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Abstract—Csiszár’s forward -cutoff rate (given a fixed 0) for a
discrete source is defined as the smallest number such that for every

, there exists a sequence of fixed-length codes of rate with
probability of error asymptotically vanishing as . For a dis-
crete memoryless source (DMS), the forward -cutoff rate is shown by
Csiszár [6] to be equal to the source Rényi entropy. An analogous concept of
reverse -cutoff rate regarding the probability of correct decoding is also
characterized by Csiszár in terms of the Rényi entropy.

In this work, Csiszár’s results are generalized by investigating the
-cutoff rates for the class of arbitrary discrete sources with memory. It is

demonstrated that the limsup and liminf Rényi entropy rates provide the
formulas for the forward and reverse -cutoff rates, respectively. Conse-
quently, new fixed-length source coding operational characterizations for
the Rényi entropy rates are established.

Index Terms—Arbitrary sources with memory, cutoff rates, fixed-length
source coding, probability of error, Rényi’s entropy rates, source reliability
function.

I. INTRODUCTION

In [6], Csiszár establishes the concept of generalized fixed-length
coding cutoff rates (forward and reverse) for discrete memoryless
sources (DMSs). More specifically, given� > 0, he defines the
forward �-cutoff rate for a sourcefXig

1

i=1 as the numberR0 that
provides the best possible lower bound in the form�(R � R0) to the
source reliability function. This definition implies that the source error
probability is guaranteed to exponentially decay with a linear exponent
of specified slope� for R > R0. He also provides a similar definition
for the reverse�-cutoff rate (where� > 0) with respect to the source
unreliability function (the exponent of the vanishing probability
of correct decoding). He then demonstrates that the forward and
reverse�-cutoff rates are, respectively, given byH1=(1+�)(X1) and
H1=(1��)(X1), whereH�(X1) denotes the Rényi entropy of order�
[15]. This result provides a new operational significance for Rényi’s
entropy.

Previous operational characterizations of Rényi’s entropy were es-
tablished by Arikan [1] for the theory of guessing, by Jelinek [12] and
others (e.g., [14]) for the buffer overflow problem in lossless source
coding, and by Campbell [5] for the lossless variable-length coding
problem with an exponential cost constraint for a DMS. Recently, Erez
and Zamir [9] demonstrated that for discrete memoryless modulo addi-
tive-noise channels with side information at the transmitter, Gallager’s
random coding error exponent as well as the sphere-packing error expo-
nent can be written in terms of the Rényi entropy. Finally, Campbell’s
work was generalized in [16] for the class of Markov sources of arbi-
trary order.
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In this work, we extend Csiszár’s results [6] by investigating the
�-cutoff rate for arbitrary (not necessarily stationary, ergodic, etc.) dis-
crete-time finite-alphabet sources

XXX
�
= fXn = (X

(n)
1 ; . . . ; X(n)

n )g1n=1:

We demonstrate that the limsup and liminf Rényi entropy rates provide
the expressions for the forward and reverse�-cutoff rates, respectively.
These results also provide simple, and in certain cases, computable
lower bounds to the source reliability and unreliability functions.

The rest of this correspondence is organized as follows. In Section
II, relevant previous results by Han on the reliability and unreliability
functions of arbitrary sources are briefly reviewed. The general expres-
sion for the forward�-cutoff rate and the reverse�-cutoff rates are
proved in Sections III and IV, respectively. Finally, concluding remarks
are stated in Section V.

II. PRELIMINARIES: SOURCERELIABILITY AND UNRELIABILITY

FUNCTIONS

In this section, we briefly review the previous results by Han [10],
[11] on the general expressions for the reliability and unreliability func-
tions of arbitrary discrete-time finite-alphabet sources (for previous
work on the source-coding error exponent, see [7], [13], [2], [8], [3],
and [11]).

Consider a discrete-time sourceXXX defined by a sequence of finite-
dimensional distributions [10]:XXX

�
= fXn = (X

(n)
1 ; . . . ; X

(n)
n )g1n=1.

We assume that the source alphabetX is finite.

Definition 1 (Fixed-Length Source Code):An (n; M) fixed-length
source code forXn is a collection ofM n-tuples

C�n = fcn1 ; . . . ; c
n
Mg:

The error probability of the code is

Pe( C�n)
�
= PX [Xn 62 C�n] :

Definition 2 (Source Reliability Function) [10, Definitions 1.12 and
1.13]: Fix e > 0.R > 0 is e-achievable for a sourceXXX if there exists
a sequence of(n; Mn) fixed-length source codesC�n such that

lim sup
n!1

1

n
logMn � R and lim inf

n!1
�

1

n
logPe( C�n) � e:

The infimum of all e-achievable rates for sourceXXX is denoted by
R(ejXXX). The reliability function for sourceXXX,E(RjXXX) is the dual of
R(ejXXX). More specifically

E(RjXXX)
�
= supfe > 0: R is e-achievable forXXXg

andE(RjXXX) = 0 if the above set is empty.

Note that since the source alphabet is finite,R(ejXXX)� log jX j<1
for everye > 0; this implies thatE(RjXXX) = 1 for R > log jX j.
Furthermore,E(RjXXX) is nondecreasing inR but nonconvex in general.

Theorem 1 ([10, Theorem 1.15]):Fix e > 0. For any sourceXXX

R(ejXXX) = supfR� �(R): R 2 (0; 1) and �(R) < eg

where

�(R)
�
= lim inf

n!1
�

1

n
logPX �

1

n
logPX (Xn) � R :
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Definition 3 (Source Unreliability Function [10, Definitions 1.14 and
1.15]: Fix e > 0.R > 0 is reversee-achievablefor sourceXXX, if there
exists a sequence of(n; Mn) fixed-length source codesC�n such that

lim sup
n!1

1

n
logMn �R

and

lim inf
n!1

�
1

n
log(1� Pe( C�n)) � e:

The infimum of all reversee-achievable rates for sourceXXX is denoted
by R�(ejXXX). Therefore, for any0 < R < R�(ejXXX), every code se-
quenceC�n with lim supn!1(1=n) logMn � R satisfiesPe( C�n) >
1� expf�neg for all sufficiently largen. This is apessimisticview-
point, since we require that all code sequences are “bad” for all suffi-
ciently largen.1 The unreliability function for sourceXXX,E�(RjXXX) is
the dual ofR�(ejXXX). More specifically

E�(RjXXX)
�
= inffe > 0: R is reversee-achievable forXXXg:

Under slight modification, the following result follows from [10,
Theorem 1.16].

Theorem 2: Fix e > 0. For any sourceXXX

R�(ejXXX) = inf h > 0: inf
R>0

(�(R) + [R� �(R)� h]+) � e

where

�(R)
�
= lim inf

n!1
�

1

n
logPX �

1

n
logPX (Xn) < R

and[x]+
�
= max(x; 0).

III. FORWARD �-CUTOFF RATE

Definition 4 (Forward�-Cutoff Rate): Fix � > 0. R0 � 0 is a
forward�-achievable ratefor a sourceXXX if

E(RjXXX) � �(R�R0)

for everyR > 0, or equivalently

R(ejXXX) �
1

�
e+R0

for everye > 0. Theforward�-cutoff ratefor XXX is defined as the in-
fimum of all forward�-achievable rates, and is denoted byR

(f)
0 (�jXXX).

A graphical illustration ofR(f)
0 (�jXXX) is provided in Fig. 1.

It is important to remark that the above definition of the forward
�-cutoff rate is equivalent to the first part of Csiszár’s definition (cf.
[6, Definition 1]).

Before providing the general expression of the forward�-cutoff rate,
we prove the following lemma, which is a consequence of Theorem 1.

Lemma 1: The following two conditions are equivalent:

(8R > 0) �(R) �
�

1 + �
(R�R0) (3.1)

and

(8 e > 0) R(ejXXX) �
1

�
e+R0: (3.2)

Proof:
1) Forward Part (3.1)) (3.2)

1Note that this is consistent with our terminology forR (ejXXX) as an unrelia-
bility function. However, one could also regard our definition from theoptimistic
point of view [10] if the quantity of interest were the probability of correct de-
coding as opposed to the probability of error. In this case, one would require
“good” codes for infinitely manyn.

Fig. 1. Forward�-cutoff rate for an arbitrary sourceXXX .

For anye > 0, we obtain by Theorem 1 that

(8 � > 0) (9R� with �(R�) < e) R(ejXXX)� � � R� � �(R�):

) R(ejXXX) �R� � �(R�) + �

�R� �
�

1 + �
(R� �R0) + � (3.3)

=
1

1 + �
R� +

�

1 + �
R0 + �

<
1

1 + �

1 + �

�
e+R0 +

�

1 + �
R0 + � (3.4)

=
1

�
e+R0 + �

where (3.3) follows by (3.1), and (3.4) holds because

e > �(R�) �
�

1 + �
(R� �R0):

The proof is then completed by noting that� can be made arbitrarily
small (independently ofe).

2) Converse Part(3.2)) (3.1)
Equation (3.1) holds trivially for thoseR satisfying�(R) =1. For

anyR > 0 with �(R) <1, let e�
�
= �(R)+ � for some� > 0. Then

(by Theorem 1)

R(e�jXXX) � R� �(R):

) �(R) �R�R(e�jXXX)

�R�
1

�
e� �R0 (3.5)

=R�
1

�
�(R)�

�

�
�R0

where (3.5) follows by (3.2). Thus,

�(R) �
�

1 + �
(R�R0)�

�

1 + �
:

The proof is then completed by noting that� can be made arbitrarily
small.

Remark: The above lemma actually identifies the forward�-cutoff
rateR(f)

0 (�jXXX) as theR-axis intercept of thesupport linewith slope
�=(1 + �) to the large deviation spectrum curve�(R). We next es-
tablish an expression forR(f)

0 (�jXXX) by showing that the limsup Rényi
entropy rate of order1=(1 + �) is indeed the above intercept.

Theorem 3 (Forward�-Cutoff Rate Formula):Fix � > 0. For an
arbitrary sourceXXX

R
(f)
0 (�jXXX) = lim sup

n!1

1

n
H1=(1+�)(X

n)
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where

H�(X
n)

�
=

1

1� �
log

x 2X

P�
X (xn)

is the (n-dimensional) Rényi entropy of order�.
Proof:

1) Forward Part:

R
(f)
0 (�jXXX) � lim sup

n!1
(1=n)H1=(1+�)(X

n):

By the equivalence of conditions (3.1) and (3.2), it suffices to show
that

(8R � 0) �(R) �
�

1 + �
R� lim sup

n!1

1

n
H1=(1+�)(X

n) :

Pr �
1

n
logPX (Xn) � R

= Pr e�t logP (X ) � entR ; for t > 0

� e�ntR

x 2X

P 1�t
X (xn); for t > 0 (by Markov's inequality)

= exp �nt R�
1

n
H1�t(X

n) ; for 0 < t < 1:

) �(R) � t R� lim sup
n!1

1

n
H1�t(X

n) ; for 0 < t < 1

=
�

1 + �
R� lim sup

n!1

1

n
H1=(1+�)(X

n) ;

for �
�
=

t

1� t
> 0:

2) Converse Part:

R
(f)
0 (�jXXX) � lim sup

n!1
(1=n)H1=(1+�)(X

n)

The converse part holds trivially if

lim sup
n!1

(1=n)H1=(1+�)(X
n) = 0:

Without loss of generality, we assume that

lim sup
n!1

(1=n)H1=(1+�)(X
n) > 0:

By the equivalence of conditions (3.1) and (3.2), it suffices to show
that for any� > 0 arbitrarily small, there existsR = R(�) > 0 such
that

�(R) �
�

1 + �
R� lim sup

n!1

1

n
H1=(1+�)(X

n) + 3� :

Consider the tilted distribution (e.g., [4], [3]) with parametert of the
random variable� logPX (Xn), defined as

P
(t)
X (xn)

�
=

et(� logP (x ))PX (xn)

x̂ 2X

et(� logP (x̂ ))PX (x̂n)

=
P 1�t
X (xn)

x̂ 2X

P 1�t
X (x̂n)

=
P 1�t
X (xn)

expftH1�t(Xn)g

= expf�t[logPX (xn) +H1�t(X
n)]gPX (xn) (3.6)

wheret = �=(1+�).By definition of limsup, there exists an increasing
sequence of positive integersJ

�
= fnjgj�1 satisfying

lim
n!1; n2J

1

n
H1=(1+�)(X

n)
�
= lim

j!1

1

nj
H1=(1+�)(X

n )

= lim sup
n!1

1

n
H1=(1+�)(X

n):

Also define

�
�
= inf R 2 [0;1): �

(t)
J (R) > 0 (3.7)

where2

�
(t)
J (R)

�
= lim inf

n!1; n2J

�
1

n
logP

(t)
X xn 2 Xn: �

1

n
logPX (xn) � R :

In Appendix A (cf. Lemmas 4 and 5), we show that for0 < t < 1

� �
1

1� t
log jX j

and

lim
n!1; n2J

1

n
H1=(1+�)(X

n) > 0) �

� lim
n!1; n2J

1

n
H1=(1+�)(X

n) > 0:

Hence, we can choose a fixed� 2 (0; � ] such that

�
(t)
J (� + �) = lim inf

n!1; n2J

�
1

n
logP

(t)
X xn 2 Xn: �

1

n
logPX (xn) � � + � > 0:

The above inequality implies the existence of
 > 0 such that

�
1

n
logP

(t)
X xn 2 Xn: �

1

n
logPX (xn) � � + � > 


for all n 2 J sufficiently large. Thus, for thosen satisfying the above
inequality

P
(t)
X xn 2 Xn: �

1

n
logPX (xn) < � + � > 1� e�n
 :

Let

Ik
�
= [bk�1; bk); for 1 � k � K

�
= d(� + �)=(2�)e

where

(8 1 � k < K) bk = 2k� and bK = � + �:

Note thatbk�bk�1 = 2� for every1 � k < K and0 < bK�bK�1 �
2�. Since� logPX (Xn) � 0 with probability1, then

P
(t)
X xn: �

1

n
logPX (xn) < � + �

=

K

k=1

P
(t)
X xn: �

1

n
logPX (xn) 2 Ik > 1� e�n


for all n 2 J sufficiently large:

Hence, there existsk(n) 2 [1; K] for all sufficiently largen 2 J such
that

P
(t)
X xn: �

1

n
logPX (xn) 2 Ik(n) �

1� e�n


K
: (3.8)

Let R
�
= lim infn!1; n2J bk(n)�1 � � (here, we assume that by

choosing� > 0 small enough, we can makeR > 0. We will sub-
stantiate this assumption later). Then by noting thatR < bk(n)�1 for
all sufficiently largen 2 J , we obtain that

PX xn: �
1

n
logPX (xn) � R

� PX xn: �
1

n
logPX (xn) 2 Ik(n)

2Recall that for any sequencefa g

lim inf
n!1; n2J

an
�
= lim inf

j!1
an = lim

j!1
inf
k�j

an :
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for all n 2 J sufficiently large. However

PX xn: �
1

n
logPX (xn) 2 Ik(n)

=
[x : �(1=n) logP (x )2I ]

PX (xn)

=
[x : �(1=n) logP (x )2I ]

� expft[logPX (xn) +H1�t(X
n)]gP

(t)
X (xn) [by (3.6)]

� expf�ntbk(n) + tH1�t(X
n)g

�
[x : �(1=n) logP (x )2I ]

P
(t)
X (xn)

= exp �nt bk(n) �
1

n
H1�t(X

n)

� P
(t)
X xn: �

1

n
logPX (xn) 2 Ik(n)

�
1� e�n


K
exp �nt bk(n) �

1

n
H1�t(X

n)

8n 2 J sufficiently large (3.9)

where the last inequality follows from (3.8). Consequently

�(R) = lim inf
n!1

�
1

n
log Pr �

1

n
logPX (Xn) � R

� lim inf
n!1; n2J

�
1

n
log Pr �

1

n
logPX (Xn) � R

� t lim inf
n!1; n2J

bk(n) � lim
n!1; n2J

1

n
H1�t(X

n)

� t lim inf
n!1; n2J

bk(n)�1 + 2� � lim sup
n!1

1

n
H1�t(X

n)

= t R� lim sup
n!1

1

n
H1�t(X

n) + 3� : (3.10)

Now it remains to validate the claim onR that it can be made posi-
tive by choosing� small enough. We prove this assumption by contra-
diction. Suppose thatR cannot be made positive for any� > 0; i.e.,
lim infn!1;n2J bk(n)�1 = 0 for arbitrarily small� > 0. Then by
following a similar procedure as in (3.9) and (3.10), we obtain

0 � lim inf
n!1

�
1

n
log Pr �

1

n
logPX (Xn) � 0

� lim inf
n!1; n2J

�
1

n
log Pr �

1

n
logPX (Xn) � 0

� t 2� � lim
n!1; n2J

1

n
H1�t(X

n)

= t 2� � lim sup
n!1

1

n
H1�t(X

n)

which implies that

lim sup
n!1

1

n
H1�t(X

n) = 0

since� can be made arbitrarily small, thus contradicting the positivity
assumption onlim supn!1

1
n
H1�t(X

n). The proof is therefore
completed.

Observation: It is important to point out that the proofs of the
forward and converse parts do not directly depend on Theorem 1 or
on source-coding concepts. While the proof of the forward part is
straightforward, the proof of the converse is more involved. More
specifically, the objective of the converse part is to demonstrate that
if lim supn!1(1=n)H1�t(X

n) is slightly nudged to the left (by a

Fig. 2. Functions�(R), � (R), and [�=(1 + �)](R � lim sup
(1=n)H (X )) for an i.i.d. binary source withP (0) = 1�P (1) =
1=4 and� = 9 (or equivalently,t = 0:9). WhenR > log(4), �(R) =
� (R) = 1.

factor of3�), then there exists a coordinateR on theR-axis such that
a straight line of slope�=(1 + �) given by

y =
�

1 + �
R� lim sup

n!1

1

n
H1�t(X

n)� 3�

lies above the curve of�(R) at R = R, thus violating its status of
support line for�(R).

This proof is established by observing that the desired coordinateR
lies in a small neighborhood of� , where� is the largest point for which
the spectrum�(t)

J (R) of the tilted distribution with parametert for the
random variable� logPX (Xn) vanishes. A key point is to choose
the tilted parametert to be equal to�=(1+�) which is the slope of the
support line to�(R). We graphically illustrate this observation (based
on a true example) in Fig. 2.

IV. REVERSE�-CUTOFF RATE

Definition 5 (Reverse�-Cutoff Rate): Fix � > 0. R0 � 0 is a
reverse�-achievable ratefor a sourceXXX if

E
�(RjXXX) � ��(R�R0)

for everyR > 0, or equivalently

R
�(ejXXX) � �

1

�
e+R0

for every e > 0. The reverse�-cutoff rate for XXX is defined as
the supremum of all reverse�-achievable rates, and is denoted by
R
(r)
0 (�jXXX). A graphical illustration ofR(r)

0 (�jXXX) is provided in
Fig. 3.

We observe that the above definition of�-cutoff rate is equivalent to
Csiszár’s definition of largest~�-unachievable rate in [6, Definition 1],
where ~� = ��.

We first prove the following two lemmas.

Lemma 2: Consider�(R) defined in Theorem 2. Then the fol-
lowing properties hold.

1) For anyR > 0 satisfying�(R) > R, �(R) = 1.
2) If �(R) > 0 for someR > 0, then

R1
�
= sup fR � 0: �(R) > Rg > 0 (4.11)

and for very0 < R < R1

x
n 2 Xn: �

1

n
logPX (xn) < R = 0;

for all sufficiently largen. (4.12)
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Fig. 3. Reverse�-cutoff rate for an arbitrary sourceXXX .

Proof:

1) Let us prove this property by contradiction. Suppose there exists
R > 0 such that�(R) > R, and that there existsL <1 with

�(R) = lim inf
n!1

�
1

n
log Pr �

1

n
logPX (Xn) < R < L:

Then

Pr �
1

n
logPX (Xn) < R � e

�nL
> 0

infinitely often inn.

) x
n 2 Xn: �

1

n
logPX (xn) < R � 1

infinitely often inn.

On the other hand,�(R) > R implies the existence of� > 0
with �(R)>R+�, which implies that for all sufficiently largen

Pr �
1

n
logPX (Xn) < R � e

�n(R+�)
:

Consequently, for infinitely manyn

1 � x
n 2 Xn: �

1

n
logPX (xn) < R

� e
nR Pr �

1

n
logPX (Xn) < R

� e
nR
e
�n(R+�) = e

�n�
< 1:

Hence, the desired contradiction is obtained.
2) Equation (4.11) is an immediate consequence of the nonin-

creasing property of�(R). We next prove (4.12) by contradic-
tion. We know that for every0 < R < R1, �(R) = 1. Now
suppose that

x
n 2 Xn: �

1

n
logPX (xn) < R � 1

infinitely often inn.

Then for infinitely manyn

Pr �
1

n
logPX (Xn) < R

� e
�nR

x
n 2 Xn: �

1

n
logPX (xn) < R � e

nR
:

Thus

�(R) = lim inf
n!1

�
1

n
log Pr �

1

n
logPX (Xn) < R � R

which contradicts the fact that�(R) =1.

Lemma 3: The following two conditions are equivalent:

(8R > 0) �(R) ��
�

1� �
(R�R0) (4.13)

and

(8 e > 0) R
�(ejXXX) ��

1

�
e+R0 (4.14)

under� 2 (0; 1).
Proof:

1) Forward Part: (4.13)) (4.14)
For anye > 0, we obtain from Theorem 2 that(8 � > 0)(9h� > 0)

inf
R>0

f�(R) + [R� �(R)� h� ]
+g � e

and

R
�(ejXXX) + � � h�;

which, in turn, implies the existence ofR� satisfying

inf
R>0

f�(R) + [R� �(R)� h� ]
+g + �

� �(R�) + [R� � �(R�)� h� ]
+

= maxf�(R�); R� � h�g:

Thus

e+ � � �(R�) and e+ � � R� � h� :

) R
�(ejXXX) �h� � � � (R� � e� �)� �

� �
1� �

�
�(R�) +R0 � e� 2�

��
1� �

�
(e+ �) +R0 � e� 2�

=�
1

�
e+R0 �

1 + �

�
�:

The proof is then completed by noting that� can be made arbitrarily
small.

2) Converse Part:(4.14)) (4.13)
The claim holds trivially whenR < �(R) since it implies by

Lemma 2 that�(R) = 1. It remains to prove the claim under
R � �(R). Let

hR
�
= R� �(R) and eR

�
= �(R):

) inf
a>0

�(a) + [a� �(a)� hR]
+

� �(R) + [R � �(R)� hR]
+ = �(R) = eR:

) R
�(eRjXXX) � hR:

Therefore

�
1

�
�(R) +R0 = �

1

�
eR +R0 � R

�(eRjXXX) � hR = R� �(R):

Hence

�(R) � �
�

1� �
(R�R0):

Theorem 4 (Reverse�-Cutoff Rate Formula):Fix 0 < � < 1. For
any sourceXXX

R
(r)
0 (�jXXX) = lim inf

n!1

1

n
H1=(1��)(X

n): (4.15)
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Proof: The theorem holds if�(R) = 0 for all R > 0, in which
case both the reverse�-cutoff rate and the liminf Rényi entropy rate are
zero.3 Without loss of generality, we assume that�(R) > 0 for some
R > 0.

1) Forward Part:

R
(r)
0 (�jXXX) � lim inf

n!1
(1=n)H1=(1��)(X

n)

By (4.13), it suffices to show that

(8R > 0) �(R) � �
�

1� �
R� lim inf

n!1

1

n
H1=(1��)(X

n) :

Pr �
1

n
logPX (Xn) < R

= Pr P t
X (Xn) > e�ntR ; for t > 0

� entR

x 2X

P 1+t
X (xn); for t > 0 (by Markov's inequality)

= exp nt R�
1

n
H1+t(X

n) ; for t > 0:

) �(R) = lim inf
n!1

�
1

n
log Pr �

1

n
logPX (Xn) < R

��t R� lim inf
n!1

1

n
H1+t(X

n) ; for t > 0

=�
�

1� �
R� lim inf

n!1

1

n
H1=(1��)(X

n) ;

for 0 < �
�
=

t

1 + t
< 1: (4.16)

2) Converse Part:

R
(r)
0 (�jXXX) � lim inf

n!1
(1=n)H1=(1��)(X

n)

By (4.13), it suffices to show that for any� > 0 arbitrarily small,
there existsR1 such that

�(R1) � �
�

1� �
R1 � lim inf

n!1

1

n
H1=(1��)(X

n)� 3� :

Define the tilted distribution

P
(t)
X (xn)

�
=

P 1�t
X (xn)

x̂ 2X

P 1�t
X (x̂n)

=expf�t[logPX (xn)+H1�t(X
n)]gPX (xn) (4.17)

wheret = ��=(1� �) < 0. Also define

�
�
= sup R 2 [0; 1): �(t)(R) > 0

and

3It is straightforward to verify that the reverse�-cutoff rate is zero. We herein
show thatlim inf (1=n)H (X ) = 0. For� = 1=(1� �) > 1

PX �
1

n
logPX (Xn) < R

= PX P��1
X (Xn) > e�(��1)nR

�
E P��1

X
(Xn)

e�(��1)nR
= e

(��1)nR
e
(1��)H (X )

:

Since�(R) = 0 for anyR > 0, we get that

0 =�(R)

�
= lim inf

n!1
�

1

n
logPX �

1

n
logPX (Xn) < R

� (1� �)R+ (�� 1) lim inf
n!1

1

n
H�(X

n):

Thus, for anyR > 0, R � lim inf (1=n)H (X ): Therefore,
lim inf (1=n)H (X ) = 0.

m
(t)
n

�
=

x 2X

P
(t)
X

(xn)[� logPX (xn)]

where

�
(t)(R)

�
= lim inf

n!1
�

1

n
logP

(t)
X

x
n2Xn:�

1

n
logPX (xn)<R :

We first point out that� is positive and finite. Our assumption about
the existence ofR > 0 such that�(R) > 0 implies via Lemma 2 that

R1
�
= sup fR � 0: �(R) > Rg > 0

and for0 < R < R1

x
n 2 Xn: �

1

n
logPX (xn) < R = 0

for all sufficiently largen. Thus�(t)(R) = 1 for 0 < R < R1.
Therefore

�
�
= sup R � 0: �(t)(R) > 0 � R1 > 0:

Furthermore, we show in Appendix B (cf. Lemma 6) that� � log jX j.
We next observe that

(1� t) logPX (xn) = logP
(t)
X

(xn) + tH1�t(X
n):

Hence

m
(t)
n =

1

1� t
x 2X

P
(t)
X

(xn) log
1

P
(t)
X

(xn)
+

�t

1� t
H1�t(X

n)

�
1

1� t
log jX jn +

�t

1� t
log jX jn = log jX jn: (4.18)

Since0 < � � log jX j, it follows from the definition of� that for any
0 < � < minf�; 2 log jX j � �g, there exists" > 0 such that

�
(t)(� � �) = lim inf

n!1
�

1

n
logP

(t)
X

� x
n 2 Xn: �

1

n
logPX (xn) < � � � > " > 0:

Thus

P
(t)
X

x
n 2 Xn: �

1

n
logPX (xn) � � � � > 1� e

�n"

for all sufficiently largen.

Therefore, for thosen satisfying the above inequality

P
(t)
X

x
n 2 Xn: 2 log jX j > �

1

n
logPX (xn) � � � �

� P
(t)
X

x
n 2 Xn:

2

n
m

(t)
n > �

1

n
logPX (xn) � � � �

[by (4.18)]

= P
(t)
X

x
n 2 Xn:

1

n
logPX (xn) � � � �

� P
(t)
X

x
n 2 Xn: �

1

n
logPX (xn) � 2

m
(t)
n

n

� 1� e
�n" � 1

2 (by Markov's inequality)

=
1� 2e�n"

2
:

Let

Ik
�
= [bk�1; bk) for 1 � k � L

�
=

2 log jX j � � + �

2�

wherebk
�
= (� � �) + 2k� for 1 � k < L, andbL

�
= 2 log jX j. Note

that bk � bk�1 = 2� for every1 � k < L andbL � bL�1 � 2�.
Therefore, there exists1 � k(n) � L such that

P
(t)
X

�
1

n
logPX (Xn) 2 Ik(n)

�
1� 2e�n"

2L
for all sufficiently largen.
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Then, by lettingR1
�
= lim supn!1 bk(n) + � and noting thatR1 �

bk(n) for all sufficiently largen, we obtain that

Pr �
1

n
logPX (Xn) < R1 � Pr �

1

n
logPX (Xn) 2 Ik(n)

for all n sufficiently large.

However, for all sufficiently largen, we have that

Pr �
1

n
logPX (Xn) 2 Ik(n)

=
x 2fx 2X : �(1=n) logP (x )2I g

PX (xn)

=
x 2fx 2X : �(1=n) logP (x )2I g

� et[logP (x )+H (X )]P
(t)
X (xn) [by (4.17)]

� e�nt[b �(1=n)H (X )]

�
x 2fx 2X : �(1=n) logP (x )2I g

P
(t)
X (xn) (4.19)

= e�nt[b �(1=n)H (X )]P
(t)
X

� �
1

n
logPX (Xn) 2 Ik(n)

�
1� 2e�n"

2L
e�nt[b �(1=n)H (X )]

where (4.19) follows from the fact that

bk(n)�1 � �(1=n) logPX (xn) < bk(n)

and thatt < 0. Consequently

�(R1) = lim inf
n!1

�
1

n
log Pr �

1

n
logPX (Xn) < R1

� t lim sup
n!1

bk(n)�1 � lim inf
n!1

1

n
H1�t(X

n)

� t lim sup
n!1

bk(n) � lim inf
n!1

1

n
H1�t(X

n)� 2�

= t R1 � lim inf
n!1

1

n
H1�t(X

n)� 3� : (4.20)

This completes the proof.

Remark: For the case of� � 1, the expression of the reverse
�-cutoff rate is no longer provided by (4.15). It can actually be shown
that for� � 1

R
(r)
0 (�jXXX) =

1

�
lim inf
n!1

1

n
H1(Xn);

where

H1(Xn) = lim
�"1

H�(X
n) = � log max

x 2X
PX (xn)

is the Rényi entropy of infinite order.

V. CONCLUDING REMARKS

In this correspondence, general expressions for the forward and re-
verse�-cutoff rates,R(f)

0 (�jXXX) andR(r)
0 (�jXXX), respectively, for an

arbitrary discrete-time finite-alphabet sourceXXX were established. More
specifically, it was demonstrated that

R
(f)
0 (�jXXX) = lim sup

n!1

1

n
H1=(1+�)(X

n)

and

R
(r)
0 (�jXXX) = lim inf

n!1

1

n
H1=(1��)(X

n):

These results—which provide a new operational characterization
for the Rényi entropy rates (in addition to the variable-length

source-coding characterization under exponential cost constraints
investigated in [16])—generalize Csiszár’s previous work [6] on the
�-cutoff rates, where he only considered the case of memoryless
sources. It can be directly verified that if the sourceXXX is memoryless,
then Theorems 3 and 4 simplify to Csiszár’s result [6, Theorem 1] In
closing, we would like to make the following observations.

• It is important to point out that if the sourceXXX is a time-invariant
Markov source of arbitrary order, then its Rényi entropy rate ex-
ists and can be computed [16], [17]. Thus in this case, the�-cutoff
rates for this source can be obtained.

• It directly follows from the definition of the source reliability
functionE(RjXXX) of XXX that a convex lower bound can be ob-
tained onE(RjXXX). It consists of the supremum of all the support
lines with slope� which pass through the point(R(f)

0 (�jXXX); 0):
for eachR > 0

E(RjXXX) � sup
�>0

� R�R
(f)
0 (�jXXX) : (5.21)

Note that since the right-hand side of (5.21) is the best convex
lower bound toE(RjXXX), then the inequality given by (5.21) be-
comes tight wheneverE(RjXXX) is convex. This is the case for ir-
reducible Markov sources [18], [17]. Furthermore, for the class of
sourcesXXX for whichE(RjXXX) is not known but its Rényi entropy
rate can be calculated (e.g., the class of nonirreducible Markov
sources [17]), a computable lower bound toE(RjXXX) can also
be obtained. A similar remark applies for the source unreliability
functionE�(RjXXX).

APPENDIX A

Lemma 4: For t = �=(1 + �) 2 (0; 1)

inf R: �
(t)
J (R) > 0 �

1

1� t
log jX j

for every increasing sequence of positive integersJ = fnjgj�1.
Proof: Let us prove the result by contradiction. Suppose that

�
(t)
J

log jX j+ �

1� t
= 0

for some positive�. Then

0 =�
(t)
J

log jX j+ �

1� t

�
= lim inf

n!1; n2J
�
1

n
logP

(t)
X

� xn: �
1

n
logPX (xn) �

log jX j+ �

1� t

= lim inf
n!1; n2J

�
1

n
logP

(t)
X

� xn: �
1

n
logP 1�t

X (xn) � log jX j+ �

= lim inf
n!1; n2J

�
1

n
logP

(t)
X

� xn: �
1

n
logP

(t)
X (xn)�

t

n
H1�t(X

n) � log jX j+ �

= lim inf
n!1; n2J

�
1

n
logP

(t)
X

� xn: �
1

n
logP

(t)
X (xn) �

t

n
H1�t(X

n) + log jX j+ �

� lim inf
n!1; n2J

�
1

n
logP

(t)
X

� xn: �
1

n
logP

(t)
X (xn) � log jX j+ � ;
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where the last step follows sinceH1�t(X
n) � 0. Thus we can say that

lim inf
n!1; n2J

�
1

n
logP

(t)
X

� xn: �
1

n
logP

(t)
X (xn) � log jX j+ � <

�

2
;

) P
(t)
X xn: �

1

n
logP

(t)
X (xn) � log jX j+ � > e�n�=2

infinitely often inn 2 J .
For thosen satisfying the above inequality, the set

xn: �
1

n
logP

(t)
X (xn) � log jX j+ �

is nonempty, and hence

P
(t)
X xn: �

1

n
logP

(t)
X (xn) � log jX j+ �

� xn: �
1

n
logP

(t)
X (xn) � log jX j+ �

1

jX jnen�
:

Finally, we obtain the contradiction by observing that

jX jn � xn: �
1

n
logP

(t)
X (xn) � log jX j+ �

� jX jnen� � P
(t)
X xn: �

1

n
logP

(t)
X (xn) � log jX j+ �

> jX jnen�e�n�=2

= jX jnen�=2 for infinitely manyn 2 J .

Lemma 5: Fort 2 (0; 1) and every increasing sequence of positive
integersJ = fnjgj�1, if

lim sup
n!1; n2J

(1=n)H1�t(X
n) > 0

then

inf R: �
(t)
J (R) > 0 � lim sup

n!1; n2J

1

n
H1�t(X

n):

Proof: (8� > 0)

P
(t)
X �

1

n
logPX (Xn) � lim sup

n!1; n2J

1

n
H1�t(X

n)� 2�

� P
(t)
X �

1

n
logPX (Xn) �

1

n
H1�t(X

n)� �

for infinitely manyn 2 J .
But

P
(t)
X �

1

n
logPX (Xn) �

1

n
H1�t(X

n)� �

= P
(t)
X

1

n
(�t[logPX (Xn) +H1�t(X

n)]) � ��t

= P
(t)
X

1

n
log

P
(t)
X (Xn)

PX (Xn)
� ��t

= 1� P
(t)
X

1

n
log

P
(t)
X (Xn)

PX (Xn)
< ��t

= 1� P
(t)
X P

(t)
X (Xn) < e�n�tPX (Xn)

� 1� e�n�t � PX P
(t)
X (Xn) < e�n�tPX (Xn)

� 1� e�n�t:

Thus

P
(t)
X �

1

n
logPX (Xn) � lim sup

n!1; n2J

1

n
H1�t(X

n)� 2�

� 1� e�n�t for infinitely manyn 2 J .
Consequently

(8� > 0)�
(t)
J lim sup

n!1; n2J

1

n
H1�t(X

n)� 2� = 0

) inf R: �
(t)
J (R) > 0 � lim sup

n!1; n2J

1

n
H1�t(X

n)� 2�:

APPENDIX B

Lemma 6: For t < 0

sup R: �(t)(R) > 0 � lim inf
n!1

1

n
H1�t(X

n) � log jX j:

Proof: For any� > 0

P
(t)
X �

1

n
logPX (Xn) � lim inf

n!1

1

n
H1�t(X

n) + 2�

� P
(t)
X �

1

n
logPX (Xn) >

1

n
H1�t(X

n) + �

for infinitely manyn.
But

P
(t)
X �

1

n
logPX (Xn) >

1

n
H1�t(X

n) + �

= P
(t)
X

1

n
(�t[logPX (Xn) +H1�t(X

n)]) < �t ; for t<0

= P
(t)
X

1

n
log

P
(t)
X (Xn)

PX (Xn)
< �t

= P
(t)
X P

(t)
X (Xn) < en�tPX (Xn)

� en�tPX P
(t)
X (Xn) < en�tPX (Xn)

� en�t:

Thus for infinitely manyn

P
(t)
X �

1

n
logPX (Xn) < lim inf

n!1

1

n
H1�t(X

n) + 2� � 1�en�t

which implies

�(t) lim inf
n!1

1

n
H1�t(X

n) + 2�

= lim inf
n!1

�
1

n
logP

(t)
X

� �
1

n
logPX (Xn) < lim inf

n!1

1

n
H1�t(X

n) + 2�

� lim sup
n!1

�
1

n
log 1� en�t = 0 (sincet < 0).

Consequently

sup R: �(t)(R) > 0 � lim inf
n!1

1

n
H1�t(X

n) + 2�:

The proof is completed by noting that� can be made arbitrarily small
and that

lim inf
n!1

1

n
H1�t(X

n) � log jX j:
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