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Efficient Computation of Marginal
Reliability-lmportance for ReducibfeNetworks

Steen J. HsuMember, IEEEand Maria C. YuangMember, IEEE

Abstract—Marginal reliability importance (MRI) of a link MRI(e;) marginal reliability-importance of link;
with respect to terminal-pair reliability (TR) is the rate to which 5 ¢ [source, sink] vertex
TR changes with the modification of the success probability of Dis G [success, failure] probability of link;

the link. It is a quantitative measure reflecting the importance .’; ; deleti fi link
of the individual link in contributing to TR of a given net- T [compressing, deleting] operation on links

work. Computing MRI for general networks is an NP-complete G *¢; G with link e; compressed
problem. Attention has been drawn to a particular set of networks G—¢; G with link ¢; deleted
(reducible networks), which can be simplified to source-sink (¢ transformation factor

(2-node) networks via 6 simple reduction rules (axioms). The R

_ _ reduction factor
computational complexity of the MRI problem for such networks

is polynomial bounded. This paper proposes a new reduction Gt triangle subgraph of grapti
rule, referred to as triangle reduction. The triangle reduction G graphG — G

rule transforms a graph containing a triangle subgraph to that ¢, 1, the 2 sides of#,;

excluding the base of the triangle, with constant complexity. ¢, ,

Networks which can be fully reduced to source-sink networks Gb:1, the base of7,.

by the triangle reduction rule, in addition to the 6 reduction
rules, are further defined as reduciblet networks. For efficient €62 . . L

computation of MRI for reducible T networks, a 2-phase (2-P)  Definitions: Terminal-pair reliability : Proba-
algorithm is given. The 2-P algorithm performs network reduction  bility that 2 specified terminals (source and sink) are connected
in phase 1. In each reduction step, the 2-P algorithm generates the by at least 1 path.

correlation, quantified by a reduction factor, between the original Marginal reliability importance - Rate to
network and the reduced network. In phase 2, the 2-P algorithm \yhich TR changes in association with the modification of the
backtracks the reduction steps and computes MRI, based on the bability of a link

reduction factors generated in phase 1 and a set of closed-form TR success probability of a fink.

formulas. As a result, the 2-P algorithm yields a linearly bounded ~ Source-sink network : Network which contains only 2
complexity for the computation of MRI for reducible + networks. nodes (source and sink) and the link connecting them.
Experimental results from real networks and benchmarks show  Reducible network : Network which can be fully re-
the superiority, by two orders of magnitude, of the 2-P algorithm  duced to a source-sink network by recursively applying the 6
over the traditional approach. traditional reduction rules.

Index Terms—Marginal reliability importance (MRI), network Reducible * network :Network which can be reduced to
reduction technique, reducible network, terminal-pair reliability  a source-sink network by recursively applying the 6 traditional
(TR). reduction rules and the triangle reduction rule.

Triangle subgraph . Subgraph which contains the
ACRONYMSL. source and_2 1-way or 2-way connected nodes to which only
the source is connected.
2-P our 2-phase algorithm in this paper

1) Each link has 2 states: success or failure.

TR terminal-pair reliability 2) Thep; are known for all links.
MRI marginal reliability importance 3) Nodes are fault free.
Notation: ; ;
G graph/network whose links can faindependently 4) Allfailure events are mutually-independent.
of each other, with known probabilities | INTRODUCTION
m number of links in a network )
RellG)  terminal-pair reliability of networkG HE ANALYSIS of TR [1]-[14] of a network has consider-

able attention in network management. MRI [4], [15]-[19]
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r1. Links entering the source or exiting from the sink are valueless

@%—:@ ) ZV%% i,,@

r2. Nodes (except the source and sink) with no output links or input links are valueless

a. b. O O

r3. Links antiparallel to node’s single input link or output link are valueless
= N
r4. A single link going out of the source or into the sink can be compressed
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Fig. 1. 6 existing reduction rules.

Computation of MRI involves the evaluation of the TR, e.ga linearly bounded complexityp(m). Experimental results
Rel(G * ¢;). The computation of TR for general networks islemonstrate that, compared to a traditional MRI-computation
an NP-complete problem [5]. Nevertheless, for a particular sgpproach [7] and (1), the 2-P algorithm improves run-time by 2
of networks, called reducible networks [14], which can be fullprders of magnitude.
reduced to source-sink (2-node) networks by 6 simple reductionSection Il first overviews reducible networks. A new notion of
rules [6], [7], [10], [14], TR can be computed if(m) [14]. reducible” networks and the new reduction rule are introduced.
This yields a combinatorial complexity 6f(m?) for computing Section Il presents the 2-P algorithm. All proofs are in the
MRI of all links for a reducible network. Appendix.

This paper presents a new reduction rule: triangle reduction.
The triangle reduction rule basically transforms a graph, in Il. REDUCIBLET NETWORKS
which the source is_connegted only to 2 1-way Or 2-way CON- A hatwork is a source-sink network iff it contains only 2
ngcted npdes, forming a triangle subgraph, to a simpler gr?rﬁ’gdes (the source and sink) and the link connecting them. A
with the link(s) connecting the 2 nodes removed. The resultn?.%t
success probabilities of the corresponding links, connecti
the source to the 2 nodes, are reassigned via closed-f
equations. Another set of networks, called reducibietworks
is introduced; they can be fully reduced to source-sink networ
by the triangle reduction rule, in addition to the 6 existing re-
duction rules. For efficient computation of MRI for reducible Rel(G) = C'- Rel(Go).
networks, a 2-phase (2-P) algorithm is presented. The 2#Prule r4, for instance, the transformation factor is the success
algorithm reduces the network in phase 1. In each reductiprobability of the essential link going out of the source (or into
step, the 2-P algorithm generates the correlation, quantifige sink). For the rest of the 6 rules, the transformation factor
by a reduction factor, between the original network and the simply 1. By repeatedly applying these 6 reduction rules, a
reduced network. In phase 2, the 2-P algorithm backtracks tieglucible network can be reduced to a source-sink network. As
reduction steps and computes MRI, based on the reductmnesult, the TR of such network can be computed in linear time
factors generated in phase 1, and a set of closed-form @Rd is simply the product of the “success probability of the only
formulas. The 2-P algorithm, as shown in this paper, yieldigk in the source-sink network” ang; R is the product of the

work is reducible iff it can be fully reduced to a source-sink
R8twork by recursively applying 6 existing reduction rules [6],
Cﬁrﬁ], summarized in Fig. 1. With any 1 of the 6 reduction rules
plied, a given networ& can be transformed to another net-
rk G, such that,
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Orginal network G Step 1: contracting the essential link Gx
G O e, '
e \ez ig ~
Rel(G) = R; xRel(G —>
(©) = R, xRal(@)
r €y e €3 e RI =P - G J
* O " Rel(G) = C xRel(Gy) NN e
Step 2: serial reduction Step 3: parallel reduction
€, G, . . .
@ e, @ Fig. 4. Triangle reduction rule.
€
ba=Pibs P:=Pat Py Db stated and proved in this paper. For the 1-link base, similar re-
Py =pbs Ry=Ryx1=p, sults can be obtained by replacing eithpgrn or p, 2 with O.
Ry=Rix1=p, RelfG) = Ry xRel(Gs) = p; xp,

Re(G) = R, xRel(G) A. Triangle Reduction Rule

In a given graphz, see Fig. 4, if there exists a triangle sub-

Fig. 2. Example of a reducible netwok. graph with 3 nodegs, n; n2), 2 sides(e;, 1, ¢5,2), and the
base(e;,, 1 and/orey, 2), G can be transformed &y with the
() A source-based triangle subgraph (b) A sink-based triangle subgraph base removed. The negw of link ¢; connectings to n;, andp;
of link e5 connectings to n», are reassigned as
N
=" (2)
N Yp1+ YN
; PN
p2= " 3)
Yp2+ YN
VN =qs,1°Ps,2 P62+ Ps, 1 Gs,2 Do, 1
Fig. 3. Triangle subgraphs. + Ds,1°Ps,2

_ _ _ VDL = Q5,1 Ps,2° P2, ¥WD2=Ds,1Gs,2 " @, 1-
“transformation factor corresponding to the current reduction _ _ o
step,” and the “reduction factor generated from the previous f8e ;) becomes the product of the terminal-pair reliability of
duction step.” the transformed grap'x and theC:

Fig. 2 is an example of a reducible network. According to

rule r4, network? is reduced td7; by compressing the essen- Rel(&) =Rel(Gx) - C, )
tial link, e1, with R, = p,. Based on rule r5F; is transformed C— (¢Yp1 +9n) - (¥p2 + 1/)1\’). (5)
to G, by replacing 2 pairs of series-linky, ¢4, andes, e, PN

with 2 new links,e,, e, respectively. The new success prob-  pjot see the Appendix, Section 1.

abilities are recomputed, as shown in Fighg. = 11, because  1he computational complexity of triangle-reduction rests

of a transformation factor of 1 in this step. According to rule rg;, “examining the existence of triangle subgraphs” and “com-

Ca, €y A€ fu.rther reduced te. with success.probabilityc, and puting the transformation.” Apparently, both tasks require
Rs isre-derived. The network TR can be directly computed arﬁ%mputation complexity of constant timex(1)

expressed as the productfand the reduction factofgs

B. Reduciblé Networks
Incorporating the triangle reduction rule, another set of

Rel(G) = R3 - pe = p1 - (p2 - pa +p3 - ps — P2 - p3 - Ppa - Ds)-
A new reduction rule, called the triangle reduction rule [20], . . .
is introduced. The triangle reduction rule takes effect if the gtworks (reducibfé networks) is introduced. A network is

exists a triangle subgraph in a graph representing the netwdy uci_ble] if it cla_n behredéjce% to a soulrce—sinlc; n:twork b?/
under consideration. Fig. 3(a) shows the subgraph. The notlGigHrSIVely applying t e 6 reduction rules and the triangle
duction rule. Fig. 5 is an example of a reducibleetwork.

of the triangle subgraph can be similarly applied to a subgra i . ; . .
including the sink instead (sink-based), as shown in Fig. 3( f:cordlng to the_ triangle r_eductlon rule, netw_cﬂék|s reducgd

For simplicity, without further declaration, the triangle subgrap Gy by replacing the triangle .s.LIJbgraph with 2 new links,
is referred throughout the rest of the paper as source-based far €- The new success probabilities and the reduction factor

Fig. 3(a) denotes the 2 nodes to which the source is connec are recomputed, as shown in Fig. 5. By app!ylng serial and
asni, ny. The 2 links emanating from to n., n., referred to parallel reductions(z; reduces td73, a source-sink network.

as the sides of the triangle, are labeled,, ¢, o, with suc- The TR of network’+ can be directly computed.

cess probabilitiep, 1, ps, 2, respectively. The link connecting
n1(n2) to na(ny), referred to as the base of the triangle, is la-
belede;, 1(es, 2) with success probability, 1(ps 2). If n, and To compute efficiently the MRI for reducibtfenetworks, the

ng are 2-way connected, the base of the triangle is compris2dP algorithm is presented. It has a reduction phase (reduction is
of 2 links. As a result, the 3 nodds, ny, n2), the 2 sides performed), and a backtracking phase (the MRI are derived). In
(es,1, ¢s,2), and the basée, ; and/ore, ») constitute the tri- the reduction phase, the algorithm generates the reduction factor
angle subgraph¢7;. The rule for the 2-link base is formally between the original network and the reduced network in each

I1l. THE 2-P ALGORITHM
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Orginal network: G Step 1: triangle reduction

- PRl + P
PPt Py
G e, O € 2y= P&apst Py
@ o)
eb R= Px (Pl%Ps +0y)
+ap,

Rel(G) R, x Rel(G,)
Step 2: serial reduction Step 3: parallel reduction
G, e, Gs
i

P.= PPy Pr= Pt Pa-PePa
Pa= PoPs Ry=Ryx1=R,
Ry=R;x1=R, Rel(G) = Ry xRel(G5) = Ry xpy

Rel(G) = R, xRel(G,)

Fig. 5. Example of a reduciblenetwork,G.
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Lemma 5: If network G has only 2 linkse;, e2, emanating
from the source (or into the sink), then

ReI(GX — €1 ¥ 62) = M7
D2
Rel —
Rel(Gy * ¢1 — cg) = RONGX ~C2), ©
P
Rel(Gy # ep % ¢a) = 2L RelGx xe1) — g2 - RellGx — ea)
P1-p2
_p2-Rel(Gx xe2) — g1 - RelGx —c1)
DP1-p2 )
()

Proof: See the Appendix, Section 6.
Lemma 6: If network GG containing a triangle subgraph with
2 sidesgs, 1, e5 2, and the bases, 1 andey, 2, is reduced (tri-

reduction step. In the backtracking phase, when the algoriti#agle reduction) to a new netwo€ky, with the replaced links

is backtracking reduction-stefy it computes R&l7;_; = ¢;)
and Re{G,_1 — ¢;) of link ¢;; ¢; is replaced (or removed) in

c1, €2, then

reduction step, based on a set of closed-form (backward-TR) RelG —es1) =a-ps2-@o,2+7 Ds,2 Do 2,

formulas. The MRI are then computed based on the reductiorRelG

—es2) =B ps1-Q1+Y Ps,1 D1,

factor and the backward-TR formulas. Section lll-A introduces Rel(G — ¢, 1) =a - s 1 - Ps,2 - Qo2+ 3 - Ps.1 - Us,2 + 7

6 backward-TR formulas as lemmas. Section I1I-B provides the

MRI computation.

A. Backward TR Formulas
Lemma 1: If link ¢; is valueless in network?, then

RellG Rel(G % ¢;) = Rel(@).

—e) =

Proof: See the Appendix, Section 2.

Lemma 2: If ¢; is the essential link going out of the source

(or into the sink) in networkz, then

Rel(G)
pi

Rel(G — Ci) =0, ReI(G * Ci) =

Proof: See Appendix, Section 3.

Lemma 3: If network G; with two series linksg;, ¢;, is re-
duced (rule r5) to a new network,, with the replaced link;,,

then

ReI(G1 — 67‘,) = ReI(G1 — Gj) = Re'(GQ — Gk),
ReI(Gl * Ci) =q; - ReI(G2 — Ck) +pj- Rel(G2 * Gk),
ReI(Gl * Cj) =q; - REKGQ — Ck) +p; - ReI(G2 * Ck).

Proof: See the Appendix, Section 4.

Lemma 4: If network GG; with 2 parallel links,e;, ¢;, is re-
duced (rule r6) to a new network,, with the replaced linky,

then

Rel(Gl * Ci) = ReI(Gl * CJ) = ReI(G2 * Ck),
Rel(Gy — e;) =q; - Rel(G2 — er) + p; - Rel(Gy + ),
ReI(G1 — Gj) =q; - Re'(GQ — Ck) +pi - Re'(GQ * Gk).

Proof. See the Appendix, Section 5.

(gs,1-Ps,2-Pb,2 +Ds,1-Ds,2),

Rel(G — ey 2) =a-qs1 ps,24+ B Ps,1s,2 @1+
'(ps,l “Gs,2 " Pb,1 +ps,l 'ps,?)v
RelG xes 1) =0 Gs2 a1+ (Ds,2+ a2 Db, 1),

RellG*es,2) =~ qs,1 @2+ 7 (Ps,1 + 5,1 - Do, 2),
RellG*ecy 1) =a-qs,1 ps,2 Q2+
“(Ps, 1+ Gs,1 7 Ps, 2 P, 2),
=03 D5 105,20, 1+
“(ps,2 +Ps, 17 s, 2 Db, 1)-
a =RellGx — er *ez),
B =RellGx xey — e2),
v =RellGx xe1 x e2). (8)

Rel(G x ey o)

Proof. See the Appendix, Section 7.

The goal is to derive MRE;) of link ¢; in a given network.
Theorem 1 shows the computation of the MRI based on: a)
the reduction factors and b) backward TR formulas detailed in
lemma 6.

Theorem 1:In G, the MRI of a linke; belonging to both the
original networkG andG,, is

ik e;) — RellGy — e;)];
reduction factor in reduction step

9)

MRI(e;) = R; - [ReG;
R; =

Proof: See the Appendix, Section 8.

B. The Detailed Algorithm

Algorithm The_2- P(G, R)

Input: A network G with source
t, and the failure probabilities of
the links; the corresponding reduction
factor, R; Initially, R=1;

s, sink
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Phasel: Reduction phase
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Phase2: Backtracking phase

Original netwark: G=G,
RelGy-ep=10
FRelGy™ep) =pops+pabs+ P2Galel s~ PadabalisP s
F2PaPs5Ps
MRI@ ) =paps+ Pabs+Padslels~ P202Pal5Ps
“FaPalsPs
Step 1: contracting the essential link RKGp-ep) =paps

R=p;

ReKG)=R, x ReKG) G

RelGy-eg) =pops+ PaPals-PalelsPs

ReKG-eg =pops+ paPs-paPalsts

RelG; " e = qaqups + (B3 + ol (b5 + 04~ Psby)
RelG," e =qops+pAbs+ps-Psps

RelG;* e = qopaps+ polbs+ P~ Psps

MERRe) =p 105+ P 1G53 PP s P 193 PabsP P 1Pabsbs
MRXC) =P 106D 182 24P~ P 1928585+ P 1P 2Pel sPs
MREC) =P 10285~ P 1020386~ P 17 PsPs+ P iPal absP s

Step 2. triangle reduction

+
pa{___ p2Q3p4 p2p3 &I(Gz' ea) =pd
Pz‘?zﬂfps ReKG,-e)=p,
Py= M R, :e‘;’ =gspa* Py
2 e)=g.p,+
R, = R x 220204+ 23) MRCY R, » Carasin- )
Pz y T P23 =pp,- -
oy M 122 PP aGaPels- P23l
PagzPy + Baps

ReXG) =Ry x Rel(Gy
Step 3 serial reduction gigs' ‘39) =_Pc

= Ga e 3¢9 =P
%R, R P | MG e o s
Fel(G) = Ry x ReKGy a3y ey | RG e = a0t 5y

MRReg) = Ry x (g, + Py~ P,)
SPiPat PP aGale - P1PaGalels - PP Pals

Step 4: serial reduction ﬁﬁg"_eﬁ =p,
Pa= P € %~ €)= P
Re=Rgx 1= R, S @ | RKGre)=1
Rel(G) = R, x Rel(Gy ea ReG,*e)=1
Step 5 paraliel reduction

¥ RKG;- ¢) =0
By=L, P PPy Gs ReKGs*ep=1
Rs=Ryx =R,
Rel(G) = Ry x Rel(Gy

=Rsx py

Fig. 6. Example of the MRI evaluation, based on the 2-P algorithm.

Output:  The MRI of all links;
Begin
IF G is a source-sink network containing

a single link
THEN return: Rel
ELSE

ei!

(G—Ci) =0, Rel (G*CZ) =1;

IF G is not a reducible * network
THEN exit;
ELSE
Reduce G to G’ using any 1 of the 7
reduction axioms;

CR = R* Transformation factor;
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1){13] (2)[3.6] }[3.6] Modified ARPANET I&)ormalized computation time
Kl
o
o e @) . s
4)[21]ARPA subnetwork  (5)[13] }[3.6] ARPANET in 1971 0 -+ Traditional spproach :
ke
60 “‘.'
s { > 0 e T ¢
“ e PR
7) [21]ARPA subnetwork ) [6.10] k) o
20 Ed
ST TS TS OOV SOOIV T T .
1 K 3 4 3 6 7 3

Benchmark

Fig. 7. Benchmarks and real networks. Fig. 8. Comparisons of computation time.

/* CR is the current reduction factor APPENDIX
*/
The\_2- P(dG, CR);
Compute Rel (G—¢) and Rel (Gxe), based on
the
backward TR formulas;
IF link e; isin G and not in &
THEN Compute MRKe) based on theorem

1) Proof of the Triangle Reduction RuléAccording to the
factoring theorem [10], Rél¥) can be partitioned into the 16
subproblems in Fig. 9, corresponding to 4 graghs, Gy, G.,

G 4. For example(s,, is related to7 by the presence of link, ;
and the absence of linkg 2, ¢y 1: Gy = Gxes 1 —es 2—ep 1.
According to r4a and r1, theis compressed with, , and value-

1 less linkey, 2 is removed, resulting in 2 equal-valued subprob-

lems,
END_IF;
END_IF; RellGy) =Rel(G x5 1 —e5,2 — ep,1 — ¢p,2)
END_IF; =RellG*es1—e52—e1%ep 2).

End Algorithm ) )
As a result,Gx can be associated witli, by the presence of

link ¢; and the absence of link; thus

Fig. 6 illustrates the computation of MRI via an example. Rel(Gy) = Rel(Gx * e1 — e2).
The original networkG is transformed to a source-sink net
work G5 through 5 reduction steps in the reduction phase. Thei'np
RellG5 — ¢y) = 0 and Re{G; * ¢;) = 1. In the backtracking
phase, for example, becausecg)replaces:;, andeg in reduc- RellGx) =p1 - g2 - Rel(Gx e — ea) + g1 - po
tion step 4, resulting in the reduced netwdark, and b)eg is ‘RellGx — ey % ex) 4+ p1 - p2
the only link contained ir7, then the MRI ofeg is computed,
as shown in the figure. The MRI of the remaining links can be
similarly derived. =p1-q2 RellGy) + q1 - p2 - RelGe) +p1

p2 - Rel(Gy). (20)

ply the same logic of relating,,, G., G4 to Gx; the result

-Rel(Gx x e x e2)

C. Computational Complexity Analysis Also

The reduction phase involves at mast— 1 reduction steps RelG) =pa,1 - s,27 @1 RENGY) + 5,1+ ps 2

to transform a reducibfe network to a source-sink network. "2 - RelGe) + 11,1 - Rel(Gy)

The backtracking phase requires constant time to evaluatey; 1 =(ps.1-s,2 " Ps,1+¢s, 1 Ps,2 P2+ Ps 1" Ps,2)

closed-form expressions at each of MRI backtracking steps. (11)

This yields a complexity ofJ(m) for computing MRI based ) _

on the 2-P Algorithm. Multiply (10) by transformation facto€’,
C-RellGx)=C-p;-q2-Rel(G,) +C - q1 - p2 - RellG,.)

D. Experimental Results +C-p1-p2 -RellGy). 12)

An experiment compared the 2-P Algorithm and the tra Equate (11) and (12),

ditional MRI-computation approach using (1) [7], in Sun RelG) =RellGx) - C, (13)
ServexStation 5 using a collection of real networks and D517 Gs5,2 " @1 Q5,1 D52 Qb2
benchmarks [3], [6], [10], [13], [21] as shown in Fig. 7. Fig. 8 2 2~ C R C ’
displays the computation time of the traditional approach with P1ops = E (14)
respect to the normalized computation time of the 2-P MRI C

algorithm. Fig. 8 shows that the 2-P algorithm outperforms thiRearrange (14); then directly derive (2), (3), (5), and thus prove
traditional approach by 2 orders-of-magnitude. the theorem.
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=Rel(G-¢;1-e52 % e, 5-ep2)
=Rel(G- ¢, 1-e2* &1 %ey2)

Decornposition Subproblems for G Cmq’m&?g graph after Subproblems for Gx
oring
4 subproblems * G &
Rel(G)=Rel(G - ¢,1-¢,5-¢; 1-¢;5) Rl(G,)
G, =G-€“-€s‘2 =R€£(G-€5’1-€;2-€b’j *eb,Z) . @ =ReI{GX-e;-e2)=0

2 subproblems
Rl(Gy)=Rel(G e, |- e;5- €1~ €5)

G,=G*e ;-¢,5-¢ _
b 517 C527 %41 —Rel{G*e,lj-eslz-eblj*eblz)

8
Q

Rel(Gy)
=R€I(Gx *GJ - 62)

2 subproblems :
Rel{G)=Rel(G - e51 * e~ 2, 1- &)
=Rel(G-e,1* e % ey 1€

G, =G-e1 ¢ p-)

o
i@@

Rel(G,)
=R31(Gx‘el *e))

8 subproblems :

Rel(Gy)=Rel(G * e, 1-€,2 " ey 1-@2)
=Rel(G *eg;-¢e,0%ey; * ey
=Rel(G- ;1% ep- 655 *ey2)

Gy
Gy=G*e, "¢, =Rel(G- ;1% e, ey *ey) Rel(G,)
=Rel(G *es1* e;p- ¢ - €52) =Rel(G, *e, *e;)
=Rel(G *e5; * ¢2- €51 *e52)
=Rel(G *e5; % ¢,2 * ey 5- €5
=Rel(G*e ;% ey "¢y 1" ¢y5)
Rel(G) = p, 19,2041 % Rel(Cy) +q,10,29 2 X ReG,) Re(Gy) = Gy
Pigax
(s192Pn1°+ G152 Po2 * Py 1Ps2)% ReHGY) + QX RelG)
+ pipa % RelGy)

Fig. 9. Association of R¢(7) and Re{G x ).

2) Proof of Lemma 1:According to the factoring theorem Based on the factoring theorem [10],

[10], Rel( @) can be expressed as

Rel(Gl * Ci)
Rel(G) = ¢; - RellG —¢;) + p; -Rel(G x¢;).  (15) D

Because; is a valueless link, according to rules r1-r3, Re(Gy «¢j) = ;

RelG) = RelG — ¢;). (16) Fromrule rs,
From (15) and (16), the lemma is proved. Rel(G) =Re(Gz)

3) Proof of Lemma 2:According to rule r4,
o The lemma is directly proved from (19)—(21).

Rel(G) = piRel(G x e:). (7) 5) Proof of Lemma 4:After compressing;(e;) in Gy, then

Based on the factoring theorem [10], ej(e;) becomes redundant. Therefore,
RelG) = ¢RelG — ¢;) + piRelG v ;). (18) Re(G o+ ei) = Rel(Gh ;) = Rel(Gy + ).

_ Re|(G1) —qi- ReI(Gl — Ci)

=q, - Rel(Ga — ex) + pr - Rel(Ga  ¢). (21)

Rel(G1) — q; - Rel(Gy — ¢;)

Based on the factoring theorem [10],

The lemma is directly proved from (17) and (18).
4) Proof of Lemma 3:After removinge;(e;) from network
(i1, thene;(e;) becomes a valueless link. Thus,

ReI(Gl — Ci) = ReI(Gl — Gj) = ReI(G2 — Gk). (19)

ReI(Gl — Ci)

_ ReI(Gl) —D; - ReI(Gl * Ci)

qq

ReI(Gl — Cj) =

_ ReI(Gl) —pj- ReI(Gl * Cj)

9
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Decomposition Subproblems for G Ca‘respgiﬁ;g if;aph affer Subproblerns for Gx
4 subproblems : G, @
RAl(Gy)=Rel(G - e, - €,5- €, ;- €3)) Rel(G,)

G, =G-¢-¢, =Rel(G- ¢, j-¢€,5-0,1%¢;) ®@ =Rel(G,-¢;-¢;)=0
=Rel(G-¢,1-e,% ¢, 1-¢)
=Rel(G- ¢ 1-e0 % ey 1 ey)

2 subproblems : Gy &,
Goge Rel(Gy)=Rel(G *e 1-e52- €51 €3) G, _Rd(Gb) ,
b= GGGy =Rel(G * e, 1- .- 051 €)) @ e Tere)
2 subproblems : G f. RA(G,)

G, = G-esl;*es,z-e;,'g Rd(GcFReI{G'es,J *652'eb,l'eb,2) =Rel(Gy-¢;*ey)

=Rel(G-e,1 " e2% e, - 6,9 @
8 subproblems :
Rel(G)=RelfG *¢,1-€,5 "¢y 1- &)

=Rel(G*egp-e5 ey M)

=Rel(G-e 1% e5- ¢, % ey,) G,

Gy=G e ey =Rel(G-e,1 e, ey 1 " ep)) Rel(Gy)
=Rel(G*e ;% e1-0, - €3)) @ =Rel(G, *e;*ey)
=Rel(G *e ;% ep-€5) " €y))
=Rel(G *e 1% e *ey -0
=Rel(G *e ;% e ey ")

Fig. 10. Relationships among the subproblems of &¢land Re{G x ).

Then, from rule r6,

Rel(Gl) = Rel(Gg)
=q, - Rel(Ga — ex) + pr - Rel(Ga x ¢,). (24)

The lemma is directly proved from (22)—(24).

6) Proof of Lemma 5:After removinge; (e2) from Gy,
theney (e1) becomes an essential link 6fx. Equation (6) is
derived from lemma 2. Based on the factoring theorem [10],

ReI(GX * Cl) - q2 * ReI(GX * Cl — 62)
b2

— ReI(GX * 62) —q1 - ReI(GX —eq k @2)

p ’
(25)

Rel(GX * e % 62) =

Substitute RelGx * ¢; — e2) and Re{Gx — ¢; * e2) in (25),
based on (6). Eq. (7) of the lemma is proved.
7) Proof of Lemma 6:Based on the factoring theorem [10],

Rel(G) can be partitioned into 16 subproblems corresponding

to 4 graphs,G,, Gy, G., G4 [20], as shown in Fig. 10. In
this figure, for example, grap&y, is related to grapldZ by the
presence of linke; 1, and by the absence of links_ s, e 1:

Gy =Gxe, 1 —e; 2 — e 1. The reduction, based on rules rd4a
and rl, results in 2 equal-valued subproblems,
RellGy) =Rel(G xes 1 —es,0— 51 — €p,2)
=RellGxe, 1 —es2—ep,1 %6, 2)
As a result,Gx can be associated witi, by the presence of
link e; and by the absence of lirks: Rel(G,) = Rel(Gx e —
62).

Apply the same logic of relating other graphs¥a ; the re-
sulting equations are given in Fig. 10 under “Subproblems for
G” and “Subproblems fot7x .”

Based on the factoring theorem [10], R&l— ¢, 1) can be
partitioned into 8 subproblems and expressed as:

R6|(G — Cs, 1)

=qs,2 @, 1 G2 RellG—e; 1 —¢e520—cp1 — ¢y, 2)

+ G52 a1 Do 2 Re(G —e5 1 — 50— €1 % e,2)
+ G52 Pb,1 Qo2 Re(G —e, 1 —e; a%ep 1 — e, 2)
+qs,2-Pv, 1 Pb,2 - Re'(G—Gs,l — €5,2%Cp, 1 *%,2)
+ P52 @1 G2 Re(G — e 1 %e50 —ep1 —e,2)
+ps,2 @1 pu2  RENG —¢5 1 %e5 20— e 1% e, 2)
+ P52 1 Qo2 RelG —es 1 %es0%e 1 —ep,2)
+ a2 Po,1Po2 RE(G — e, 1 e, 0 xep 1 xep 2).

(26)



106 IEEE TRANSACTIONS ON RELIABILITY, VOL. 50, NO. 1, MARCH 2001

From the equations in Fig. 10, and (26), the first equation in (8)12] ——, “Calculation of node-pair reliability in large networks with unre-
is directly derived. The rest of the equations in (8) are similarly _ liable nodes1EEE Trans. Reliabilityvol. 43, pp. 375-377, Sep. 1994.
derived [13] Y. B. Yoo and N. Deo, “A comparison of algorithms for terminal-pair
: . reliability,” IEEE Trans. Reliabilityvol. 37, pp. 210-215, Jun. 1988.
8) Proof of Theorem 1:Based on the factoring theorem [10] [14] J. Sharma, “Algorithm for reliability evaluation of a reducible network,”

IEEE Trans. Reliabilityvol. R-25, pp. 337-339, Dec. 1976.
RelG;) = pi - ReGj xe;) + (1 — p;) - Re(G; — ;). (27) [15] K.Nakashima and K. Yamato, “Variance-importance of system compo-

; i [y ; nents,”IEEE Trans. Reliabilityvol. R-31, pp. 99-100, Apr. 1982.
SmceG] is reduced front- at reduction step, [16] R. E. Barlow and F. Proschastatistical Theory of Reliability and
Rel(G) = Rj . Re|(Gj) Lifetesting: Probability ModelsHolt, Rinehart, Winston, 1975.
[17] J.Hong and C. Lie, “Joint reliability-important of two edges in an undi-
:Rj . [pi . Re'(Gj * @i) + (1 - pi) . Rel(Gj - Gz)] rected network,"IEEE Trans. Reliability vol. 42, pp. 17-23, March
(28) 1993.

[18] L. Page and J. Perry, “Reliability polynomials and link importance in
Differentiate (28) with respect @ ; the result s (9); the theorem networks,"IEEE Trans. Reliabilityvol. 43, pp. 5158, March 1994.
. [19] M. Armstrong, “Joint reliability-important of component$FEE Trans.
is proved. Reliability, vol. 44, pp. 408412, Sep. 1995.
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