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Csiszar's Cutoff Rates for Arbitrary Discrete Sources In this work, we extend Csiszar’s results [6] by investigating the

3-cutoff rate for arbitrary (not necessarily stationary, ergodic, etc.) dis-
Po-Ning ChenMember, IEEEand Fady AlajajiSenior Member, IEEE  crete-time finite-alphabet sources

. _ , X2(xm=x", . xne,.
Abstract—Csiszar’s forward B-cutoff rate (given a fixed 3 > 0) for a

discrete source is defined as the smallest numbeR, such that for every . L L. .
R > R, there exists a sequence of fixed-length codes of raf with Ve demonstrate that the limsup and liminf Rényi entropy rates provide

probability of error asymptotically vanishing as e~ "?(®—Fo) For a dis- the expressions for the forward and revesseutoff rates, respectively.
crete memoryless source (DMS), the forward3-cutoff rate is shown by ~ These results also provide simple, and in certain cases, computable
Csiszar [6] to be equal to the source Rényi entropy. An analogous concept of |q\er hounds to the source reliability and unreliability functions.

reverse B-cutoff rate regarding the probability of correct decoding is also : ; . .
characterized by Csiszar in terms of the Rényi entropy. The rest of this correspondence is organized as follows. In Section

In this work, Csiszar's results are generalized by investigating the Il rel_evant prev.ious results by Han on the .reliability and unreliability
B-cutoff rates for the class of arbitrary discrete sources with memory. Itis  functions of arbitrary sources are briefly reviewed. The general expres-

demonstrated that the limsup and liminf Rényi entropy rates provide the  sjon for the forward3-cutoff rate and the reversé-cutoff rates are

formulas for the forward and reverse 3-cutoff rates, respectively. Conse- -6 in Sections Il and IV, respectively. Finally, concluding remarks
quently, new fixed-length source coding operational characterizations for

the Rényi entropy rates are established. are stated in Section V.

Index Terms—Arbitrary sources with memory, cutoff rates, fixed-length P % R U
source coding, probability of error, Rényi’s entropy rates, source reliability - PRELIMINARIES. SOURCE RELIABILITY AND  UNRELIABILITY
function. FUNCTIONS

In this section, we briefly review the previous results by Han [10],
I. INTRODUCTION [11] onthe general expressions for the reliability and unreliability func-

tions of arbitrary discrete-time finite-alphabet sources (for previous

In [6], Csiszar establishes the concept of generalized fixed-lengifark on the source-coding error exponent, see [7], [13], [2], [8], [3],
coding cutoff rates (forward and reverse) for discrete memorylegq [11]).

sources/(DMSs). More specifically, gi‘iaﬁ‘ > 0, he defines the  consider a discrete-time sourd defined by a sequence of finite-
forwgrd 3-cutoff rate fqr a source{Xl-}i:.1 as thg numbero that  yimensional distributions [10K 2 (X =(x™, L xMyye.
provides t_he _b_est pos_5|ble onver b_og_nd in tht_e fatok — Ro) to the We assume that the source alphabes finite.

source reliability function. This definition implies that the source error

probability is guaranteed to exponentially decay with a linear exponentDeéfinition 1 (Fixed-Length Source Codepn (n, M) fixed-length
of specified sloped for R > R, . He also provides a similar definition source code foX" is a collection ofM n-tuples

for the reversei-cutoff rate (whered > 0) with respect to the source

unreliability function (the exponent of the vanishing probability € ={cl, ...}

of correct decoding). He then demonstrates that the forward and N ]

reverses-cutoff rates are, respectively, given B ;1) (X1) and The error probability of the code is

H,/01-p(X1), whereH ., (X;) denotes the Rényi entropy of order
[15]. This result provides a new operational significance for Rényi’'s
entropy.

Previous operational characterizations of Rényi's entropy were es-Definition 2 (Source Reliability Function) [10, Definitions 1.12 and
tablished by Arikan [1] for the theory of guessing, by Jelinek [12] and.13]: Fixe > 0. R > ( is e-achievable for a sourc¥ if there exists
others (e.g., [14]) for the buffer overflow problem in lossless souregsequence din, M, ) fixed-length source code$, such that
coding, and by Campbell [5] for the lossless variable-length coding
problem with an exponential cost constraint for a DMS. Recently, Erez y;,, ¢, 1 logM, <R and liminf _1 log P.(€,) > e.
and Zamir [9] demonstrated that for discrete memoryless modulo addi- n—s 7 - n—oo -

tive-noise channels with side information at the transmitter, Gallagel:f%e infimum of all e-achievable rates for sourc¥ is denoted by

random coding error exponent as well as the sphere-packing errorexR?aX) The reliability function for sourc&, E(R|X) is the dual of
nent can be written in terms of the Rényi entropy. Finally, Campbell§(€|X)' More specificall ’ ’
work was generalized in [16] for the class of Markov sources of arbi-* =" P y

trary order.

P.(€,) 2 Pxn [X" € €,].

E(R|X) £ sup{e > 0: R is c-achievable foiX }

andE(R|X) = 0 if the above set is empty.
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Definition 3 (Source Unreliability Function [10, Definitions 1.14 and
1.15]: Fixe > 0. R > Oisreverses-achievabldor sourceX, if there
exists a sequence 6f, M,,) fixed-length source codes,, such that

lim sup log M, <R

n—oo

and
hmlnf —-= log(l - P.(€,)) <e.

The infimum of all reverse-achievable rates for sourcg is denoted
by R*(e|X). Therefore, for any < R < R*(e|X), every code se-
quence€,, with lim sup,, .. (1/n)log M, < R satisfiesP.(€,,) >
1 — exp{—ne} for all sufficiently largen. This is apessimistiocziew-

point, since we require that all code sequences are “bad” for all suffi-

ciently largen.® The unreliability function for sourcX, E*(R|X) is
the dual of R (¢|X). More specifically

E"(R|X) 2 inf{e > 0: R is reverse-achievable foX }.

Under slight modification, the following result follows from [10,
Theorem 1.16].

Theorem 2: Fix ¢ > 0. For any source
R*(e|]X) = inf {h > 0: él;fo(é(R) +[R-AR)-h") < e}
where

A(R) = liminf — = log Pxn

17— 00

{—%k%py4x"y<n}

and[x]* 2 max(z, 0).

Definition 4 (Forward3-Cutoff Rate): Fix 3 > 0. Ry > Ois a
forward 3-achievable ratdor a sourceX if

E(R|X) > 3(R - Ro)

FORWARD /3-CUTOFF RATE

for everyR > 0, or equivalently

R(e|X) < %e+ Ro

for everye > 0. Theforward 3-cutoff ratefor X is defined as the in-
fimum of all forwardj3-achievable rates, and is denotedRigy)(/ﬂX)
A graphical illustration ok ”(,B|X) is provided in Fig. 1.

It is important to remark that the above definition of the forward
3-cutoff rate is equivalent to the first part of Csiszar's definition (cf.

[6, Definition 1]).
Before providing the general expression of the forwascutoff rate,
we prove the following lemma, which is a consequence of Theorem

Lemma 1: The following two conditions are equivalent:

(VR > 0) aunzlf

5 (= o) (3.1)

and

(Ve>0) ReX) < §€+Ro 3.2)

Proof:
1) Forward Part(3.1)= (3.2)

INote that this is consistent with our terminology 8t (e| X' ) as an unrelia-
bility function. However, one could also regard our definition fromapémistic
point of view [10] if the quantity of interest were the probability of correct de-
coding as opposed to the probability of error. In this case, one would requ
“good” codes for infinitely many..
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Fig. 1. Forward3-cutoff rate for an arbitrary sourck.

For anye > 0, we obtain by Theorem 1 that

(Vls > 0) (3 Rs with O'(Rg‘) <e)
= B(€|X) <Rs— O'(Ré) + 6

R(e|]X)— 6 < Rs — o(Rs).

<Rs —

—Ro)+56 (3.3)

I¢]
1+p

-

Rs+ —— Ro+6

1+4

14+ 5

+ +Ro>
1 R 6
364— o+

4
where (3.3) follows by (3.1), and (3.4) holds because

15}
1+4 (e
The proof is then completed by noting thatan be made arbitrarily
small (independently of).

2) Converse Par{3.2)= (3.1)

Equation (3.1) holds trivially for thosE satisfyinge (R) = oo. For
anyR > 0 with o (R) < oo, letes 2 o(R)+ 6 forsomes > 0. Then
(by Theorem 1)

143
L
1+

P

< 1—|—7’

Ro+6 (3.4)

e>a(Rs) > —— — Ry).

R(es|X) > R — o(R).
= o¢(R) > R — R(es|X)

>R - éea - Ry (3.5)
1 5
where (3.5) follows by (3.2). Thus,
1. ,
5] 1
> — - - .
a(R) > T+75 (R — Ro) 115

The proof is then completed by noting thatan be made arbitrarily
small. O

Remark: The above lemma actually identifies the forwarautoff
rateRgf)(MX) as theR-axis intercept of thsupport linewith slope
38/(1 4 3) to the large deviation spectrum curv¢R). We next es-
tablish an expression fd%f)f) (3|X) by showing that the limsup Rényi
entropy rate of ordet/(1 + 3) is indeed the above intercept.

Theorem 3 (Forwardi-Cutoff Rate Formula): Fix 3 > 0.
arbitrary sourceX

For an

, . 1 n
ire R(()f)(/3|X) = lim sup - Hyj46)(X7)
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where

Sy A
Ho(X") 2

1
1 P (2"
— log > PEn(a")

zEX™

is the (z-dimensional) Rényi entropy of order.
Proof:
1) Forward Part:

R (31X) < limsup (1/n)Hy (145 (X7).

n— oo

By the equivalence of conditions (3.1) and (3.2), it suffices to show

that
(VR 2>0)

5} n
o(B) 2 <R—11717n_<3p Hyja40)(X ))-

1
Pr |:—7 log Px»(X") > R:|
n
—Pr [c—““g Pxn(X7) 5 c"*R] , fort>0

S C—nfﬁ' Z P"I\:'t(}rn)’

anexn

= exp {—nt <R _ L Hlff(Xn))} , for0<t< 1.
n

fort > 0 (by Markov's inequality)

1
=>0'(R)2t<R—hmq11p—H1 H(X" )) for0<t<1
__F R — limsu 1H (X™)

= 1+43 n_xp 1/(1+58)

t
forg2 "~ >o.
P=1¢~

2) Converse Part:

R(()f)(/3|X) > lim sup (1/n)H,j145(X")

The converse part holds trivially if
lim sup(1/n)Hy/145)(X") = 0.

Without loss of generality, we assume that
lim sup(1/n)H, ;0145 (X") > 0.

n—oo

By the equivalence of conditions (3.1) and (3.2), it suffices to show

that for anys > 0 arbitrarily small, there exist® = R(4) > 0 such
that
B n
a(R) < 113 <E - hiILbDliP = Hl/(p”;)(’( )+ 36) .
Consider the tilted distribution (e.g., [4], [3]) with parametesf the
random variable- log Px~ (X "), defined as
eL(— log Pxn(xn))PXn (In)
et(—log PXn(a“c”))PXn (in)

P (") =2

Fnexm
_ P;:t(ﬂfn) _ P}l(;t(l‘n)
S PLi() | oxp(tHi— (X))
Fgnexn

= exp{—tllog Px= (") + Hi—(X")[} Px~(z") (3.6)

wheret =
sequence of positive integeﬁé {n;};>1 satisfying

lim
n—oo, n€J

7H1/(1+])(X )2 lim *Hl/(1+ﬂ)(X 7)

J—oo

_lnnsup H1/(1+ﬂ)(X )-

n—o0

8/(143). By definition of limsup, there exists an increasing
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Also define
2 it {R €0, 50): 0§ () > 0} 3.7)
where

(79)(1?) 2 11111 mf

( 1
= log P}\,’l {x" € X": —— log Pxn(z") > R} .
n n

In Appendix A (cf. Lemmas 4 and 5), we show that fox ¢ < 1

T < lit log |X|
and
lim l Hi4p(X")>0=7
n—oc,n€d n

1 ,
> 11 —H p }(:1 0.
2 lim o Hyyaes(X7) >

Hence, we can choose a fixéd= (0, 7] such that
o (r+6) =

lim inf

n—oo,n€J
1 (1) n n, 1 N n
——log Pyi |2" € X" — = log Pxn(a") 2 7+06| >0
n n
The above inequality implies the existenceyof- 0 such that
(t) T n n 1 | on
10 Py, 2" € X" —=log Px»(a™) 2 7+ 6| > 1
n

for all » € J sufficiently large. Thus, for those satisfying the above
inequality

P

—

, 1 , e
:c"EX”:——longn(;n“)<T—|—§:| >1—e "7,
n

Let
é

[be_i. bx),  forl <k < K2 [(r+6)/(26)]
where

(V1<k<K) by=2ké and bx =7 +6.
Note thab, —br—1 = 26 foreveryl < k < K and0 < bxg —brg—1 <
26. Since—log Px~»(X™) > 0 with probability1, then

Py |::c —~log Pxn(a") <7 +5}

1 ~
- Z P [ 7~ L log Praa) € fk} >1oe
n

foralln € 7 sufficiently large
Hence, there existg(n) € [1, K] for all sufficiently largen € 7 such
that
P)(é)l |:.rn:

— e Y 3.8)

1 >
—— log Pxn ;’n I»n > —_—
n og Px» (") € k( '):| - K

Let R 2 liminfn e, nes bpmy—1 — 0 (here, we assume that by
choosingé > 0 small enough, we can make > 0. We will sub-
stantiate this assumption later). Then by noting at. b, (,)—; for
all sufficiently larger. € 7, we obtain that

1
Pxn |::vn: —— log Pxn (:vn) > E:|
n
n 1 n
> Pxn {«f P log Pxn(2") € Iy(n)

2Recall that for any sequen({an}

Ay = 11m inf n

j—oo

lim inf

n—oc, n€

= lim inf a,,.

j—oo k>j
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for all n € J sufficiently large. However
14| .
Pyn {l"ﬁ L log Px=(a") € Ik(n):| o(R) ;
n 12
- ) Pan(a") A
[z7: —(1/n)log Pxn(z™)€E Ik(n)]
p— 0.8 B Iy
(27 —(1/n) log Pxn (x™) €Ly (m)] 0.6 |- ’
~exp{t[log Px» («") + Hi_o( X"} P («")  [by (3.6)] 0.4 - /&/
n Hyasp(X) 2 /!
> exp{—ntby) +tH1 (X")} 02l 1// GO(R)
( n
- > PG : L .
[27%: —(1/n) log Pxcn () E L)) 0 H(X) T log(4) R
1
=exp < —nt | bpny — — Hi (X"
mp{ " < ) = 71 o )>} Fig. 2. Functionss(R), ¢ (R), and [3/(1 + B)(R — limsup,, ..
1 (1/n)Hy 145 (X™)) forani.i.d. binary source witi?x (0) = 1—Px (1) =
-P)(;,)l {L" —— log Pxn(a") € Ik(,,)} 1/4 and3 = 9 (or equivalentlyt = 0.9). WhenR > log(4), o(R) =
n ) UE?(R) = oo.
> 17 {—nf (bun) ~ ~Hy X"))}
K factor of36), then there exists a coordinaleon the R-axis such that
Vn € J sufficiently large  (3.9) 3 straight line of slop&/(1 + 3) given by
. . )
where the last inequality follows from (3.8). Consequently )= 1-i . {R 3 <li1nsup 1 Ho_((X") - 35”
I n—oo
o(R) = lim inf —,— log Pr {—— log Px»(X") > R} lies above the curve of(R) at R = R, thus violating its status of
1 1 support line fors (R).
< liminf — = logPr|—=log Px~(X")> R . . . . .
- nig,lﬁle e { p B A (X% 2 —} This proof is established by observing that the desired coordifate

. 1 . lies in a small neighborhood ef wherer is the largest point for which
<t <nEI§3 I,I}ft bruy = n#ilonllg 7 n Hi—(X )) the spectrunzr(f)( R) of the tilted distribution with parameterfor the
random variable- log Px~ (X ") vanishes. A key point is to choose
<t < lim lnf b;(m 1426 — lim sup H1 «( X")) the tilted parameterto be equal tg /(1 + 3) which is the slope of the
S " support line tar (R). We graphically illustrate this observation (based
=t <H — hm sup — H1 (X + 36) (3.10) on atrue example) in Fig. 2.
Now it remains to validate the claim aR that it can be made posi- IV. REVERSE 3-CUTOFF RATE

tl\_/e_by choosing small enough. We prove th_lg assumpfclon by_contra— Definition 5 (Reversg-Cutoff Rate): Fix 3 > 0. Ry > 0is a
diction. Suppose thak cannot be made positive for aiy> 0; i.e.,
liminf, oo mes brmy—1 = O for arbitrarily smallé > 0. Then by
following a similar procedure as in (3.9) and (3.10), we obtain E"(RIX) > —B(R— Ro)

reverses-achievable ratdor a sourceX if

for everyR > 0, or equivalently

n—oo

0< 111111nf—— log Pr |:—— log Px»(X™) > 0:|
* 1
R (e]X) > —56+R0
< liminf —-= log Pr |:—— log Px»(X") >0 '
n n

n—oo, neE

[ E———

for everye > 0. The reversej-cutoff ratefor X is defined as
28 i 1 7ox" the supremum of all reversgé-achievable rates, and is denoted by
t(26— lim __—Hi-(X") R{(B|X). A graphical illustration ofR“)(/ﬂX) is provided in

n—oo, nEJ

Fig. 3.
=t <26 — lim sup o Hi_+(X )) We observe that the above definition@futoff rate is equivalent to
e Csiszar's definition of largest-unachievable rate in [6, Definition 1],
which implies that wherej = —4.

1 We first prove the following two lemmas.
limsup — Hi_(X")=0
n—oo M Lemma 2: ConsiderA(R) defined in Theorem 2. Then the fol-
sinces can be made arbitrarily small, thus contradicting the positivit?wing properties hold.
assumption onlim sup,, ___ j—)Hl,t(X"). The proof is therefore 1) For anyR > 0 satisfyingA(R) > R, A(R) = cc.
completed. O 2) If A(R) > 0 for someR > 0, then

Observation: It is important to point out that the proofs of the R. 2 sup{R>0: A\(R) > R} >0 (4.11)

forward and converse parts do not directly depend on Theorem 1 or and forvervd < R < R
on source-coding concepts. While the proof of the forward part is Y0 i
stralghtforward, thg p_roof of the converse is more involved. More {T c X" 1 log Pxn (") < R} —0,

specifically, the objective of the converse part is to demonstrate that n

if imsup,,_ . (1/n)Hi—+(X") is slightly nudged to the left (by a for all sufficiently largen. (4.12)
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Thus
. 1 1 n
A(R) = liminf —=log Pr {—f log Px=»(X") < R} <R
n—oc n n
E*(R|X) which contradicts the fact that R) = oc. O
Lemma 3: The following two conditions are equivalent:

Ié;
(VE>0) A(R)2-175

(R — Ry) (4.13)

and

(Ve>0) R'(e|X)> —%e + Ro (4.14)

underg € (0, 1).
Proof:
1) Forward Part: (4.13)=- (4.14)
For anye > 0, we obtain from Theorem 2 th&t 6 > 0)(3 hs > 0)

inf {MR) +[R ~ MR) = hs] "} < e

Fig. 3. Reversg-cutoff rate for an arbitrary sourck.

Proof:

1) Letus prove this property by contradiction. Suppose there exists
R > 0'suchthat\(R) > R, and that there exists < oo with ~ &nd

R*(e|X) +6 > hs,

. . + 1 1 n . . . . . - -
A(R) = liminf —— log Pr {—; log Px»(X") < R} < L. which, in turn, implies the existence & satisfying
inf {A —MR)—hs]T}+6
Then inf QAR) + [R = MR) = he] "} +
. > MRs) + [Rs — MRs) — hs] ™
Pr {‘; log Py (X") < R} > >0 = max{A(Rs). Bs = hs}.
infinitely often inn. Thus
= Hxn e x": —% log Pxn»(2") < R} >1 e+86>ARs) and e+ 6> Rs — hs.
infinitely often inn. => R (|X)>hs—6>(Rs —e—8)—6§
1-3 ,
On the other hand\(R) > R implies the existence aof > 0 z |- 3 A(Rs) + Ro| —e—26
with A(R) > R+6, which implies that for all sufficiently large 1-73
> — ﬁ’(e—i-é)—i—Ro—e—Qé
1 .
_+ " n —n(R+6) 3
Pf{ ” logpx'(XKR}Se : :_%c+Ro——1;’ 5.
Consequently, for infinitely many The proof is then completed by noting thatan be made arbitrarily
small.
noom, Lo n 2) Converse Part(4.14)= (4.13)
1< H“ € = log Pxn(27) < BH The claim holds trivially whenR < A(R) since it implies by
i 1 N Lemma 2 that\(R) = oo. It remains to prove the claim under
<e Pr{—; log Pxn»(X )<R} R > MR). Let
S c77'R(j_n(R+ﬁ) — 0—77,5 < 1. hR é R— A(R) and en éA(R)_
: ; +
Hence, the desired contradiction is obtained. = j‘;fo (Ma) +[a = A(a) = hie]7)

2) Equation (4.11) is an immediate consequence of the nonin- <AMR)+[R - AR) — halt = A(R) = ek.
creasing property ok(R). We next prove (4.12) by contradic- L - N
tion. We know that for ever < R < Ro., A(R) = co. Now = B (er]X) < hr.
suppose that

Therefore
1 1 . o
H;L’n € X" L log Px» (") < RH >1 —EA(R) + Ro = —gerR T Ro < R'(er|X) <hr=R—AR).
n
infinitely often inn. ~ Hence
I¥;
Then for infinitely manyn A(R) > — 1—43 (R = Ro). U
Pr {_l log Pxn(X") < R} Theorem 4 (Reverse-Cutoff Rate Formula):Fix 0 < 3 < 1. For
n any sourceX

> pfnR

n o, 1 ) n nR r .. 1 n
{fv € X" —— log Pxn(2") < RH z e R\7(81X) = liminf ~ Hy/0-5)(X"). (4.15)

n— 00
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Proof: The theorem holds ik(R) = 0 for all R > 0, in which mi? 2 3" PYL (2"~ log Pxn(a")]
case both the reverskecutoff rate and the liminf Rényi entropy rate are znexn
zero3? Without loss of generality, we assume thaf?) > 0 for some where

R > 0. L :
O(R)2 liminf — = log P 2" € ™ — L log Py (2"
1) Forward Part: A (R)_hflgf n log Px {T e n tog Pan KR}

R (31X) > lim inf(1/n)Hyjq—_g(X") We first point out thatr is positive and finite. Our assumption about
" the existence o > 0 such that\(R) > 0 implies via Lemma 2 that

R 2 sup {R>0:X(R) >R} >0
and for0 < R < Reo
{;L’n e X" —% log Pxn(2") < R}

By (4.13), it suffices to show that

3 1
(VR >0) AR) 2~ - 5 <B ~liminf HV(]_H)(Xn))_

=0

Pr |:—l IOgPXn(Xn) < R:|
n

for all sufficiently largen. ThusA(R) = co for 0 < R < Ra...
=Pr [P§(71(X”)>e*"”{], fort >0 v AT

Therefore
<™ N PA@a"), fort >0 (by Markov's inequality) 2 sup {R > 0: A(R) > 0} > Roo > 0.
xne(‘){n
1 Furthermore, we show in Appendix B (cf. Lemma 6) that log | Y.
= exp {nt <R - H1+t(X”))}, fort > 0. We next observe that
. . (1= t)log Pxn(2") = log P{)(2") + tH, ,(X").
= AMR) = liminf —= log Pr |:—— log Px»(X") < H:| Hence
n— 00 n n
o _ 1 PO (2] 1 + =t g xe
>—t <R—liminle1+t(X")>, fort >0 my, 1—+ Z (") log P (am) 1—+ 1—(X")
n—oo N xe AN X7
1 —t
6 o1 _n < log |X|" log |X|" = log |X|". 4.18
:_153<R_1i31ll£f;Hl/<1—m(z\ )), Spopesltlh hyTyles o5 |-¥] (4.18)
‘ At Sincel < 7 < log|X|, it follows from the definition ofr that for any
foro <= 77 < L. (416) 0 <6 < min{r, 2log|X|— 7}, there exists > 0 such that
2) Converse Part: A (7 = 8) = liminf _l log P\,

n—oc n

RUV(B1X) < liminf(1/n)Hy o — g (X"
0 ( | )_ n%oo( / ) 1/(1 ,9)( ) . |:.T,“E(kmi—l IOgP,\'n(.’En)<T—lS:| >E>0
n

By (4.13), it suffices to show that for arty > 0 arbitrarily small,

there existsk; such that Thus
5 (t) n 1 1 B n —ne
A(R) < =5 b g <R1 —liminf £ H, g (X") — 35) . Py {r € A" —— log Pxn(a") > 7 — 6} >1-e
— | n—oo N ’ v
Define the tilted distribution for all sufficiently largen.
0, A PG Therefore, for those satisfying the above inequality
PX”(‘L )_ Z Plft(i,n 0) ’ ) 1 )
s ) Py, |:'r,” € X": 2log |X| > - log Px=(z") > 7 — §:|

=exp{—t[log Pxn (2" )+ Hi—i(X")]} Pxn (") (4.17)

\ 2 1 ,
> P(L'y)z " S r”L’n: — 1 SlL) > —— ! Pxn "n > -6
wheret = —3/(1 — ) < 0. Also define =t " p ez

, by (4.18
2 sup {R € [0, oo): A(R) > 0} 1 [by ¢ ]
and = P)((t% |:;t" ex": - log Pxn(2") > 7 — (5:|
3Itis straightforward to verify that the reversecutoff rate is zero. We herein W | n w1 n : m,(f)
show thalim inf,, _ . (1/n)H, /(_sy(X™) = 0. Fora = 1/(1— 8) > 1 = Py |27 € X7t —— log Pxn (2") 2 2=~
Pxn {_l log Px»(X") < R} >1—¢ " =1 (byMarkov's inequality)
" 1 e
= PXn {P‘C\‘;l(Xn) > C*(a'fl)nR} = —2 .
o= n Let
E [P\'n](X )] (o=1)nR_(1—a)Ha(X™)
< ———— = = TN T el ) A | 2log | X — 6
S T (a-DnR I 2 br_i.by) forl<k<LZ2 \‘Og{)—ﬁJ
SinceA(R) = 0 forany R > 0, we get that =
0=AR) whereb, 2 (7 — 8) + 2ks for 1 < k < L, andb;, = 2log |X]. Note
A L. 1 1 . thatb, — b1 = 26 foreveryl < k < L andbr — br—1 > 26.
= liminf —- log Px» {_; log Py (X") < R} Therefore, there exists < k(n) < L such that
1 1 ki 1
>(1—a)R+ (a—1)liminf 1 H,(X"). P‘gf,)m |:—; log Px»(X") € I,C(n):|
n—oo M
Thus, for anyR > 0, R > liminf, .. (1/n)H.(X™). Therefore, 1 —2e "¢ .
liminf, o (1/n)Ha(X,) = 0. O > 7 for all sufficiently largen.
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Then, by lettingR; 2 lim sup,_ .. bren) + 6 and noting thai?, >
bi(ny for all sufficiently largen, we obtain that
1 ) 1 -
Pr |:—— IOg P)(n (AY“) < R1:| Z Pr |:—— IOg P,\'n (AX n) € Ik(n)
n n
for all n sufficiently large.
However, for all sufficiently large:, we have that

1 -n
Pr |:—; IOgPXn(X ) S Ik(n):|

= Z PXH (;L’n)

zne{z”€X™: —(1/n)log Pxn(a:”)elk(n>}
zne{ameX™: —(1/n)log PX”(””)GII»'(W.)}

. otllos PX”(J'H)"FHI—t(Xn)]P)((Ll (z") [by (4.17)]
e~ k(y—1—(1/n)H1 £ (XT)]

\Y%

PO (z")  (4.19)
znE{z"E€X™: —(1/n)log vaz(r”)EIk(n)}
= -1 (/) (] ple)

1 n
. |:—5 log Pxn (X ) € I},»(n):|

1= 2e7" by —(1/m) (X ™)
=" °

where (4.19) follows from the fact that
bimy—1 £ —(1/n)log Pxn(a™) < bicn)

and thatt < 0. Consequently

AMRy) = liminf—l log Pr |:—l log Px»(X") < R1:|
n n

n—oo

<t <lim sup by(ny—1 — lim inf 1 Hi_, (X" ))
n

n—oo n—oo

n—oo

<t <lim sup by(ny — lim inf 1 Hi_(X")— 26)
n—oc N
=t <R1 — lim inf 1 Hi_+(X") - 36) . (4.20)
n—oo M
This completes the proof.

source-coding characterization under exponential cost constraints
investigated in [16])—generalize Csiszar’'s previous work [6] on the
3-cutoff rates, where he only considered the case of memoryless
sources. It can be directly verified that if the souXdés memoryless,
then Theorems 3 and 4 simplify to Csiszar’s result [6, Theorem 1] In
closing, we would like to make the following observations.

« Itis important to point out that if the sourcg is a time-invariant
Markov source of arbitrary order, then its Rényi entropy rate ex-
ists and can be computed [16], [17]. Thus in this casejthatoff
rates for this source can be obtained.

It directly follows from the definition of the source reliability
function E(R|X) of X that a convex lower bound can be ob-
tained onE'(R|X). It consists of the supremum of all the support
lines with slope? which pass through the poinRg“ (81X), 0):

for eachR > 0

E(RIX) > sup [/a (R - Rg”(mX))] . (5.21)

Note that since the right-hand side of (5.21) is the best convex
lower bound toE'( R| X)), then the inequality given by (5.21) be-
comes tight whenevef (R|X) is convex. This is the case for ir-
reducible Markov sources [18], [17]. Furthermore, for the class of
sourcesX for which E(R|X) is not known but its Rényi entropy
rate can be calculated (e.g., the class of nonirreducible Markov
sources [17]), a computable lower boundE¢R|X ) can also

be obtained. A similar remark applies for the source unreliability
function E*(R|X).

APPENDIX A
Lemma 4: Fort = 3/(1+8) € (0, 1)

inf {R: D (R) > 0} < log | X

1-1t¢

for every increasing sequence of positive integérs- {n;};>1.

Proof: Let us prove the result by contradiction. Suppose that

log |X| + 6
(TE,,L) <?) =0

for some positives. Then
Remark: For the case off > 1, the expression of the reverse

/ log |X| + 6
3-cutoff rate is no longer provided by (4.15). It can actually be shown 0 = JS) <w)

that forg > 1
(") (f 1. .1
Ry (81X) = 3 liminf — Hoo (X"),
1 n—oc 71

where
H . (X")= liTm H,(X")=—log glea%;n Py (2™)

is the Rényi entropy of infinite order.

V. CONCLUDING REMARKS

In this correspondence, general expressions for the forward and re-
verseg-cutoff rates R’ )(/3|X ) and Rg”(/ﬂX ), respectively, for an
arbitrary discrete-time finite-alphabet souXevere established. More

specifically, it was demonstrated that

. 1 n
R((J‘f) (B|X) = lim sup - Hijo45(X")

n— 00

and
T . . o 1 n
R(() )(/3|X) = liminf — Hy 5 (X").
n—oc 11

These results—which provide a new operational characterization
for the Rényi entropy rates (in addition to the variable-length

1-1

A o1 (t)
= i f ——logP n
nj‘lg,lwrzlej n 08 tx
[ 1 log |[X|+ 6
. _;t": - log Pxn(2") > 7()?’1' —|t+ :|
P 1 (t)
= 1 f —= log Py,
n—nono,l}llej n o8 X

X

1
2" == log Pya'(2") > log|X| + (S:|
n

o 1 (t)
=1 f ——logPyn
n—sones m P X

2" =L log PO (") — L H (X)) > log | v +5}
n n
— liminf —2 log P{)
n—oo,n€EJ n -
[ Lo o ny o n v
2" —=log Pyin(a™) > — Hi—(X") +log|X|+ 6
n n

vV

liminf -— 1 log Pgl
n

n—oo, nE

[ 1 :
z": —= log F"(\Tl(r") > log |X] + (5:| ,
n
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where the last step follows siné& (X ™) > 0. Thus we can say that APPENDIX B
. 1
lim méj - log P)((i)l Lemma 6: Fort < 0 1
Y ) 5 sup {R: AO(R) > 0} < liminf = Hi_,(X") < log | X].
n t n , n—oo N
. |:;l' : _'n_, 10g P‘(\ n (l‘ ) Z lOg X|+ 6:| < 5, Proof: For anyp > 0
( 1 1
‘ s P d—= log Px«(X™) > liminf = Hy_,(X") + 2
= P)(('t'y)z |:l'n: _l IOg P/(\,tgl(l’") Z lOg X + 6:| > E—ILE/Z X n og I°X ( ) = lgri)log n 1 1‘( )+ 1z
n
infinitely often inn € 7. < P)(g) {—l log Px»(X") > 1 Hi_+(X™")+ //}
. . . . n n
For thosen satisfying the above inequality, the set o
1 for infinitely manyn.
" - log ]—""(\T’l(r") > log |X] + ﬁ:| But ) 1
is nonempty, and hence Py {—; log Px»(X™) > - Hi_(X")+ #}
@ | Lo p)on e
P |a™: - log Py7 (") > log |X| + 6 _ p) 1 (—t{log Py (X™) + Hy_((X™)]) < it b, fort<0
X n
n 1 (1) n 1
T " . . () [ v
< |]2": =~ log P (2") 2 log | ¥ +6” e _p0 L g DX ) < ut
Finally, we obtain the contradiction by observing that ’ n 7 Pxn(X7)

|(3C|n 2 — -I—)‘(\t}l {-I—)‘(\t}l (Xn) < en/itp)(n (—X-n )}

[ L y0u PO () > Tog 1] + 5}
n

i nut () n nput -n
> |A]ent . P, {x “Log PO (") > log x| +6} <M { PO XT) < P (X7 |
n

n _né _—nbd/2 g 6nut'
>|X["e™e Thus for infinitely manyn
__|y|n né/2 S ., 1 1
=A% forinfinitely manyn € 7. O p0 {2 log Pn (X™) < liminf — Hy_(X") + 2;:} > 1—emt
T n—oc n

Lemma 5: Fort € (0, 1) and every increasing sequence of positivevhich implies
i — Ip. i )
integers7 = {n;};>1, if A© <lim inf 1 Hi_(X")+ 2,u>
n

limsup (1/n)H1-¢«(X") >0 n—oo
n—oo,n€J
then 1 = liminf — log P{’
inf {R: U(/}-)(R) > ()} > limsup = Hi—(X"). 1 1

- n—oo,neJg N . {—— log Px»(X"™) < liminf = H_«(X") + 2,11}

Proof: (Vu > 0) n ) n—oo M

. npt H
Pg(t'?z {—l log Px»(X™) > limsup 1 Hi_(X™) - Q;L} < hgﬂj;p n log (1 —e ) =0 (sincet <0).
" | "“m"{e" ! Consequently .
> P{) {—; log Pxn(X") > — Hio(X") - //} sup {B A(R) > 0} < liminf — Hy((X") + 20

for infinitely manyn € 7. The proof is completed by noting thatcan be made arbitrarily small

and that
But )
1 1 -n 3 o n s
2 {—— log Pxn(X") > = Hi_y(X )—u} liminf = Hi—¢(X") < log | . =
n n n—od
y [ 1 ,
=r) {— —tllog Pxn(X") + Hi_«(X™)]) > — t}
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