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P.(n,R) > Pr|—ixnwn(X";Y") < R—~| —e ™" (1.2)
n

for anyy > 0 and every uniform input over a reliable code. These
two bounds are shown to providegaod approximation to the max-
o . . imum code raté? under the condition that the limsup B (n, R) inn
Generalization of Gartner—Ellis Theorem equals zero [2]. By definition, this maximum code rate is¢thannel
. capacityC'.
Po-Ning ChenMember, IEEE Comparing these two bounds with the result of the Gartner—Ellis
Theorem [1, p. 15], we see that the exponential rate (with respect to
Abstract—A generalization of the Géartner—Ellis Theorem for arbitrary n) of the first term on the right-hand side of (1.1) or (1.2) can actually
random sequenceis established. It is shown that the conventional formula be carried out by letting theequence of random variablesnsidered
of the large deviation rate functionbased on the moment generating func- by Gartner and Ellis, to be theformation densityAs a result of (1.1),
tion techniques, fails to describe the general (possiblyonconveyj large de-  he exponent of. (n, R) in n under fixedR € (0,C) is bounded

viation rate for an arbitrary random sequence. An ijonconvey extension . .
formula obtained by twistingthe conventional large deviation rate function from below by both the magnitude of thiarge deviation rate func-

around a continuous functional is therefore proposed. As a result, a new tion of the information density aroun&l + v and the constant. We,
Gartner—Ellis upper bound is proved. It is demonstrated by an example therefore, pose a question “Whether the large deviation rate function
that a tight upper bound on the large deviation rate of an arbitrary random  for information densitystill provides agoodapproximation to the ul-

sequence can be obtained by choosing the right continuous functional, even imate exponential dependence (in block lengjrof P, (n. R) under
if the true large deviation rate is not convex. Also proved is a parallel exten- A

sion of the Gartner—Ellis lower bound with the introduction of a new notion  ixed & € (0, C') for arbitrary single-user channels.”

of Gartner—Ellis setwithin which the upper bound coincides with the lower In studying this problem, we first observe that the information den-

bound (for countably many points). sity for an arbitrary channel now becomabitrary in its statistics.
Index Terms—Arbitrary random sequence, exponent, Gartner—Ellis the-  H€NCe, the first step in this investigation is to generalize the large devia-

orem, information spectrum, large deviations. tion rate function for arbitrary random sequences. Using the limsup and

liminf of the log-moment generating functions, a simple extension of
the Gartner—Ellis Theorem for an arbitrary random sequence is estab-
lished. However, such an extension, at times, is shown to yield a loose
|. INTRODUCTION bound on the large deviation rate of an arbitrary random sequence, es-
. . . ecially when the large deviation rate of the arbitrary random sequence
A general formula for the capacity of arbitrary single-user channé? notconvex (cf. Example 2.1). Since the large deviation rate function

without feedback had been established by Verdt and Han in 1994 Ila yays leads to a convex function, chances of having a tight bound on

!n their paper, the chanr_1e| capacity was_shown to be the supremunyof large deviation rate of an arbitrary random sequence along this line
input—outputinf-information ratesover all input processes, where the

Lo . . ) N o seem rare. Motivated by this, we then focus on findimpaconvexx-
inf-information rates defined as théminf in probability of the normal- . y s, oy

. : : . . ression for the large deviation rate.
ized information density. This result was based on two key results: I’—pe-

. s | for the di ing th , ,_ The proof of the Gartner—Ellis Theorem is, in fact, based on the
instein’s lemma [3] for the direct coding t eorgm and verdu and HanI-f'eine—BoreI Theorem, which states that a finite subcover on a com-
theorem [2, Theorem 4] for the converse coding theorem. The formerCt set exists for (uncounttably many) open covers, The open covers
provides a universal upper bound on average channel coding error %heir proof take the form ofz € R : 8 — ¢(8) > (;} ford € %

every input process, and the latter gives a lower bound on the same, € R. (supy. |6 — 3(6)] is thesup-large deviation rate func-
quantity for the uniform input process over a reliable code sequence " VER v

While Feinstein's lemma was used in [2], a standard random Codlnoh, which will be defined in the next section.) These covers remain
S ‘open” when the argument is replaced by any continuous function
argument can also be used for the achievability proof [5]. @p 9 b y any

h(x) over the real line. Such findings lead to a new extension of the
Gartner—Ellis Theorem. Examples will be given to demonstrate that by
Manuscript received April 16, 1999; revised April 22, 2000. This work waproperly choosing a continuous function, a tight bound on the large de-
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Section IV, properties of the (twisted) sup- and inf-large deviation ratenerel{-} represents the indicator function of a set. Consequently, by
functions are examined. Concluding remarks appear in Section V. Theorem 2.1

Throughout the correspondendg?.. },=. denotes an infinite se- 1 . . -
quence ofarbitrary random variables. lim sup —log PI‘{ - €la, b]} <- rél[lafb] I(x)
) 0, for 0 €[a, ]
Il. EXTENSION OF GARTNER-ELLIS UPPERBOUNDS =<{ b, forbe[-2,0] O
Definition 2.1: Define —oc, otherwise
NOE L og Elexp{6#Z,}] and 3(8) 2 limsup ¢ (8). The exponent oPr{ Z, /n € [a,b]} in the above example is indeed
" n—o0 given by
Thesup-large deviation rate functioof an arbitrary random sequence 1 Z. R
{Z.}:2, is defined as Jim - log Pf{ - Ela, b]} =, bf I'(2)
NN o
I(x)=  sup [0 — 3(0)]. (2.3) where
{0eR:2(0)>—0} 2, forz = —2
The range of the supremum operation in (2.3) is always nonempty I'(x) =40, for » =0 (2.4)
sinceg(0) = 0,i.e.,{§ € R : (#) > —oc} # 0. Hencel(x) is oo,  otherwise

always defined. With the above definition, the first extension theore;ixhus the upper bound obtained in Theorem 2.1 is not tight

of Gértner—Elli$ can be proposed as follows. As mentioned earlier, theosenessf the upper bound in Theorem

Theorem 2.1:Fora,b € ® anda < b 2.1 cannot be improved by simply usinganvexsup-large deviation
rate function. Note that the true exponent (cf. (2.4)) of the above ex-
lim stp 1 log Pr{é € [a, b]} <~ inf I(x). ample is not a convex function. We t_her! observe that t_hg convgxity of
n—oo N n z€la,b] the sup-large deviation rate function is simply because it is a pointwise

supremum of a collection @fffinefunctions (cf. (2.3)). In order to ob-

tain a better bound that achievesa@nconvexarge deviation rate, the

involvement ofnonaffinefunctionals seems necessary. As a result, a
The bound obtained in the above theorem is not in general tighew extension of the Gartner—Ellis theorem is established along this

This can be easily seen by noting that foleaitrary random sequence line.

{Z,}22,,the exponent dPr{Z, /n < b} is not necessarily convexin  Before introducing thenonaffineextension of Gartner—Ellis upper

b, and therefore, cannot be achieved lyoavex(sup-)large deviation bound, we define thawisted sup-large deviation rate functias fol-

rate function. The next example further substantiates this argumentows.

Proof: The proof follows directly from Theorem 2.2 by taking
h(xz) = z, and hence, we omit it.

Example 2.1: Suppose thdtr{Z, = 0} = 1—e *" andPr{Z, = Definition 2.2: Define
—2n} = e~2" . Then, from Definition 2.1, we have Al 7z
on(@;h)= —logE |:exp{n -0-h <—n) }:|
o n n
on(f) 21 log E[e’""] = 1 log [1 —e " 4 e_(9+l)'z"l] A
n n and @,(0) = limsup p,(8; h)
and n—oo
o(0) £ lim sup p,(0) = { O" foré > ~1 whereh(-) is a given real-valued continuous function. Theésted sup-
n—oo —2(0+ 1), foré < -1. large deviation rate functionof an arbitrary random sequentg, }72,
Hence{# € R : p(6) > —oc} = % and with respect to a real-valued continuous functidn) is defined as
= A
= _ Jn(z) = sup 6-h(z)— on(8)). 2.5
(@) = suplé = 4(6)] MO enaoyt Bk (29
= sup[fa +2(6 + 1)1{¢ < —1)}] Similarly to I(x), the range of the supremum operation in (2.5) is
e not empty, and hencd,,(-) is always defined.
-, for—2 <2 <0
= oo, otherwise Theorem 2.2: Suppose thak(-) is a real-valued continuous func-
tion. Then fora,b € R anda < b
1For completeness, the conventional Gartner—Ellis Theorem in [1, p. 15] is 1 P
reproduced below. lim sup — log Pr{ S [a,b]} < — inf Ju(x).
Theorem(Gértner—Ellis): If for alld € R, (6) = limsup, _ _w.(6) = n—eo T " w€la.b]
liminf,, . oo (9) andfa, 8] N {z € R : I(z) < oo} # 0, then Proof: The proofis divided into two parts. Part 1 proves the result
. 1 Zn . under
limsup = logPr< =— € [a,b] p < — inf I(x). -
n—oo M n 2€[a,b] [a,b)N{x € R: Jp(x) < oo} #0, (2.6)
If, in addition, ¢(+) is differentiable on{¢# € R : »(¢) < oo} and(a,b) C ifias i
{z €R: 2= p'(0)andp(d) < oo for somed E*JE}, then and Part 2 verifies it under
[a,b] C {a € R: Jp(x) = oo} (2.7)

. . 1 B . Zn 2 . -
h,?iloléf n log PI{ n € (e, b)} 2= .rel%la,f,b)l("“) Since either (2.6) or (2.7) is true, these two parts, together, complete

the proof of this theorem. -
wherel(z) 2 supyeplfr — o(6)]. Part 1: Assumela,b] N {x € R : Jp(z) < oo} # 0.
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DefineJ* = mfre[a o Jn (). By assumption]* < occ. Therefore, The proof of the above theorem has implicitly used the condition
—o0 < gp(f;) < oc to guarantee that

lim sup[@n (8:;h) — @ (6:)] =0

[a,0) C {x: Jn(x) > J" — &}

for anye > 0, and n—oo
{2 €R:Tn(x)> T — =) for each integef € [1, k]. Note that wherz,(8;) = co (re_sp.,—oo_),
limsup, . [@n(bish) — §a(:)] = —oc (resp.,c0). This explains
={reR: stp [Bh(z) — @n(8)] > J" —¢ why the range of the supremum operation in (2.5) is taken to be
{0eR:z, (0)>—o0} {6 € R: ¢n(8) > —oo}, instead of the whole real line.

c U {z € R:[Bh(x) — 3n(8)] > T* — <} As indicaFeq in Theorem 2.2., ebetter upper.bound can possibly be
found bytwisting the large deviation rate function around an appro-

{6€R: 04, (8)>—o00} . . ' ) : -
priate (nonaffine) functional on the real line. Such improvement is sub-

Observe that stantiated in the next example.
U {zeR: [0z —@n(0)]>J" —=} Example 2.2: Let us, again, investigate tHeZ,, 152, defined in Ex-
{0ER:@,(8)>—c0} ample 2.1. Take
is a collection of (uncountably infinite) open sets that cdueb] which 1

hz) = §($ +2)° - 1.

Then, from Definition 2.2, we have

is closed and bounded (and hence compact). By the Heine—Borel the-
orem, we can find a finite subcover such that

k

[¢,0] C U{.lf ER:[fix — @n(6:)] > T — =} @n (05 h) 2 llogE[(‘,Xp{'n(-)h(Zn/'n)}]
i=1 n
1
and(V1 < i < k) ¢n(8:) < oc (otherwise, the set = loglexp{nf} —exp{n(f —2)} + exp{—n(f + 2)}]
- N and
{x: [fix — @n(8:)] > T — <} A —(0+2) forg < —1
Gn(f) = limsup (6 h) = { ’ Z
is empty, and can be removed). Also not <i < k) @ (8;) > —oc. n—co 6 fore > —1.
Consequently, Hence{# € R : ¢p(f) > —o0} = R and
Pr{fn € [a, b]} 1 5
" Tn(2) 2 sup[gh (s 9>1—{ Tplrer, forel oL
oER oo, otherwise

In -
leqPr{ € U{r Bih(z) —on(0:)] > J —5}}
Consequently, by Theorem 2.2, we get (2.8) at the top of following

k age.
SZPr{h(Z“)-9,:—9511(97‘)>J*—€} pag
: n Forb € (—2,0) anda € [—-2 — v/2b — 4,b), the upper bound at-

tained in the previous example is strictly less than that given in Example

= ZPr{n - h < ) 6; > n@gn(0;) +n(J" — 5)} 2.1, and hence, an improvement is obtained. Howeveb, ot —2,0)
anda < —2—+/2b — 4, the upper bound in (2.8) is actually looser. Ac-
k y cordingly, we combine the two upper bounds from Examples 2.1 and
<Y exp{n[@a(bish) — Gu(8i)] — n(J" - =)} 2.2 to get
=1
where the last step follows from Markov’s inequality. Siricis a con- lim sup 1 log Pr{ Z" €la, b]} <- max{ inf Jn(x), inf I( r)}
stant independent of, and for each integere [1, k] n—oo M " w€let] w€lat]
0, for0€[a, b]
tim sup *log(exp{nla (6::1) = n ()] = n(J" = <)}) ={ S0+27 —2, forbe[-2,0]
= —(J =) —oxc, otherwise
we obtain A betterbound on the exponent 8%{ 7., /n € [a,b]} is thus obtained.
Z, As aresult, Theorem 2.2 can be further generalized as follows.
hiu_bip _log Pl{ n €l b]} S Theorem 2.3:Fora,b € ® anda < b
Sinces is arbitrary, the proof is completed. ) 1
Part 2: Assumela, b] C {l E R: Ju(z) = ool hnfup - log Pr{— € [a b]} < - zélsz J(x)
Observe thafa, b] C {= : J,(2) > L)} forany L > 0. Following o

the same procedure as used in Part 1, we obtain where.J (z) 2 supp ey Jn(x) and™ is the set of all real-valued con-

tinuous functions. N _
[a,b]} < —L. Proof: By redefining.J* = inf,¢[q,5) J () in the proof of The-
orem 2.2, and observing that

lim sup log Pr { Zn

n—oo n

SinceL can be taken arbitrarily large _
ylarg [a,b) C{z e R:J(x) > J" — =}

oo g S U eRpie > s

li 1 l P Zn
1m su (0] r
p & n z€[a,b) hEH {0ER:@;, (0)>—0c0}

n— 00
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1 Zn, . =
limsup — log PI{ € [a, b]} < — inf Jp(x)
n n z€[a,b]

n—00

—min{—%(a+?) + 2, ——(b+2) +2} for-4<a<b<0

0, fora > 0o0rb < —4
—oc, otherwise

(2.8)

the theorem holds undér, b)) N {= € R : J(x) < 0o} # O. Similar Definition 2.3: Define ¢, () 2 liminf,—o wn(0;h), where
modifications to the proof of Theorem 2.2 can be applied to the case®f(4; 1) was defined in Definition 2.2. Thisvisted inf- large deviation
[a,b] C {x € R: J(2) = co}. ® rate functionof an arbitrary random sequen¢€,, };=, with respect

Example 2.3: Let us again study theZ, } 52, in Example 2.1 (also to a real-valued continuous functidr-) is defined as

in Example 2.2). Suppose> 1. Takeh.(x) = ¢1 (z+c2)? — ¢, where
P ). Supp ) =alete) 4, () = sup [0 h(x) —¢, (0)].
{9€§I?:£h(9)>—oo}
péH—‘ andré—Q'H_1
T "2_\/(1_’_1_‘_,\/0_1‘

Theorem 2.4:Fora,b € ® anda < b,

Then from Definition 2.2, we have 1 7z,
liminf — log Pr{ [a,b]} < — inf J(x)
n

1 Zn n—oo z€[a,b]
on(b; he) 22 log E |:exp{né’hc <—) }:|
n n

1 whereJ ( L) = sup,cy J; (2) and’H is the set of all real-valued con-
log[(1 = pn) exp{né} + pn exp{—nf}] tinuous functions.

1 ‘
=n loglexp{né} — exp{n(¥ —2)} + exp{—n(f +2)}] Il. EXTENSION OF GARTNER-ELLIS LOWER BOUNDS
and The tightness of the upper bound given in Theorem 2.2 naturally

relies on the validity of

. — < —
Lf?’hc (H) é lim Sup ¥n (9. hc) — {‘9 (9 + 2)7 for o < 1

e on ford > —1.
Zn
Hence,{# € R : 3.(f) > —c} = R and lim sup - ,]0“ Pr € (a,b) p > — 9_6121{ Jn () 3.9)
Jn, (z) = sup[Bh.(z) — on.(8)] which is an extension of the Gartner—Ellis lower bound. The above
VER : inequality, however, is not in general true for all choices ahdb (cf.
_ { —a(z+e) +e+1, forz G.[—?% 0] Case A of Example 3.4). It, therefore, becomes significant to find those
a0, otherwise (a,b) within which the extended Gértner—Ellis lower bound holds.
From Theorem 2.3 Definition 3.4: Define thesup-Gartner—Ellis setvith respect to a

real-valued continuous functiorn(-) as

R 2 U G(6:h)

{0€R:2,,(0)> o0}

J(x) = sup Jp(x) > max{lim inf J;, (), f(.l)} =1I"(2)
heH oo

Q

wherel*(z) is defined in (2.4). Consequently,

where
ey logPr{Z [a‘b]} 361 2 Pr(f +1) — &n(#)
neo / G(o;h) = {T ER:limsup — 2 T2
<y T h - (8) = on(6 — 1)
»€le o Ph — @pll —
<— inf I'(x) <h(x) < hfﬂénf %}
w€la,b]
0, if 0 € [a, D] _ . _
={ -2, if —2 € [a,b] and0 ¢ [a, b] _ Let us briefly rem_ark on thel_Jp-Gartqer_—Ellls sedefln_ed above. It
—oo, otherwise is self-explanatory in its definition thal, is always defined for any

real-valued functiork(-). Furthermore, it can be derived that thep-
and a tight upper bound is finally obtained! O Gartner—Ellis sets reduced to
Theorem 2.2 gives us the upper bound on the limsup of G U {r €R:@L(0) = h(x)}

(1/n)logPr{Z,/n € [a,b]}. With the same technique, we can {0€R:z, (8)>—c0}
also obtain a parallel theorem for the quantity

1>

if the derivative), (¢) exists for alld. Observe that the condition
h(z) = @1, (9) is exactly the equation for finding thethat achieves
) Jr(x), which is obtained by taking the derivative [6f.(z) — @ (6)].

lim inf l log P1{ Zn
n

n—oc 7l
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This somehow hints that theup-Gértner—Ellis sets a collection of which implie
those points at which the exact sup-large deviation rate is achievable.

We now state the main theorem in this section. 1
lim sup — log Pr{
Theorem 3.5: Suppose that(-) is a real-valued continuous func-  n—oe 7

Zn € Jn(a, b)}

n

tion. Then if(a,b) C Gn > —[0h(v) — Zu(8)] — 1]
1 Z(O;h)
n . = li S —1 P =- B( R 6
lim sup 1 log Pr{Z— € $7(a,b)} > — 1%1fb) Jn () + 171711—5:11) n 0BT n € B(v,9)
n—oc N n x€(a,

B 1 Z’(b‘;h)
where —Jn(v) — |8]6 + lim sup — log Pr¢ == € B(v, )

n

n—oo Tt

Tr(a,b) & {y € R: h(y) = h(x) for somex € (a,b)}.

vV

1 /(O;h)
—J" —&—16]6 + limsup — log Prq =“— € B(v,4) ¢ .
n n

Proof: Let F,,(-) denote the distribution function df,,. Define
its extended twisted distributioaround the real-valued continuous,
functionh(-) as

s A exp{nbh(x/n)}dE, () fﬁ;h)
dF,(LoJ)(') il { Lr/m)) ( lim sup 1 log PI'{ Z € B(v,6) y =0. (3.11)
n

Since both’ and= can be made arbitrarily small, it remains to show

Elexp{n 0 h(Z, /n)}] n
_ exp{nfh(z/n)}dF,(-)

n—oo

exp{nen(f:h)} To show (3.11), we first note that
Let Z"*" be the random variable having\’™ () as its probability oo
distribution. Let Pr{h <Zﬁ > h(v)+ 6
. A _ n
JT = inf Jn(x).
et n(x) _ Pr{enth(z’("e:h)/n) > €ntlz(u)+nl6}
Then for any= > 0, there existss € (a,b) with J, (v) < J* +&. . , ,
Now the continuity ofk(-) implies that < 67"”1(“)7’”'5/ el g i)
R
B(’U,(S) é {.lf ER: |}L(.L) . }L(U)| < é} c (7h((l‘,b) — C—nth(u)—nté/ Gnth(.r/n)+n9h(r/n)—n¢n(9;h)an(m)
R
_ . ) ) _—nth(v)—nté—nep(0;h)+ney, (0+t;h
forsomes > 0. Also, (a,b) C G), ensures the existencefb$atisfying =€ ) Ot tmen ).
fimsup 2RO D =20 0) oy g 2RO =20 =8 gimilarly,
t10 t ) t|0 t
. . . . . (8;h
which, in turn, guarantees the existence ef ¢(§) > 0 satisfying Pr{h <Zﬁz )> < hiv) - b}
2n(0+1) — @n(0 6
& 33 on(f) < h(v) + i _ Pr{e_')th(z’(f:h)/n) > e,nth(anté}
5 onlf) = 2nf —1) -
and h(v)— - < ——————=_ (3.10 :
L(U) 4= t ( ) S Cnfh(u)—n,tﬁ/ C—nth,(a:/n)dFl(iﬂ;h)
R
We then derive — nth(v)=nts / R/ W) FnBh (e /m)—nen (951) g (x)
Z, Z. .
Pr € Jn(a,b) p >Pr €B(v, ) — () —nts—nen(0ih)tnen (9 —th)
n n ” :
Zn
:Pr{ h < n )_h'(l') <6} Now by definition of limsup
:/ dF,(x) ‘5
{‘xeﬁ:ﬂz(r/n)—h(v)|<6} Pn(‘g + t; h) g ;,h(e + t) + Z
= _ to
/{xe%:mu/n)—h(un@} and @n(0 —t;0) < @n(d —1) + T (3.12)
X exp{mpn(H; h)—nbh (1) } dF,,EO:'h)(;L’)
n - .
> exp{npn(8; h)—nfh(v)—n|d]s} for sufficiently largern; and
X/ dFTSH:h) (I) ’ ‘5
{z€R:|h(z/n)—h(v)|<6} Pn (e,h) Z Lﬁh(e) — Z (313)

=exp{ne,(0; h)—nbh(v)—n|f|5}

Py 7L —_ for infinitely many . Hence, there exists a subsequeree, n.,
n ns, ...} suchthat for alk;, (3.12) and (3.13) hold. Consequently, for
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all j Therefore, Theorem 3.5 cannot be applied to @ayndb with (a,b) N
[—1,1] # 0.
1 (0:h) 1 By deriving
n—_logPr{ n ¥ B(”"s)} < n_»log(Z - el =V for x| > 1
’ N ’ I(x) = sup{af — 5(0)} = 2 !
X max [e_"jfh(")_"jtﬁ_"’j’*’”j(9"”)"'"'3"‘"”3'(9“;")_ oeR 0, for |«| <1
« 6“_7'”L(U)_"j“s_“j¥9nj (G;h)-‘rnjgﬁnj (9—L:Iz):|> we obtain for anyr € (—OC7 1) U (1. OC)
lim limsup ~ log Prd 2" € (a — ,a + )
== logZ + max{ [—th(v) + @n,; (8 + t; 1), th(v) P R B
_ 2
+on, (0 =t D)] } — g (B:1) — 16 > _lim it T(o) = —dd =1
1 )0 z€(a—e,ate) 2
< —log 2 + max{[—th(v) + gn(0 + t),th(v)
n;

which can be shown tight by Theorem 2.2 (or directly by (3.15)). Note
5 1 that the above inequality does not hold for ang (—1, 1). To fill the

+&n(0 =]} — 2a () - 5 = *logz ap, a differenf.(-) must be employed.
2 gap ploy
_|_f.max{{%9h(9+f)—%0h(9) _ (o), h(v) Case B: h(x) = v —a|for—1 < a < 1.
t Forn even
_ 55/1(9) - 55/1(9 - f) _ ﬁ E |:e710h(Zn/n):|
t 2
1 t6 — B [enf1Zn/n—al
< Tlog2- (3.14) =E [6 ]
i 4 /‘”“ 1 (r—n)?/(2n)
_ —fz+nfa —(z—n (2n)
= e e dx
o V2mn
where (3.14) follows from (3.10). The proof is then completed by ob- N /oo or—noa 1 _(z—n)2/(2m) p
. e 1T
talnlng e m
 nb(0—2+42a)/2 /'"a‘ 1 —n(—6)2/(2n) 7
=c e axr
(0;h) c . /2mn
lim inf 1 log Pr Zn g B(v,6) ¢ < _t oo .
n—oo N n 4 +6n6’(6+272a)/2/ ol (102 /(20) 4.
na \/ﬁ
_ nb(6—242a)/2 . _ f
which immediately guarantees the validity of (3.11). [ | = L(6 +a = 1)vn)

. - +8n0(9+2—2u)/2 '@((9—&-1—1)\/;)
Next, we use an example to demonstrate that by choosing the right

h(-), we can completely characterize the exact (nonconvex) sup-lamyeered(-) represents the unit Gaussian cumulative distribution func-
deviation ratel " () for all z € R. tion (cdf).

Similarly, for » odd
Example 3.4: Suppos&Z, = X1 + - -- + X, where{X; }}-, are

independent and identically distributed (i.i.d.) Gaussian random vag [6"9’1(%/”)} = mOHIR22 B (9 + a4 1)V/n)
ables with mear and variance if » is even, and with meas 1 and n8(8—2—2a) /2
variancel if n is odd. Then the exact large deviation rate formilar ) te F®((0 —a—1)v/n).

that satisfies for alb < b Observe that for anj € R

1 A /i 0, forb >0
_ I oo lim — 10 P(by/n) = b2
lér[ti i I (x) >h:}1q;ip lo Pr{ o € [a, b]} am 08 ( )= . for b < 0.
>lim sup - l log Pr{Z— € (a, b)} — inf I"(z) Hence ‘
n—oo z€(a,b) (|(l| _ 1)2
s forf < la| -1
is on(f) = 616 + 2(1 — |a])] 2(21 — |a|)], forla] —1<6<0
_ —1)? 86 + 2(1 + |al)]
Therefore, we get the expressions at the top of following page. We then
Case A: h(z) = . apply Theorem 3.5 to obtain
For the affing(-), ¢, (8) = 8462 /2 whenn is even, ang,, (8) = z
-0 + 67 /2 whenn is odd. Henceg () = |6] + 6> /2, and 1}1[{)1 lim sup log Pl{Tn €(a—ca+ a)}

> —lim inf , J_/L(;L’)

£]0 z€(a—e,ate
Gn= (U {veR: '1):1—1—(-1}>U<U {veR: 1;:—1—|—9}> lim (=14 |a|)2 _ _(|a| - 1)2

0>0 6<0 |0 2 - P)

U{'” €R:1<v<~1} Note that the above lower bound is valid for ang (—1,1), and can
=(1l,0c) U (—oc, —1). be shown tight, again, by Theorem 2.2 (or directly by (3.15)).
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Qu

= (U{;L’G?R:|$—a|:9+1+|a|}>U<U{$€§R:|;r—a,|:9+1—|a|}>

6>0 0<0

=(—oc,a—1—|a)U(a—=1+|al,a+1—|a])U(a+ 1+ |al],c0)

(1 = a] = 1+ Jal)?
- 2 2’
ulw) = (|.1f—a‘|—21—|a|) , fore >a+1+|a|ore<a-—1-]al

0, otherwise

fora—1+4Ja|<z<a+1-—|a
(3.16)

Finally, by combining the results of Cases A and B, the true large de- « Modifying the proof of Theorem 3.5, we can also establish a
viation rate of{ Z, },,>1 is completely characterized. O lower bound for

Remarks:

Zn
. . . li f —1 Pr
One of the problems in applying the extended Géartner—Ellis The- 13111(2 o8 { n

orems is the difficulty in choosing an appropriate real-valued con-
tinuous function (not to mention the finding of the optimal one in
the sense of Theorem 2.3). From the previous example, we B
serve that the resultad, (x) is in fact equal to the lower convex
contou? (with respect tax(-)) of mingyenin(y)=h(2)} I(x ) In- % A U G(8: h)
deed, if the lower convex contour ofin, es. h(y)=h(=)} I(x) =h =
equalsl* () for somez lying in the interior ofGy,, we can apply
Theorems 2.2 and 3.5 to establish the large deviation rate at tiigere
point. From the above example, we somehow sense that taking

(@}

Definition 3.5: Define theinf- Gartner—Ellls setwith respect to a
YRal-valued continuous functior(-)

{Geﬂ?zﬁh(e)>—oo}

h(x) = | — a| is advantageous in characterizing the large d%(e. B2 {E €% lim bup e, (0+1)—¢, (0)

viation rate atr = . As a consequence of such choicehdf), ' 110 t

Jr (x) will shape like the Iowerconvexcontourmﬁn{]*(r—a) o (0) = (1)
I*(a—x)} in h(z) =|z—al. Hence, ifa lies in Gy, Jn(a) can < h(x) < liminf =& h }
surely be used to characterize the large deviation rate-at (as to t

it does in Case B of Example 3.4).
Theorem 3.6: Suppose thak(-) is a real-valued continuous func-

The assumptions required by the conventional Gértner- E||IS
on. Thenif(a,b) C G,

lower bound [1, p. 15] are

1) »(f) = o(f) = f(e) exists; lim inf —log Pl{Zn
2) ¢(#) is differentiable on its domain; and n—oo n
3) (a,b) C {z € R: 2z = ' (#) for somes}.

(a,,b)}z— inf J,(x).

z€(a,b)

_ o ~* One of the important usages of the large deviation rate func-
The above assumptions are somewhat of limited use for arbi-  tions is to find the Varadhan's asymptotic integration formula of
trary random sequences, since they do not in general hold. For  lim, ., (1/n)log E[exp{6Z,}] for a given random sequence

example, the condition af(#) # »(#) is violated in Example {Zn}iil. To be specific, it is equal [4, Theorem 2.1.10] to
3.4.
By using the limsup and liminf operators in our extension the- lim — log Elexp{0Z,}] = sup [z — I(x)]

orem, the sup-Géartner—Ellis set is always defined without any " " {weil (w)<oo}

requirement on the log-moment generating functions. The sup-

Gartner—Ellis set also clearly indicates the range in which the

Gartner—Ellis lower bound holds. In other words, is a subset i Jim sup & log / exp{fa} APy, (x)| = —oc
of the union of all(a. b) for which the Géartner—Ellis lower bound Looo plo M (202> L] Y )

is valid. This is concluded in the following equation:
The above result can also be extended using the same idea as

applied to the Gartner—Ellis theorem.

Gn C U {(a, : lim sup — 10<f Pr|:Z— € Tnl(a, b):|
n Theorem 3.7: If

> — inf J, (t)} 1 -
z€(ab) lim limsup = log / exp{6h(x)}dPy, ()| = —o0
L n [zEROA(z)>L]

— n—oo

To verify whether or not the above two sets are equal merits fur-

ther investigation. then
2We define that the lower convex contour of a functipf) with respect to lim sup — 10g E |:exp{n€)h <Z )H
h(-) is the largesy(-) satisfying thaigy(h(x)) < f(x) for all x, and for every n—oo T n
@,y and forallx € [0,1], Ag(h(z)) + (1 — Ng(h(y)) > g(Ah(z) + (1 — = sup [Oh(z) — j/L(LL’)]

A)]L(U)) {zeR:Jy(2)<o0}
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and By Jensen’s inequality

exp{ne,(0;h)} = Elexp{n -0 -h(Z,/n)}]
> expln -8 - E[h(Zo/n)]}
=exp{n-6-ms(h)}

lim inf 1 log |:exp{m9h <Z” ) }:|
n—oo N n

= sup [0h(z) — I, (2)].
{weR:d, (r)<oo}

Proof: This can be obtained by modifying the proofs of Lemmas
2.1.7and 2.1.8 in [4]. [ |

We close the section by remarking that the result of the above the-
orem can be reformulated as

which is equivalent to

0 -m.(h) < @.(6;h).

_ After taking the limsup and liminf of both sides of the above

Jp(r) =

sup
{0€R:2,(0)>—c0}

[6h(z) — Pn(8)] inequalities, we obtain

) _ o« for6 >0
and Zn(0) = sup [0h(z) — Jn(x)]
{relIu(m)<oc) by, < on(0) (4.17)
which is an extension of thHeegendre—Fenchel Transform paf sim- and
ilar conclusion applies td , (=) andg, (). 0 m, < . (6) < on(0); (4.18)
IV. PROPERTIES O TWISTED) SUP- AND INF-LARGE DEVIATION o forg < 0
RATE FUNCTIONS
- . , fm,, < @n(f) (4.19)
Property 4.1: Let I(x) andI(x) be the sup- and inf-large devia-
tion rate functions of an infinite sequence of arbitrary random vari- and ’
ables{Z, 132 ,, respectively. Denoter, = (1/n)E[Z,]. Letm = 0-mn < ¢, (0) <n(f). (4.20)

limsup, ___m, andm = liminf,,_ . m, . Then

Expressions (4.17) and (4.20) imphy (=) = 0 for those
x satisfyingh(z) = ms, and (4.18) and (4.19) imply
Ji(x) = 0 for thosex satisfyingh(x) = m,,. For

1) I(x) and(x) are both convex;

2) I(x) is continuous ove{r € R : I(z) < oco}. Likewise,I(x)
is continuous ovefz € R : I(z) < co};

3) f(.c) gives its minimum value 0 at: < = < m;

4) I(x) > 0. ButI(x) does not necessary give its minimum value
at bothz = m andz = m.

x€{x:m, <h(x)<m,}

0-hiz)—@n(0) <0 -mp—@or(f) <0, foro >0

and

Proof: 8- h(x)—@n(8) <6-m, —Fn(8) <0,
1) I(x)isthe pointwise supremum of a collection of affine

functions. Therefore, it is convex. Similar argument can be Hence, by taking the supremum ovgr € R : px(6) >
applied toI(z). —oo}, we obtain the desired result. B

2) A convex function on the real line is continuous every- 2) The nonnegativity off, () can be similarly proved ag, ().
where on its domain and hence the property holds.

3)and 4) The proofs follow immediately from Property 4.2For Case A of Example 3.4, we hawe = 1, m = —1, andp(f) =

ford < 0.

by takingh(z) = . B —|9| + 6%/2. Therefore,
Since the twisted sup/inf-large deviation rate functions are not nec- (Jz| + 1)?
essarily convex, a few properties of sup/inf-large deviation functions I(z) = :‘elg{-”’ e} =—u—

do not hold for general twisted functions.

Property 4.2: Suppose thak(-) is a real-valued continuous func-
tion. Let.J; («) andJ,, (x) be the corresponding twisted sup- and inf;

large deviation rate functions, respectively. Denote
AN
m,(h) = E[h(Z,/n)].
Let

AN AL L L
mp =limsupm,(h) and m, =liminfm,(h).
1 — OO n—oo

Then
1) Ju(x) > 0, with equality holds ifin, < h(z) < 7.

for which I(—1) = I(1) = 2 andmingen I(x) = I(0) = 1/2.
Consequentlyl(x) neither equals zero nor gives its minimum value at
bothx = m andx = m. ]

V. CONCLUDING REMARKS

Our study on the large deviation rates for arbitrary random sequences
has yielded new Gartner—Ellis lower and upper bounds. No assumption
on the statistics of the random sequence is required in these two bounds.
The newly definedsartner—Ellis sehas been shown to be (a subset of)
the range under which our Gartner—Ellis bounds are tight (for countably
many points).

2) J,(x) > 0, butJ, (=) does not necessary give its minimum Two issues are still open in this study. The first one concerns a sys-

value at bothe = m;, andz = m,,.
Proof:
1) Forallz € R,

Jn(z) 2 sup [0-h(x) — 2r(0)]
{0€R:,(6)> —0)

> 0-h(x) — 34 (0) = 0.

tematic methodology for finding a series of continuous functions for
which the large deviation rates can be completely characterized. Our
example somehow suggest that the convex continuous functions that
bottom at the targeted range could be a proper choice. The second
issue questions whether or not the Gartner—Ellis set is the largest one
in which the Gartner—Ellis lower bound holds. It is our conjecture that
the answer is affirmative. In [6], Poor and Verdd have provided an
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upper bound on the channel reliability of arbitrary single-user chan-The motivation of this correspondence is to present several new
nels, which is of the form bounds for the minimal eigenvalues. The approach is based on a
matrix series and the local monotonicity of the minimal eigenvalue.
—lim sup 1 suplog Pr{li,\mm (X", V") < R} . (5.21) The previous lower bounds can be obtained as special cases. The new
n bounds presented here are more accurate than both Dembo’s bound

M Z ki’
They conjectured that (5.21) is in fact tight. It would also be mterestlngnd a and zarowsk's bound.

to evaluate (5.21) using the twisted large deviation rate function, and
see if any twisted functional can provide improvement on the existing
channel reliability bounds. LetA;,j = 1,2,...,n, be the eigenvalues d@t,, and

n—oo N Xn

Il. PREVIOUS RESULTS
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The bounds given in the above theorem are easy to calculate. The re-
sult has been extended to positive-semidefinite doubly symmetric ma-
trices and applied for some Toeplitz problems in [1]. It has been noted
in [4] that the lower bound in (2.1) can be negative for some Hermitian

. . . ositive-definite matrices. An example of susch a matrix, given in [4],
Lower Bounds of the Minimal Eigenvalue of a Hermitian P P g 4

" i . is
Positive-Definite Matrix
1+4¢€ 1 1
Weiwei Sun R3 = 1 1+e¢ 1
1 1 1+e¢
Abstract—in this correspondence, we present several lower bounds of which is Hermitian positive-definite far > 0 and\; = ¢. By Theorem

the minimal eigenvalue of a class of Hermitian positive-definite matrices, A, we obtain the bound , = —1 + .
which improve the previous bounds given by Dembo [1] and Ma and An improved bound has been given by Ma and Zarowski [4]. Their
Zarowski [4]. p g y :

main result is summarized in the following theorem.

Theorem B (Ma and Zarowski [4]):

Index Terms—Eigenvalue bounds, Hermitian positive definite.

_ctm
The study of lower bounds of the minimal eigenvalue of a Hermitian ) 2
matrix is of wide interest in many fields [1]-[3]. Here we consider the
n x n Hermitian positive-definite matri®., defined in a partitionform  Sincec — b R b = det(R,)/det(R,_1) wheredet(-) denotes
by the determinant, the bound in (2.2) is positive wh&n is Hermitian
positive-definite.
Rn_1 b}

|. INTRODUCTION . \/(c+ m)2—4(c—bTR, L b)Yy

2.2)

(1.1)

Rn:|: b’ c

Ill. L OWER BOUNDS OF THEMINIMAL EIGENVALUE

whereb c Cn*l is an ('n _ 1)_dimensiona| Comp|ex Vectan71 We ConSider the Chal’acteristic polynomial Of the maﬁlx, Wh|Ch
isan(n — 1) x (n — 1) matrix, c > 0 is a scalar value, and the IS given by

superscriptd denotes Hermitian transposition. Lower bounds of the det(R, — AI) = det R, — ) b

minimal eigenvalue of th&,, in (1.1) have been studied by Dembo [1] eitin =ae b c=X| /"

and Ma and Zarowski [4] in terms of the minimal eigenvaludiat-i.  since R, is Hermitian positive-definite); < 7; < \.. For conve-

nience, first we consider the case
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