Characterization of Crystallization in Syndiotactic Polystyrene Thin Film Samples

Hew-Der Wu, I-Der Wu, and Feng-Chih Chang*

Institute of Applied Chemistry, National Chiao-Tung University, Hsin-Chu, Taiwan 30043

Received November 23, 1999 Revised Manuscript Received September 25, 2000

Introduction. Pluralistic crystallizations and how they affect polymorphic behavior of syndiotactic polystyrene (s-PS) have received considerable interest, mainly in *bulk* samples.¹⁻³ Also having been extensively studied is the development of α - or β -form crystals in s-PS, favored either kinetically or thermodynamically during the crystallization. Upon heating at several scanning rates, the relative fraction of α - and β -form crystals varies in *bulk* samples. This phenomenon favors the formations of α -form by heating at a high scanning rate. In contrast, the β -form crystal is a preferred means packing over α -form by heating at a low scanning rate and/or by crystallizing at higher temperatures closer to its $T_{\rm m}$. The above observations suggest that the crystal-crystal transformation indeed occurs when s-PS bulk sample contains the α -form as mentioned in previous literature. 1-6

Our earlier study investigated the crystallization mechanism of s-PS *bulk* samples using conventional absorbance FTIR spectroscopy in our previous report.⁷ FTIR was performed to distinguish the crystal form and crystallinity of s-PS. This work elucidates the effect of s-PS sample thickness on crystallization behavior in melt-, cold-, and heat-scanning crystallizations using FTIR spectroscopy.

Experimental Section. The syndiotactic polystyrene (s-PS) was kindly donated by the Industrial Technology Research Institute (HsinChu, Taiwan) and was used without further purification. The stereoregularity of the syndiotactic polystyrene consists of [rr] = 99% and is identified by the solution ¹³C NMR spectrum.⁸ The s-PS thin film samples were prepared by solution casting on a KBr disk, and its thickness was controlled to less than $10 \,\mu\text{m}$, followed by covering with another KBr. The s-PS bulk sample was also obtained from solution casting on KBr disk with a thickness more than 100 μ m. Isothermal cold- and melt-crystallization of various time intervals were performed on samples in an environmental chamber with a temperature programmable controller within an accuracy of ± 0.1 °C. Next, the s-PS samples were pretreated at 320 °C for 20 min to eliminate the residual crystal memory in the melt-crystallization and then quenched by liquid nitrogen to obtain the amorphous (crystal-free) s-PS as the starting material. For cold-crystallization, the quenched s-PS sample was placed directly into the chamber at 264 °C. For the meltcrystallization, the s-PS sample was heated to 320 °C and quickly cooled (-100 °C/min) to 264 °C. All samples were prepared under a continuous nitrogen flow to minimize sample oxidation or degradation.

The crystal form and crystallinity of the s-PS were characterized by infrared spectroscopy (Nicolet AVA- TAR 320 FTIR spectrometer, U.S.A.) with a resolution of 1.0 cm $^{-1}$ at 30 °C, ranging from 940 to 820 cm $^{-1}$. The frequency scale was internally calibrated using a He–Ne laser, and 32 scans were single-averaged to reduce the noise. The absolute crystallinity of α - and β -forms of s-PS can be calculated from the following equations:

$$C_{\alpha} = \frac{A_{851}/a_{\alpha}}{A_{841} + A_{851}/a_{\alpha} + A_{858}/a_{\beta}} \times 100\%$$
 (1)

$$C_{\beta} = \frac{A_{858}/a_{\beta}}{A_{841} + A_{851}/a_{\alpha} + A_{858}/a_{\beta}} \times 100\%$$
 (2)

where C_{α} and C_{β} represent the crystallinities of α and β -forms, respectively, A_{841} , A_{851} , and A_{858} are the area fractions of amorphous, α -, and β -form, as obtained by the absorbance areas ranging from 865 to 820 cm⁻¹. The conversion coefficients a_{α} and a_{β} (0.178 and 0.272 obtained from a previous investigation⁷) are the ratios of absorptive coefficients of A_{851}/A_{841} and A_{858}/A_{841} for α - and β -form crystal absorbances, respectively.

Results and Discussion. Table 1 summarizes the specific absorbance of s-PS in the IR spectrum ranging from 940 to 820 cm^{-1,9,10} The specific peaks of amorphous phase appear at 905 and 841 cm⁻¹. The specific peaks of α-form are at 901 cm⁻¹ (shifted from 905 cm⁻¹) and 851 cm⁻¹ (shifted from 841 cm⁻¹), 7 while the specific peaks of β -form are at 911 cm⁻¹ (shifted from 905 cm⁻¹) and 858 cm⁻¹ (shifted from 841 cm⁻¹).

Figure 1a shows the IR spectrum of the bulk s-PS sample isothermal at 320 °C for 20 min and then cooled to $3\hat{0}$ °C at a rate of -10 °C/min. The peaks corresponding to the amorphous phase and α - and β -form crystal are apparent, implying that s-PS crystallizes to $\alpha\text{-}$ and β -form crystals during the cooling process. This finding corresponds to the well-known DSC trace results where two endothermic peaks corresponding to α - and β -form crystals always appear simultaneously in a normal cooling rate from the melt. 3,11-13 Parts b and c of Figure 1 show the IR spectra of the s-PS in bulk and in thin films which have been heated to 264 °C from 30 °C with a scanning rate of 10 °C/min and then quenched by liquid nitrogen, respectively. Both α -form peaks (901 and 851 cm⁻¹) and β -form peaks (911 and 858 cm⁻¹) appear in FTIR spectra of bulk samples as shown in Figure 1b. The mechanism of crystal growth has been described as follows:11 The α-form nuclei formed at lower temperatures (less than ~240 °C) induce the growth of α-form crystal during heating scanning. In addition to the heating scan, the α-form crystal converts into the thermodynamically favored β -form crystal at higher temperatures (greater than ~240 °C) in s-PS bulk samples. Therefore, it leads to that s-PS crystallizes into α - and β -form crystals during heating to 264 °C in the bulk samples.

In contrast, only α -form peaks at 901 and 851 cm⁻¹ appear after heating scanning up to 264 °C in thin film s-PS samples as shown in Figure 1c. This finding suggests that α -form crystals transforming to β -form crystals may be physically retarded at a high temperature (above \sim 240 °C) in s-PS thin films with thickness less than 10 μ m. Therefore, the s-PS thin film sample does not provide a favorable condition to overcome the energy barrier in order to induce the crystal transfor-

 $[\]mbox{\ensuremath{^{\ast}}}$ To whom all correspondence should be addressed. E-mail: changfc@cc.nctu.edu.tw.

Table 1. Specific Characterized Absorbances of s-PS in IR Spectra Ranging from 940 to 820 $\rm cm^{-1}$

morphology	position of absorbance $(cm^{-1})^a$			
amorphous phase	905 (s), 841 (m)			
α-form crystal	901 (s), 851 (w)			
β -form crystal	911 (s), 858 (w)			

^a Note: "s", "m", and "w" represent the "strong", "middle", and "weak" absorbnces in the IR spectrum, respectively.

Figure 1. IR spectra of s-PS (a) *bulk* sample, cooling from 320 to 30 °C with rate of -10 °C/min; (b) *bulk* sample, heated the quenched sample to 264 °C from 30 °C with a scanning rate of 10 °C/min; and (c) thin film sample, heated the quenched sample to 264 °C from 30 °C with a scanning rate of 10 °C/min.

mation from α -form to a thermodynamically favored β -form. A critical film thickness must be met to make the $\alpha-\beta$ transformation feasible at a high temperature.

Figure 2 shows the FTIR spectra ranging from 940 to 820 cm⁻¹ of the thin film s-PS sample which is meltcrystallized at 264 °C at various isothermal time durations. Notably, only two main peaks located at 905 and 841 cm⁻¹ corresponding to the amorphous phase appear in Figure 2a-d where the crystallization process has not begun. The β -form characteristic peaks, 911 and 858 cm⁻¹, begin to emerge when the s-PS thin film sample is melt-crystallized at 264 °C for 20 min. Apparently, the intensity of β -form peaks gradually increases with an increasing crystallization time. Meanwhile, the relative intensity of amorphous phase peaks gradually decrease. The specific α -form peak of $\sim 901~\text{cm}^{-1}$ seems to be observed when the s-PS thin film sample is meltcrystallized at 264 °C for more than 40 min. However, the specific α -form peak of $\sim 851~\text{cm}^{-1}$ is not decomposed out after curve fitting. It is noted that the α -form may appear, but it is too weak to be apparent in the spectra. This feature corresponds to numerous earlier studies on the s-PS crystallization mechanism which shows that crystallization favors the β -form crystal at a higher temperature (i.e., above 240 °C) for thermodynamic reasons.3

Figure 3 shows the FTIR spectra ranging from 940 to 820 cm $^{-1}$ of the s-PS thin film sample which is cold-crystallized at 264 °C for various isothermal time durations. The peak's intensity at 901 and 851 cm $^{-1}$ reveals that the $\alpha\text{-form}$ crystal increases with an

Figure 2. IR spectra of melt-crystallized s-PS thin film at 264 °C for (a) 0, (b) 3, (c) 6, (d) 10, (e) 20, (f) 30, (g) 40, (h) 50, (i) 60, and (j) 240 min durations ranging from 940 to 820 cm $^{-1}$. Upper-right corner shows the curve fitting ranging between 865 and 820 cm $^{-1}$ for (j).

Figure 3. IR spectra of the cold-crystallized s-PS thin film at 264 °C for (a) 3, (b) 6, (c) 10, (d) 20, (e) 30, (f) 40, (g) 60, and (h) 240 min durations ranging from 940 to 820 cm $^{-1}$. Upperright corner shows the curve fitting ranging between 865 and 820 cm $^{-1}$ for (h).

increasing crystallization time; meanwhile, the relative intensity of the amorphous phase at 905 and 841 cm⁻¹ decreases. From this observation, we can infer that the original α -form crystal becomes more perfect with an increasing crystallization time at 264 °C, which is reflected by the sharpening of 901 and 851 cm⁻¹ peaks. However, this crystal does not convert into the thermodynamically favored β -form crystal as well as the *bulk* sample does in the cold-crystallization process. In other

Table 2. Results of Curve Fitting Ranging between 865 and 820 cm⁻¹, Absolute Crystallinity of Melt-Crystallized, and Cold-Crystallized s-PS at 264 °C for 240 min; Results from Figure 2j and Figure 3h

		amorphous phase			crystal phase		
isothermal time of 240 min	area	${\rm freq}$, $^a{\rm cm}^{-1}$	width ^b	area	${\rm freq}$, $^a{\rm cm}^{-1}$	width ^b	absolute crystallinity
cold-crystallization melt-crystallization	0.410 0.366	840.81 840.85	10.836 10.699	0.113 0.076	851.49 857.76	4.370 3.848	60.8 (C_{α} , %) ^c 43.2 (C_{β} , %) ^d

^a Wavenumber. ^b Width at half-height, cm⁻¹. ^c Absorptivity ratio of $A_{851}/A_{841} = 0.178$. ^d Absorptivity ratio of $A_{858}/A_{841} = 0.272$.

words, the individual lamellae of α -form crystals can extend upon annealing at 264 °C in s-PS thin film

Comparing Figure 2 and Figure 3 reveals that the intensity of α -form peaks grows more rapidly than the corresponding β -form. Results obtained from curve fitting ranging between 865 and 820 cm⁻¹ exhibit two main Gaussian peaks that provide an adequate fit with standard deviation square less than 10^{-8} for systems of melt- and cold-crystallization at 264 °C for 240 min, as shown in the upper-right corners of Figure 2 and Figure 3, respectively. Table 2 summarizes the curvefitting results of Figure 2j and Figure 3h. The absolute crystallinity of the β -form is 43.2% in the melt-crystallization; meanwhile, that of the α -form is 60.8% in coldcrystallization, calculated from eqs 1 and 2, as the s-PS is crystallized isothermally at 264 °C for 240 min. Notably, the crystallization rate of the β -form appears to be slower than that of α -form in thin film samples.

Conclusions. In s-PS *bulk* samples, the α -form can convert into the thermodynamically favored β -form packing when the temperature is close to the $T_{\rm m}$. In s-PS thin film samples, the α -form crystal formed at lower temperatures continues to grow along with an elevating temperature during cold-crystallization. The usually observed α - to β -form transformation at higher temperatures (above 240 °C) does not occur in thin film s-PS samples. The energy barrier of α - to β -form transformation cannot be overcome, possibly owing to the physical

hindrances in very thin film samples; therefore, such a transformation of crystal form is inhibited.

Results obtained from crystallinity indicated that the crystallization of the β -form has an activation energy exceeding that of the α -form in thin film samples.

Acknowledgment. The authors thank the National Science Council, Taiwan, for financially supporting this research under Contract NSC-88-2116-E-009-006.

References and Notes

- (1) Kellar, E. J. C.; Galiotis, C.; Andrews, E. H. Macromolecules 1996, 29, 3515.
- Nakaoki, T.; Kobayashi, M. J. Mol. Struct. 1991, 242, 315.
- (3) Sun, Y. S.; Woo, E. M. Macromolecules 1999, 32, 7836.
- (4) Woo, E. M.; Sun, Y. S.; Lee, M. L. Polym. Commun. 1998,
- (5) Woo, E. M.; Wu, F. S. Macromol. Chem. Phys. 1998, 199, 2041.
- Vittoria, V.; Ruvolo, F. A.; de Candia, F. J. Macromol. Sci., Phys. 1992, B31, 133.
- Wu, H. D.; Wu, S. C.; Chang, F. C. Polymer, in press.
- (8) Wang, Y.; Herron, N. J. Phys. Chem. 1991, 95, 525.
- (9) Musto, P.; Tavone, S.; Guerra, G.; De Rosa, C.; *J. Polym. Sci., Part B: Polym. Phys.* **1997**, *35*, 1055.
- (10) Wu, H. D.; Tseng, C. R.; Chang, F. C. Macromolecules, in press.
- (11) Arnauts, J.; Berghmans, H. Polym. Commun. 1990, 31, 343.
- (12) Guerra, G.; Vitagliano, V. M.; De Rosa, C.; Petraccone, V.; Corradini, P. *Macromolecules* **1990**, *23*, 1539.
- (13) Sun, Z.; Morgan, R. J.; Lewis, D. N. Polymer 1992, 33, 660.

MA9919763