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controllers can be obtained to attenuate external perturbations which
are bounded to a ball and have a uniform distribution. Similar results
are expected in robust control, maximum likelihood parameter estima-
tion, etc.
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Stability Analysis and Bang–Bang Sliding Control of a
Class of Single-Input Bilinear Systems

Yon-Ping Chen, Jeang-Lin Chang, and Kuo-Ming Lai

Abstract—This paper introduces a novel bang–bang sliding control of a
class of single-input bilinear systems. The sliding function is chosen via the
well-known pole-assignment method for linear time-invariant systems. Im-
portantly, the bang–bang sliding control generates a reaching-and-sliding
region and a stable-sliding region, each expressed by a set of linear inequal-
ities. Both regions comprise the equilibrium point, shown to be asymptoti-
cally stable. However, the stability analysis is processed under the limitation
that the system state should be initially located in the reaching-and-sliding
region. Two numeric examples are used for demonstration.

Index Terms—Bang–bang sliding control, bilinear systems, stability
analysis.

I. INTRODUCTION

In general, bilinear systems are expressed by a state differential equa-
tion, which is linear in control and linear in state but not jointly linear
in state and control. Bilinear systems have been found in diverse pro-
cesses and fields (see [1] and [2] for an excellent introduction) and
many control strategies have developed, such as the quadratic feed-
back control [3], [4] and the sliding-mode control [5], [6]. Here, we
will focus on a class of “bang–bang” single-input bilinear systems with
controller designed by the sliding-mode theory [7], [8]. Note that the
term “bang–bang” means the single input only switches between two
fixed values.

Further assume the bilinear system is time invariant and controllable
while the multiplicative terms of the single input and state variables
are omitted, i.e., the bilinear system can be treated as a linear time-in-
variant (LTI) system by neglecting all these multiplicative terms. Based
on this LTI system, a novel design technique of sliding function, called
the pole-assignment-based method, is presented by directly using the
prevailing pole-assignment method [9]. Actually, there are many other
techniques for the sliding function design, such as the eigenstructure-
assignment method [10] and the Lyapunov-based method [11]. For an
LTI system, the Lyapunov-based method is simple and quite straight-
forward to derive a sliding function, but it is not suitable for a bilinear
system due to the fact that the existing multiplicative terms still dis-
turb the system behavior and thus, complicate the process of stability
analysis. As for the eigenstructure-assignment method, its main idea is
to generate a desired eigenstructure of the sliding mode, just like the
pole-assignment-based method introduced in this paper. Therefore, the
eigenstructure-assignment method can be also found useful for a bi-
linear system; however, it is often difficult to achieve an appropriate
eigenstructure via the eigenstructure-assignment method. The pole-as-
signment-based method is then proposed to make it easier to determine
the eigenstructure of the sliding mode. In addition, with the help of
well-developed tools such as The MATLAB software, the process of
the sliding function design is highly simplified in this method.

Since the bang–bang control only can switch between two finite
values, the system should be finally restricted to a bounded area. In
fact, this area relates to two important regions, called the reaching-and-
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sliding (RAS) region and the stable-sliding (SS) region. Each region is
formulated by a set of linear inequalities. When a system is initially
located in the RAS-region, its trajectory will reach the SS-region and
then move toward the origin.

In Section II, the bang–bang sliding control is introduced. Also dis-
cussed is the stabilizability to the origin by means of reachability con-
ditions to sliding mode and stability on the designed manifold. Sec-
tion III uses two numeric examples of second-order bilinear systems to
demonstrate the bang–bang sliding control in simulations [12]. Finally,
concluding remarks are given in Section IV.

II. DESIGN OFBANG–BANG SLIDING CONTROL AND STABILITY

ANALYSIS

General bilinear systems are mathematically expressed by

_x = Ax +Bu+

m

k=1

Nkxuk (1)

wherex = [x1 x2 � � � xn]
T is the state,u = [u1 u2 � � � um]T

is the control, andA(2 Rn�n),B(2 Rn�m),Nk(2 Rn�n) are the
system matrices. This paper will focus on the case of single input, de-
scribed by

_x = Ax + bu+Nxu (2)

whereb 2 Rn andu 2 f1;�1g. Note thatu switches between 1
and�1 depending on a switching condition concerning the system
statex. Besides, the system is assumed controllable whenNxu is ne-
glected. Hence, a gain vectork(2 Rn) can be uniquely obtained from
the pole-assignment method by assigningn eigenvalues toA� bkT .
The objective is to design a sliding controller for the single-input bi-
linear system (2).

Now, let us introduce the pole-assignment-based method to design
the sliding function. First, then eigenvalues�i, i = 1; 2; � � � ; n, of
A � bkT are selected to satisfy:

C1) All the eigenvalues are real and negative, i.e.,�i < 0, i =
1; 2; � � � ; n;

C2) All the eigenvalues are distinct, i.e.,�i 6= �j for i 6= j;
C3) Thenth eigenvalue�n is not in the spectrum ofA.

Based on these conditions, we have

(A� bkT ) [Wn�1 wn] = [Wn�1 wn]
�n�1 0

0T �n
(3)

where

�n�1 = diag[�1 � � � �n�1]; Wn�1 = [w1 � � � wn�1]

and wi is the ith right-eigenvector corresponding to�i, for
i = 1; 2; � � � ; n. Let

VT
n�1

vTn
= [Wn�1 wn]

�1 and Vn�1 = [v1 � � � vn�1]

then (3) becomes

VT
n�1

vTn
(A� bkT ) =

�n�1 0

0T �n

VT
n�1

vTn
(4)

wherevTi is theith left-eigenvector. Rearranging the second row of (4)
leads to

v
T
n (A� �nIn) = v

T
nb k

T (5)

whereIn is then�n identity matrix. From C3),A��nIn is nonsin-
gular and thus,vTnb 6= 0. It results in

v
T
nb

�1

v
T
n = k

T (A� �nIn)
�1
: (6)

Let the sliding function be chosen as

s = c
T
x = k

T (A� �nIn)
�1
x (7)

i.e.,cT = kT (A� �nIn)
�1, which also results in

c
T
A = �nc

T + kT : (8)

From (6) we havecTb = 1. Then the derivative ofs with respect to
time becomes

_s = �ns+ k
T
x + 1 + cTNx u: (9)

It is reasonable to assume1 + cTNx > 0 for the system statex near
the origin. Let the control bang–bang switch between 1 and�1 as

u = �sgn(s) (10)

then

s _s = �ns
2 � jsj 1 + cTNx 1� sgn(s)

kTx

1 + cTNx
: (11)

It is evident that if

1 + cTNx > k
T
x (12)

then s _s < 0 for s 6= 0, i.e., the reaching and sliding condition is
guaranteed [7]. In other words, the system satisfying (12) is able to
reach and slide along the sliding mode. For convenience, we call (12)
the reaching-and-sliding region or RAS-region in brief. It is equivalent
to 1 + cTNx > kTx > �(1 + cTNx) or

RAS-region:
1 + cTN� kT x > 0

1 + cTN+ kT x > 0:
(13)

Intuitively, there exists a subregionkxk � � bounded by (13). The
maximal value of� is defined as the RAS-index, expressed by

�1 = min
1

kcTN+ kT k
;

1

kcTN� kT k
: (14)

A larger�I implies a larger RAS-region. Later it will be found that a
larger�I is accompanied with a slower convergence rate to the origin.
Clearly, the design of sliding function is a compromise between the
RAS-index and the system convergence rate.

Actually, the RAS-region only ensures the reaching and sliding be-
havior. For the system stability, a subregion in (13) subject tos = 0
should be further decided, which is called the stable-sliding region or
SS-region in brief. To effectively describe the sliding motions = 0, let
us define

yn�1

yn
=

�n�1 0

0T �n

VT
n�1

vTn
x: (15)

From (6) and (7), ifs = 0 thenvTnx = 0, i.e., yn = 0. Therefore,
rearranging (15) yields

x = [Wn�1 wn]
�
�1

n�1 0

0T ��1n

yn�1

yn

=Wn�1�
�1

n�1yn�1: (16)

Clearly,yn�1 = 0 leads tox = 0 for s = 0. A candidate of Lyapunov
function is then given as for s=0

L = 1

2
y
T
n�1yn�1 for s = 0: (17)
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From (2), (4), and (15), its derivative with respect to time becomes

_L = y
T

n�1�n�1V
T

n�1(Ax + bueq +Nxueq)

= y
T

n�1�n�1V
T

n�1((A� bkT )x+ bkTx+ bueq +Nxueq)

= y
T

n�1�n�1yn�1 + y
T

n�1�n�1V
T

n�1(bk
T

x
+ bueq +Nxueq):

(18)

Note that based on the concept of equivalent control [7], the bang–bang
input u has been replaced by the continuous equivalent controlueq,
expressed by

ueq = �
kTx

1 + cTNx
(19)

which is derived from (9) by lettings = 0 and _s = 0. From (16) and
(19), we have

k
T
x = � 1 + cTNWn�1�

�1
n�1yn�1 ueq (20)

and then (18) is changed into

_L = y
T

n�1�n�1yn�1 � y
T

n�1Hyn�1
kTx

1 + cTNx
(21)

where

H = �n�1V
T

n�1(In � bc
T )NWn�1�

�1
n�1:

If _L < 0, then (17) is really a Lyapunov function, which means the
system ins = 0 performs a stable sliding motion converging to the
origin. Hence, the SS-region is defined as

SS-region:

(1 + cTNx)yTn�1�n�1yn�1 � (kTx)yTn�1Hyn�1 < 0 (22)

where the truth of1 + cTNx > 0 is adopted. Interestingly, ifN =
bdT thenH = 0 for arbitraryd. In this case, the SS-region is not
needed to be considered since from C1)yTn�1�n�1yn�1 < 0. Only
the RAS-region (13) is required.

For a second-order bilinear system, (22) is reduced to

SS-region forn = 2: 1 + c
T
N�

h

�1
k
T

x > 0 (23)

whereh = vT1 (I2 � bc
T )Nw1. While for a higher order system, the

expression becomes

1 + cTNx y
T

n�1�n�1yn�1 � k
T
x y

T

n�1Hyn�1

< � j�jmin 1 + cTNx � k
T
x kHk kyn�1k

2 (24)

where j�jmin = minf j�1j; j�2j; � � � ; j�n�1jg. Obviously, if
j�jmin(1 + cTNx) > jkTxj kHk then _L < 0. Thus, the SS-region
can be further restricted toj�jmin(1 + cTNx) > jkTxj kHk. It is
equivalent to

SS-region forn � 3:

1 + cTN�
kHk

j�jmin

kT x > 0

1 + cTN+
kHk

j�jmin

kT x > 0:

(25)

Significantly, the RAS-region (13) and the SS-region (23) forn = 2
and (25) forn � 3 are all in the form of linear inequalities. This indeed
simplifies the stability analysis. Most significantly, the neighborhood

near the origin satisfies all these inequalities; in other words, the origin
is an asymptotically stable equilibrium point. Before getting into the
numeric examples, a property concerning the convergence rate to the
origin durings = 0 should be emphasized here. From (17), (21), and
(24), we have

d

dt
kyn�1k

2
< �2 j�jmin �

jkTxj

1 + cTNx
kHk kyn�1k

2
:

(26)

Clearly, if s = 0 then j�jmin = minf j�1j; j�2j; � � � ; j�n�1j g is re-
lated to the convergence rate ofkyn�1k

2, or the convergence rate to
the originx = 0. It is easy to conclude that the largerj�jmin, the faster
the convergence rate.

Besides, one limitation related to the system initial condition should
be addressed here: The initial system statex(0) has to be located within
the RAS-region. In practice, it is difficult to locate the initial system
statex(0) precisely. In case thatx(0) is not in the RAS-region, it is
required to use other control algorithms to drive the system into the
RAS-region first. For example, a conventional linear state-feedback
control with high gain may be adopted to control a system of (1) pos-
sessing smallNk. In the next section, to appropriately demonstrate the
bang–bang sliding control, the system state is assumed to be initially
located in the RAS-region, as mentioned.

III. N UMERIC EXAMPLES OFSECOND-ORDERBILINEAR SYSTEMS

Consider the following second-order bilinear systems, governed by:

_x = Ax + bu+Nxu (27)

wherex = [x1 x2]
T , u 2 f1;�1g and the system matrices

A =
a11 a12

a21 a22
; b =

b1

b2
; N =

n11 n12

n21 n22
:

There are two numeric examples discussed. The first one adopts
the work of Longchamp [12] to control the continuously stirred
tank reactor with a first-order irreversible exothermic reaction under
nonisothermal conditions. In this example, the conditionN = bdT

is satisfied, so only the RAS-region is required. Further, in order to
demonstrate the case ofN 6= bdT , the second example is introduced
by directly modifying theN matrix in the first example.

Based on the conditions C1)–C3) the gain vectorkT = [k1 k2] is
obtained by assigning eigenvalues�1 and�2 forA�bkT . Note that�1
is related to the convergence rate to the origin during the sliding mode
s = 0, as shown in (26). The sliding function is then determined bys =
cTx with cT = kT (A � �2I2)

�1 = [c1 c2]. Now, the RAS-region
(13) becomes

1 + (c1n11c2n21 � k1)x1 + (c1n12c2n22 � k2)x2 > 0

1 + (c1n11c2n21 + k1)x1 + (c1n12c2n22 + k2)x2 > 0 (28)

and the SS-region (23) is rewritten as

1 + c1n11 + c2n21 �
hk1

�1
x1

+ c1n12 + c2n22 �
hk2

�1
x2 > 0 (29)

whereh = vT1 (I2 � bcT )Nw1. Here,vT1 andw1 are the left- and
right eigenvectors corresponding to�1. Note that the RAS-region (28)
applies to both examples, while the SS-region (29) is only used for the
second example becauseN 6= bdT . Finally, as mentioned before, the
origin x = 0 is asymptotically stable.
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TABLE I
RAS-INDEX OF EXAMPLE 1

Fig. 1. RAS-region (shadowed) of Example 1.

Example-1: Consider the continuously stirred tank reactor with a
first-order irreversible exothermic reaction under nonisothermal con-
ditions, expressed as (27) with

A =
4:25 1

�6:25 �2
; b =

�0:25

0
; N =

�1 0

0 0
: (30)

The spectrum ofA is f3;�0:75g andN = bd
T with dT = [4 0].

Hence, only the RAS-region (27) is needed for the stability analysis.
Let�2 = �0:7, which is not in the spectrum ofA, and the convergence
rate�1 range from�0.1 to�3.0. Table I lists the RAS-index�I and
shows that a faster convergence rate results in a smaller�I . The case
of �1 = �1:0 and�2 = �0:7 are selected for demonstration and then
the feedback gain is obtained askT = [�15:8 �3:168]. Therefore, the
sliding function in (7) is set ass = �4x1 � 0:64x2. Fig. 1 depicts the
RAS-region in the phase plane with�1 = 0:0499. Let the system be
initially located atxT (0) = [0:05 0:05] in the RAS-region. Then the
system trajectory shown in Fig. 2 is driven tos = 0 and performs the
sliding motion. The state variablesx1 andx2 are given in Fig. 3. After
reaching the sliding mode at timetr = 0:31 s, these two state variables
converge to the originx = 0 with a convergence rate�1 = �1:0, not
affected byN. It can be seen from (26) withH = 0 sinceN = bd

T .
Obviously, the origin is asymptotically stable.

For comparison, the stability region in the work of Longchamp [12]
is found aboutkxk � 0:045 in the similar sense of RAS-index. It is
approximate to the regionkxk � �I as given in Table I. However, the
stability analysis introduced in this paper is simpler due to the fact that
only linear inequalities are processed.

Fig. 2. The system trajectory in the phase plane of Example 1.

Fig. 3. The state variables of Example 1.

TABLE II
RAS-INDEX OF EXAMPLE 2

Example 2: To demonstrate the bang–bang sliding controller is still
useful for the case ofN 6= bd

T , this example employs the same model
in (30) except that

N =
�1 1

0 1
:

Clearly,N 6= bd
T and the SS-region (29) should be included for

the stability analysis. The eigenvalue�2 is also set as�0.7, not in
the spectrum ofA, and the eigenvalue�1 ranges from�0.1 to�3.0.
Table II lists the RAS-index and shows that a faster convergence rate
results in a smaller RAS-index. Let�1 = �1:0 and�2 = �0:7, then
k
T = [�15:8 �3:168] ands = �4x1� 0:64x2, same as those in the

Example 1. Fig. 4 illustrates the RAS-region and the SS-region in the
phase plane. Figs. 5 and 6 are obtained by setting the initial condition
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Fig. 4. RAS-region (shadowed) and SS-region (bold line) of example 2.

Fig. 5. The system trajectory in the phase plane of example 2.

asxT (0) = [0:05 0:05], which is located in the RAS-region. From
Fig. 5, the system trajectory is first steered tos = 0 and then restricted
in the sliding mode. Fig. 6 shows the success of controllingx1 andx2
to the originx = 0. The state variablesx1 andx2 are given in Fig. 6.
After reaching the sliding mode at timetr = 0:32 s, these two state
variables converge to the originx = 0 with convergence rates affected
by �1 = �1:0 andH 6= 0 sinceN 6= bd

T . It is evident the origin is
asymptotically stable.

Note that the success of the bang–bang sliding controller is
demonstrated from the above simulation results. Most importantly, it
is quite straightforward to design the sliding function by the pole-as-
signment-based method. Besides, it is simple to analyze the system
stability from the RAS-region and the SS-region, each expressed by
a set of linear inequalities.

IV. CONCLUSIONS

A new design approach for bang–bang sliding control of a class of
single-input bilinear systems is introduced. The sliding function is de-
termined by the pole-assignment-based method. Three conditions are
required to choose the eigenvalues, which are related to the system

Fig. 6. The state variables of example 2.

stability and the convergence rate in the sliding mode. The origin is
found to be asymptotically stable. The stability region depends on the
RAS-region and the SS-region, each expressed by a set of linear in-
equalities. Besides, an RAS-index is produced to show whether the
RAS-region is reasonable or not. It is noticed that the sliding func-
tion design is a compromise of the RAS-index and the convergence
rate to the origin. Finally, simulation results of two second-order bi-
linear systems are adopted for demonstration. Investigations to extend
the approach to multi-input bilinear systems are in progress.
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