new network , with the replaced link ,
then

Rel Rel Rel

Rel Rel Rel

Rel Rel Rel

Proof: See the Appendix, Section 5.

Lemma 5: If network has only 2 links, , emanating
from the source (or into the sink), then

Rel
Rel

Rel
Rel

(6)

Rel
Rel Rel

Rel Rel

(7)

Proof: See the Appendix, Section 6.
Lemma 6: If network containing a triangle subgraph with

2 sides, , and the base, and , is reduced (tri-
angle reduction) to a new network , with the replaced links

, then

Rel

Rel

Rel

Rel

Rel

Rel

Rel

Rel

Rel

Rel

Rel (8)

Proof: See the Appendix, Section 7.
The goal is to derive MRI of link in a given network.

Theorem 1 shows the computation of the MRI based on: a)
the reduction factors and b) backward TR formulas detailed in
lemma 6.

Theorem 1: In , the MRI of a link belonging to both the
original network and , is

MRI Rel Rel

reduction factor in reduction step

(9)

Proof: See the Appendix, Section 8.

B. The Detailed Algorithm

Algorithm The_2-
Input: A network with source , sink

, and the failure probabilities of
the links; the corresponding reduction
factor, ; Initially, ;
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Fig. 6. Example of the MRI evaluation, based on the 2-P algorithm.

Output: The MRI of all links;
Begin
IF is a source-sink network containing

a single link ,
THEN return: Rel , Rel ;
ELSE

IF is not a reducible network
THEN exit;
ELSE
Reduce to using any 1 of the 7

reduction axioms;
Transformation factor;
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Fig. 7. Benchmarks and real networks.

/* CR is the current reduction factor
*/

The\_2- CR ;
Compute Rel and Rel , based on

the
backward TR formulas;

IF link is in and not in
THEN Compute MRI based on theorem

1;
END_IF;

END_IF;
END_IF;
End Algorithm

Fig. 6 illustrates the computation of MRI via an example.
The original network is transformed to a source-sink net-
work through 5 reduction steps in the reduction phase. Then,
Rel and Rel . In the backtracking
phase, for example, because a)replaces and in reduc-
tion step 4, resulting in the reduced network, and b) is
the only link contained in , then the MRI of is computed,
as shown in the figure. The MRI of the remaining links can be
similarly derived.

C. Computational Complexity Analysis

The reduction phase involves at most reduction steps
to transform a reducible network to a source-sink network.
The backtracking phase requires constant time to evaluate
closed-form expressions at each of MRI backtracking steps.
This yields a complexity of for computing MRI based
on the 2-P Algorithm.

D. Experimental Results

An experiment compared the 2-P Algorithm and the tra-
ditional MRI-computation approach using (1) [7], in Sun
ServexStation 5 using a collection of real networks and
benchmarks [3], [6], [10], [13], [21] as shown in Fig. 7. Fig. 8
displays the computation time of the traditional approach with
respect to the normalized computation time of the 2-P MRI
algorithm. Fig. 8 shows that the 2-P algorithm outperforms the
traditional approach by 2 orders-of-magnitude.

Fig. 8. Comparisons of computation time.

APPENDIX

1) Proof of the Triangle Reduction Rule:According to the
factoring theorem [10], Rel can be partitioned into the 16
subproblems in Fig. 9, corresponding to 4 graphs,, , ,

. For example, is related to by the presence of link
and the absence of links : .
According to r4a and r1, theis compressed with , and value-
less link is removed, resulting in 2 equal-valued subprob-
lems,

Rel Rel

Rel

As a result, can be associated with by the presence of
link and the absence of link ; thus

Rel Rel

Apply the same logic of relating , , to ; the result
is

Rel Rel

Rel

Rel

Rel Rel

Rel (10)

Also

Rel Rel

Rel Rel

(11)

Multiply (10) by transformation factor ,

Rel Rel Rel

Rel (12)

Equate (11) and (12),

Rel Rel (13)

(14)

Rearrange (14); then directly derive (2), (3), (5), and thus prove
the theorem.
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Fig. 9. Association of Rel(G) and Rel(G ).

2) Proof of Lemma 1:According to the factoring theorem
[10], Rel can be expressed as

Rel Rel Rel (15)

Because is a valueless link, according to rules r1–r3,

Rel Rel (16)

From (15) and (16), the lemma is proved.
3) Proof of Lemma 2:According to rule r4,

Rel Rel (17)

Based on the factoring theorem [10],

Rel Rel Rel (18)

The lemma is directly proved from (17) and (18).
4) Proof of Lemma 3:After removing from network
, then becomes a valueless link. Thus,

Rel Rel Rel (19)

Based on the factoring theorem [10],

Rel
Rel Rel

Rel
Rel Rel

(20)

From rule r5,

Rel Rel

Rel Rel (21)

The lemma is directly proved from (19)–(21).
5) Proof of Lemma 4:After compressing in , then

becomes redundant. Therefore,

Rel Rel Rel (22)

Based on the factoring theorem [10],

Rel
Rel Rel

Rel
Rel Rel

(23)
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Fig. 10. Relationships among the subproblems of Rel(G) and Rel(G ).

Then, from rule r6,

Rel Rel

Rel Rel (24)

The lemma is directly proved from (22)–(24).
6) Proof of Lemma 5:After removing from ,

then becomes an essential link of . Equation (6) is
derived from lemma 2. Based on the factoring theorem [10],

Rel
Rel Rel

Rel Rel

(25)

Substitute Rel and Rel in (25),
based on (6). Eq. (7) of the lemma is proved.

7) Proof of Lemma 6:Based on the factoring theorem [10],
Rel can be partitioned into 16 subproblems corresponding
to 4 graphs, , , , [20], as shown in Fig. 10. In
this figure, for example, graph is related to graph by the
presence of link , and by the absence of links , :

. The reduction, based on rules r4a
and r1, results in 2 equal-valued subproblems,

Rel Rel

Rel

As a result, can be associated with by the presence of
link and by the absence of link : Rel Rel

.
Apply the same logic of relating other graphs to ; the re-

sulting equations are given in Fig. 10 under “Subproblems for
” and “Subproblems for .”
Based on the factoring theorem [10], Rel can be

partitioned into 8 subproblems and expressed as:

Rel

Rel

Rel

Rel

Rel

Rel

Rel

Rel

Rel

(26)
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From the equations in Fig. 10, and (26), the first equation in (8)
is directly derived. The rest of the equations in (8) are similarly
derived.

8) Proof of Theorem 1:Based on the factoring theorem [10]

Rel Rel Rel (27)

Since is reduced from at reduction-step,

Rel Rel

Rel Rel

(28)

Differentiate (28) with respect to ; the result is (9); the theorem
is proved.
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