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Abstract. Three parallel space-decomposition minimization (PSDM) algorithms, based on the parallel variable
transformation (PVT) and the parallel gradient distribution (PGD) algorithms (O.L. Mangasarian, SIMA Journal
on Control and Optimization, vol. 33, no. 6, pp. 1916–1925.), are presented for solving convex or nonconvex
unconstrained minimization problems. The PSDM algorithms decompose the variable space into subspaces and
distribute these decomposed subproblems among parallel processors. It is shown that if all decomposed subprob-
lems are uncoupled of each other, they can be solved independently. Otherwise, the parallel algorithms presented
in this paper can be used. Numerical experiments show that these parallel algorithms can save processor time, par-
ticularly for medium and large-scale problems. Up to six parallel processors are connected by Ethernet networks
to solve four large-scale minimization problems. The results are compared with those obtained by using sequential
algorithms run on a single processor. An application of the PSDM algorithms to the training of multilayer Adaptive
Linear Neurons (Madaline) and a new parallel architecture for such parallel training are also presented.

Keywords: unconstrained minimization, parallel algorithm, parallel training, synchronous algorithm, asyn-
chronous algorithm, decomposition method

1. Introduction

The purpose of this paper is to discuss three parallel algorithms including synchronous, se-
quential, and asynchronous parallel space-decomposition minimization (PSDM) algorithms
for solving the unconstrained minimization problem

min
x∈<n

f (x), (1)

where f :<n→< is a lower bounded and continuously differentiable function. The PSDM
algorithms are based on the parallel variable transformation (PVT) algorithm [10] and the
parallel gradient distribution (PGD) algorithm [16]. The basic ideas behind these parallel
algorithms are the decomposition of the variable spaceS ∈ <n into q decomposed sub-
spaces. If all of theseq decomposed subproblems are not coupled from each other, these
subproblems can be distributed amongq parallel processors and solved independently. The
final minimum solution can be obtained by directly combining theq minimum solutions.
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However, if any two subproblems are coupled to each other, the iterative parallel algorithms
discussed in this paper can be used instead.

Several decomposition methods for decomposing the minimization problem (1) into
subproblems have been proposed. Bouaricha and Mor´e [2] decomposed the minimization
problem (1) intof (x) =∑N

i=1 fi (x), wherex ∈ <n, f (x) is a partially separable function,
and fi (x) depends only on a few components ofx. Kibardin [13] also decomposed the
minimization problem (1) intof (x) = ∑N

i=1 fi (x), wherex ∈ <n, and fi (x) are con-
vex functions. Mouallif, Nguyen and Strodiot [18], Fukushima et al. [9] decomposed the
minimization problem (1) intof (x) = f0(x)+

∑N
i=1 fi (x), wherex ∈ <n, f0 is a differen-

tiable, strongly convex function with modulusα, and fi (x) :<n→<∪{+∞}, are closed
proper convex functions. In these studies, the original minimization problem (1) could be
decomposed into subproblems that can be minimized on parallel processors. However, if
minimization problem (1) cannot be decomposed into uncoupled minimization subprob-
lems, it cannot be solved independently among parallel processors and some other parallel
algorithms should be used.

Recently, Ferris and Mangasarian [7] proposed a parallel variable distribution (PVD)
algorithm, which distributes theq blocks x1, . . . , xq of variablex amongq processors,
wherexi ∈ <ni and

∑q
i=1 ni = n. Mangasarian [16] also introduced the parallel gradient

distribution (PGD) algorithm for assigning a portion of gradient∇ f (x) to q processors, in
which the minimization problem inn-dimensional real spaceSwas also decomposed intoq
ni -dimensional subproblems, where

∑q
i=1 ni = n, and all subproblems can be minimized by

using various convergent algorithms. Solodov [22] further extended the PVD algorithm to a
more flexible inexact PVD algorithm, in which the exact global solutions of all subproblems
were replaced by inexact solutions.

More recently, Fukushima [10] proposed a more general framework that was called paral-
lel variable transformation (PVT) algorithm. In this algorithm, the variables are transformed
into spaces of smaller dimension, which altogether span the space of the original variables.
At each iteration of the PVT algorithm, the multiple candidate solutions can be computed
by solving the subproblems on the transformed spaces in the parallelization phase. That is,
the approximate solutiony(k)i ∈ <mi to the minimization subproblem defined below can be
obtained among parallel processors.

min
yi∈<mi

ϕ
(k)
i (yi ) ≡ f

(
A(k)i yi + x(k)

)
, (2)

where
∑q

i=1 mi ≥ n andA(k)i is ann×mi matrix. Then, the the synchronization phase will
generate the next iterate from the candidate solutions obtained in the parallelization phase.
That is, find an approximate solutionz(k) ∈ <q+1 to the minimization problem

min
z∈<q+1

9(k)(z) ≡ f
(
B(k)z

)
, (3)

wherex(k+1) = B(k)z(k) andB(k) is ann× (q + 1) matrix with its columns beingx(k) and
A(k)i y(k)i , i = 1, . . . ,q. Fukushima [10] also showed that the PVD and PGD algorithms
can be a special case of the general PVT framework. Furthermore, the PVT framework can
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also be a natural extension of the block Jacobi method with a possible overlap of variables
among subproblems.

In this paper, three parallel space-decomposition minimization (PSDM) algorithms,
which are based on the PGD algorithm and the decomposition methods, are discussed.
The PSDM algorithms are also special cases of the PVT algorithm by settingmi = ni and
Ai = [0, . . . ,0, Ini , 0, . . . ,0]T ∈ <n×ni , where theni × ni identity matrix Ini appears in
the position corresponding to the decomposed subvector. In these PSDM algorithms, the
variable spaceS is decomposed into subspaces and the minimization problem (1) is also
decomposed into subproblems for the corresponding subspace. It was shown that any con-
vergent algorithm that satisfies some specified descent conditions can be applied to solve the
decomposed subproblems among parallel processors [10, 16]. These parallel algorithms
are experimented on four large scale problems. The speedups and the efficiency of the
three parallel algorithms are compared with variant numbers of processors. In addition, the
parallel training of multilayer Adaptive Linear Neurons (Madaline) [23] and its application
to recognition problems are also presented to demonstrate the application of the PSDM
algorithms.

Asynchronous algorithms that can run efficiently on parallel processors without stopping
and waiting for data communication have been proposed by Fischer and Ritter [8], and
Conforti and Musmanno [5, 6]. It has been shown that the parallel asynchronous algorithms
can significantly speed up the sequential algorithms run on a single processor. Therefore,
the asynchronous communication mechanism for the PSDM algorithm will be extended
discussed in this paper.

This paper is organized as follows. In Section 2, a brief introduction to the SDM algorithm
run on a single processor is given. The three parallel algorithm including synchronous,
sequential, and asynchronous algorithms are given in Sections 3, 4, and 5, respectively.
Numerical experiment results and discussion are given in Section 6, and an application of
the PSDM algorithms to the parallel training of Madaline networks is given in Section 7.
All experimented problems are listed in the appendix. The notation and terminology used
in this paper are described below.

S ∈ <n denotesn-dimensional Euclidean variable space with ordinary inner product
and associated two-norm‖·‖. Italic characters denoting variables and vectors. For a real-
value matrixA of any dimension,AT denotes its transpose. For a differentiable function
f :<n → <, ∇ f denotes then-dimensional vector of partial derivatives with respect to
x, and∇ fSi (xSi ) denotes theni -dimensional vector of partial derivatives with respective
to xSi ∈ <ni . For simplicity of notation, changes in the ordering of variables are allowed
throughout this paper. Therefore, the variable vectorx ∈ Scan be decomposed into subvec-
tors. That is,x= [xS1, . . . , xSq ], wherexSi , i = 1, . . . ,q are subvector or sub-component
of x.

2. Space-decomposition minimization algorithm

The space-decomposition minimization (SDM) algorithm [14] is a sequential algorithm
that can solve minimization problems (1). Although this algorithm was developed for a
single processor, it is very suitable for parallel processing with minor modifications that



88 LIU AND TSENG

will be discussed in next few sections. Prior to describing these parallel algorithms, the se-
quential SDM algorithm, which is based on the non-overlapping subspace set and subspace
minimization function, is interpreted below.

Definition 2.1(non-overlapping subspace set). The original variable spaceS is spanned
by {x | x ∈ <n}. If the variablex is decomposed intox = [xS1, . . . , xSq ], then the subspace
Si , spanned by the subvector{xSi | xSi ∈ <ni , and

∑q
i=1 ni = n}, forms a non-overlapping

subspace set{S1, . . . , Sq}. That is,
⋃q

i=1 Si = S, andSi ∩ Sj = ∅ if i 6= j .

From the Definition 2.1, the minimization function (1) can be decomposed as

f (x) = fSi

(
xSi , xSi

)+ fSi

(
xSi

)
, (4)

wherexSi
is the complement vector ofxSi , fSi (xSi , xSi

) is the subspace minimization function
in the subspaceSi and fSi

(xSi
) is the complement subspace minimization function.

Corollary 2.2. From (4), fSi
(xSi

) is only a function of xSi
. Therefore, it can be removed

from the minimization subproblem if xSi
is invariant in the subspace Si .

Corollary 2.2 can be efficiently applied to some simple problems that can be decomposed
into

f (x) =
q∑

i=1

fSi

(
xSi

)
, (5)

where{S1, . . . , Sq} is a non-overlapping subspace set. Therefore, the minimization prob-
lem (1) can be decomposed intoq uncoupled subproblems that can be solved independently
and a lot of processor time and memory resources can be saved. In Section 7, it will be
demonstrated that the training of multilayer Adaptive Linear Neurons (Madaline) can be
decomposed into uncoupled subproblems. However, most minimization problems cannot
be decomposed into uncoupled subproblems, so iterative algorithms must be used. The
iterative space-decomposition minimization (SDM) algorithm is described below and will
be extended to parallel algorithms in the following sections.

Algorithm 2.3. (space-decomposition minimization (SDM) algorithm)

Step 1. Decompose the variable space into a non-overlapping subspace set{S1, . . . , Sq}
and derive the subspace minimization functionsfSi (xSi , xSi

), for i = 1 · · ·q.
Step 2. Choose the starting pointx1, wherex1 = [x1

S1
, . . . , x1

Sq
] and setk = 1.

Step 3. Fori = 1 toq, solve one or more steps of the minimization subproblemsfSi (x
(k)
Si
, xSi

)

using any convergent descent algorithm.
Step 4. Apply convergence criterion, such as‖∇ fSi (xSi )‖ ≤ ε, to all subspaces. If the

convergence criterion is satisfied for all subspaces, the minimum solution has been
found asx∗ = [x∗S1

, . . . , x∗Sq
]; otherwise, setk = k+ 1 and go to Step 3.
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Figure 1. Decomposing the iterations of SDM algorithm into sub-iterations and distributing them among parallel
processors.

3. Synchronous PSDM algorithm

Minimization problem (5) presented in the preceding section shows that if a minimization
problem can be decomposed intoq uncoupled subproblems, they can be distributed amongq
processors and run independently without any data communication; otherwise, the iterative
algorithms must be employed. As shown in figure 1, every iteration of the SDM algorithm
can be divided intoq sub-iterations that can be distributed amongq processors. Only
the coupled variables are communicated to other processors and the running sequence is
exactly alike to that of SDM algorithm. Although this approach doesn’t benefit from parallel
computing, it does present the concept of running the SDM algorithm on parallel processors.
Using this concept, the synchronous PSDM algorithm is presented below.

Algorithm 3.1. (synchronous PSDM algorithm)

Step 1. Decompose the variable spaceS into a non-overlapping subspace set{S1, . . . , Sq}
and derive theq subspace minimization functionsfSi (xSi , xSi

)which are distributed
amongq parallel processors.

Step 2. Initialize theq processors’ starting pointsx1
Si
, i = 1 · · ·q, and setk = 1.

Step 3. Simultaneously update all variablex(k)Si
on all q processors using the convergent

algorithms, such as the conjugate gradient method, that satisfies

−∇ fSi

(
x(k)Si

, xSi

)T
d(k)Si
≥ σ1

(∥∥∇ fSi

(
x(k)Si

, xSi

)∥∥) ≥ 0, (6)

and

fSi

(
x(k)Si

, xSi

)− fSi

(
x(k+1)

Si
, xSi

) ≥ σ2
(−∇ fSi

(
x(k)Si

, xSi

)T
d(k)Si

) ≥ 0, (7)

whereσ1(·), σ2(·) are forcing functions [10, 16], andd(k)Si
is the search direction in

the subspaceSi .
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Figure 2. Synchronous communication of coupled variables among processors.

Step 4. Simultaneously communicate coupled variables among theq parallel processors as
shown in figure 2. Then set

x(k+1)
Si
= x(k)Si

+ v(k)i α
(k)
i d(k)Si

(8)

for all q processors, whereα(k)i is the step size found in subspaceSi , and

q∑
i=1

v
(k)
i = 1, v

(k)
i ≥ δ > 0. (9)

Step 5. Check the convergence criterion‖∇ fSi (x
(k)
Si
)‖ ≤ ε for all subspaces. If the conver-

gence criterion is satisfied for all subspaces, the minimum solution has been found.
That is,x∗ = [x∗S1

, . . . , x∗Sq
]; otherwise, setk = k+ 1 and go to Step 3.

The processes of communicating coupled variables among parallel processors for the
synchronous PSDM algorithm are shown in figure 2. In the final stage of every iterations,
all coupled variables are communicated among parallel processors, and the next iteration
starts immediately after any one processor has obtained the required data. Although the
Algorithm 3.1 was derived for convex minimization problems, it can be extended to non-
convex minimization problems by taking the best solution or some better solution from the
solutions of theq decomposed subproblems [10, 16].

In the PSDM algorithm, the dimension of any decomposed subspace can be varied dy-
namically during running. That is, if thej th processor occasionally becomes busy, some
variables inSj can be redistributed among the other processors during running, thus pre-
venting suspension of the entire algorithm due to some processors occasionally become
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busy on other tasks. In addition, any local variable on any processor can be updated as
many times as possible before allq processors are ready to run Step 4 of Algorithm 3.1.

Although the synchronous PSDM algorithm benefits from the parallel processing, nu-
merical experiments show that some processors may be idle due to the synchronization
overhead for the communication of coupled variables among processors. In addition, the
strong convex combinations (9) are too conservative [1], and some calculation results may
be made obsolete for nonconvex problems, which can decrease the overall efficiency of the
parallel algorithm. To eliminate these disadvantages and extend it to more general mini-
mization problems, the sequential PSDM algorithm was devised.

4. Sequential PSDM algorithm

As shown in figure 1, any iteration of the SDM algorithm run on a single processor can
be divided intoq sub-iterations that can be distributed amongq parallel processors. This
approach presents the concept of parallel processing. If only part of variables are coupled to
other subproblems, the coupled variables can be updated first. Then, the other variables are
updated. Meanwhile, the coupled variables are communicated to the next processor. There-
fore, any iteration of the SDM algorithm can be divided intoq sub-iterations, which can
then be distributed toq parallel processors and run concurrently. As shown in figure 3(A),
the original iteration of SDM algorithm is divided into 4 sub-iterations and distributed to
4 processors. It also shows that the next processor is triggered to run immediately after
the coupled variables have been updated in the previous processor, and the processor is
continuing to update uncoupled variables without waiting. This approach can get more
benefits of parallel processing and is presented in the following algorithm.

Algorithm 4.1. (sequential PSDM algorithm)

Step 1-2. are the same as those in the parallel synchronous Algorithm 3.1.
Step 3. The first processor starts updating all coupled variables, then triggers Step 4 to

run. Meanwhile, the coupled variables are communicated to the next processor
and triggering that processor to update the coupled variables, and so on, until the
last processor has been triggered to run.

Step 4. Update uncoupled variables immediately after coupled variables have been up-
dated in Step 3 for all parallel processors.

Step 5. After the last processor has updated all variables, check the convergence criterion
‖∇ fSi (x

(k)
Si
)‖ ≤ ε for all decomposed subspaces. If convergent criterion has been

satisfied for all decomposed subspaces, the minimum solution has been found.
That is,x∗ = [x∗S1

, . . . , x∗Sq
]; otherwise, setk = k + 1, communicating coupled

variables to the first processor and go to Step 3.

The running sequences of the sequential PSDM algorithm are alike to that of SDM
algorithm except that they are distributed amongq parallel processors. Therefore, all
convergence conditions are the same as those for the SDM algorithm. As shown in figure 3(A)
and (B), the sequential PSDM algorithm can get more benefits of parallel processing if the
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Figure 3. Sequential communication of coupled variables among processors with (A) maximum number of
processors without resulting idle time, (B) less processors, (C) too many processors that will result in idle time of
processors.
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Figure 4. Asynchronous communication of coupled variables among processors.

minimization problem is decomposed into subproblems, which are distributed to a proper
number of processors. However, too many processors may result in some processors being
idle as shown in figure 3(C), and the overall efficiency of the sequential PSDM algorithm
will decrease. To reduce idle processor time, the following methods can be used.

1. Trigger the first processor to run the next iteration as soon as possible. For example,
if processor 1 is not coupled to the variables of processor 5, then processor 1 can be
triggered to run the next iteration as soon as processor 4 has finished updating the coupled
variable.

2. Increase the iterative times for all processors. That is, update the local variables for all
processors more than once before triggering the next processor to run.

3. Run all processors simultaneously and communicate coupled variables asynchronously,
as shown in figure 4. That is, all parallel processors can run continuously without caring
when data are communicated in or out among processors. This method can avoid idle
processor periods.

Numerical experiments show that method 3 can get the most benefit from parallel proces-
sing. However, asynchronous updating may result in oscillation of the minimization func-
tion value, which may affect the convergence characteristics of the original algorithm [4].
Therefore, additional check condition presented in the following section is required.

5. Asynchronous PSDM algorithm

In general, after appropriate initialization, the asynchronous algorithm can run on parallel
processors without waiting for other processors to communicate coupled variables. That is,
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each processor runs a local and independent algorithm using the data currently available
from other processors. The efficiency of the parallel asynchronous operation can be im-
proved since the overhead of the synchronous algorithm is significantly reduced. Therefore,
the processor resources in multiprocessor systems can be used more efficiently [4]. The
asynchronous PSDM algorithm is presented below.

Algorithm 5.1. (asynchronous PSDM algorithm)

Step 1-2. are the same as those in the synchronous PSDM Algorithm 3.1.
Step 3a. Update all variables on all processors simultaneously by using any convergent

algorithm that satisfies (6) and (7).
Step 3b. Write the most recently updated coupled variables to other processors asyn-

chronously as shown in figure 4.
Step 3c. Read the most recently updated coupled variables from other processors asyn-

chronously, then calculate

1 fSi = fSi

(
x(k)Si

, x′
Si

)− fSi

(
x(k)Si

, xSi

)
, (10)

wherex′Si
is the coupled variables read from other processors. If

1 fSi ≤ 0, (11)

then setxSi
= x′

Si
; otherwise obsoletex′

Si
and continue reading the most recently

updated data from other processors until the descent condition (11) satisfied.
Step 3d. Check the convergence criterion‖∇ fSi (x

(k)
Si
)‖ ≤ ε asynchronously for all sub-

space. If the convergence criterion has been satisfied for all subspaces, the min-
imum solution has been found. That is,x∗ = [x∗S1

, . . . , x∗Sq
]; otherwise, running

Steps 3a–3d concurrently on all parallel processors.

From (7) and (11) give that

fSi

(
x(k)Si

, xSi

) ≥ fSi

(
x(k)Si

, x′
Si

) ≥ fSi

(
x(k+1)

Si
, x′

Si

)
. (12)

Therefore, either updatingx(k)Si
or xSi

will decrease the value of subspace minimization
function fSi (x

(k)
Si
, xSi

), wherex(k)Si
is updated tox(k+1)

Si
in Step 3a of Algorithm 5.1, and

xSi
is updated tox′

Si
in Step 3c of Algorithm 5.1. That is, the sequence{ fSi (x

(k)
Si
, xSi

)} is a
non-increasing sequence for eitherx(k)Si

or xSi
updated. Therefore, the convergence of the

Algorithm 5.1 can follow the analysis of the Refs. [10, 16].
In Algorithm 5.1, Steps 3a–3d are executed concurrently on all processors. All variables

in all subspaces are continuously updated without waiting, and coupled variables are read
from or written to other processors asynchronously. As described in the preceding section,
asynchronous communication of coupled variables can avoid idle periods of processors.
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6. Numerical experiment results and discussion

To demonstrate these parallel algorithms, four large-scale test problems [17] with the num-
ber of variables varying from 100 to 10000 were experimented with Algorithms 3.1, 4.1
and 5.1. Processor times for the SDM algorithm run on a single processor are shown in
Table 1. Numerical results for the synchronous, sequential, and asynchronous PSDM algo-
rithms with variant numbers of parallel processors are shown in Tables 1–3. In these tables,
all processor times were measured in seconds and the notation used in the tables is defined
below:

NV := number of variables;
T1 := processor time for the SDM algorithm run on a single processor;
Tn := processor time for the synchronous, sequential, and asynchronous PSDM algorithm

with n processors;

Table 1. Numerical results for the SDM and PSDM algorithm with 1 and 2 processors.

T2 (sec.) Speedup/Efficiency (%)

Synchronous Sequential Asynchronous Synchronous Sequential Asynchronous
Problem NV T1 (sec.) PSDM PSDM PSDM PSDM PSDM PSDM

#1 100 1.572 1.853 1.962 1.282 0.848/42.42 0.801/40.06 1.226/61.31

500 6.429 3.696 3.435 3.435 1.739/86.97 1.872/93.58 1.872/93.58

1000 12.689 6.810 6.809 6.829 1.863/93.16 1.864/93.18 1.858/92.91

5000 65.093 35.100 35.080 35.291 1.855/92.73 1.856/92.78 1.844/92.22

10000 133.685 69.230 69.210 69.260 1.931/96.55 1.932/96.58 1.930/96.51

#2 100 0.220 2.393 2.113 1.412 0.092/4.60 0.104/5.21 0.156/7.79

500 4.787 6.649 6.018 4.166 0.720/36.00 0.795/39.77 1.149/57.45

1000 15.472 10.014 9.854 7.411 1.545/77.25 1.570/78.51 2.088/104.39

5000 115.280 93.354 93.895 91.282 1.235/61.74 1.228/61.39 1.263/63.15

10000 401.107 325.398 324.666 321.632 1.233/61.63 1.235/61.77 1.247/62.36

#3 100 3.545 5.778 5.819 3.655 0.614/30.68 0.609/30.46 0.970/48.50

500 25.587 18.056 17.325 15.092 1.417/70.86 1.477/73.84 1.695/84.77

1000 54.768 32.407 32.487 30.895 1.690/84.50 1.686/84.29 1.773/88.64

5000 293.241 156.945 157.457 154.623 1.868/93.42 1.862/93.12 1.896/94.83

10000 597.890 314.823 315.944 312.489 1.899/94.96 1.892/94.62 1.913/95.67

#4 100 0.251 0.621 0.601 0.461 0.404/20.21 0.418/20.88 0.544/27.22

500 1.372 1.272 1.302 1.052 1.079/53.93 1.054/52.69 1.304/65.21

1000 2.894 2.063 1.893 1.743 1.403/70.14 1.529/76.44 1.660/83.02

5000 15.222 7.921 7.942 7.631 1.922/96.09 1.917/95.83 1.995/99.74

10000 28.711 16.023 15.733 15.623 1.792/89.59 1.825/91.25 1.838/91.89
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Table 2. Numerical results for the PSDM algorithm with 4 processors.

T2 (sec.) Speedup/Efficiency (%)

Synchronous Sequential Asynchronous Synchronous Sequential Asynchronous
Problem NV PSDM PSDM PSDM PSDM PSDM PSDM

#1 100 3.155 3.505 1.522 0.498/12.456 0.449/11.213 1.033/25.821

500 3.225 3.505 2.223 1.993/49.837 1.834/45.856 2.892/72.301

1000 3.855 3.766 4.236 3.292/82.289 3.369/84.234 2.996/74.888

5000 17.075 17.305 17.525 3.812/95.305 3.762/94.038 3.714/92.857

10000 33.508 33.759 33.829 3.990/99.741 3.960/99.000 3.952/98.795

#2 100 3.886 2.233 1.732 0.057/1.415 0.099/2.463 0.127/3.176

500 8.553 4.887 3.455 0.560/13.992 0.980/24.488 1.386/34.638

1000 9.975 5.899 4.587 1.551/38.777 2.623/65.570 3.373/84.325

5000 34.389 31.916 29.943 3.352/83.806 3.612/90.300 3.850/96.250

10000 113.423 110.509 110.970 3.536/88.410 3.630/90.741 3.615/90.364

#3 100 9.224 8.803 3.555 0.384/ 9.608 0.403/10.068 0.997/24.930

500 13.239 12.608 8.332 1.933/48.317 2.029/50.736 3.071/76.773

1000 20.179 21.041 15.853 2.714/67.853 2.603/65.073 3.455/86.369

5000 82.689 82.198 78.332 3.546/88.658 3.567/89.187 3.744/93.589

10000 168.712 166.820 156.755 3.544/88.596 3.584/89.601 3.814/95.354

#4 100 0.861 1.532 0.410 0.292/7.288 0.164/4.096 0.612/15.305

500 1.162 1.282 0.471 1.181/29.518 1.070/26.755 2.913/72.824

1000 1.673 1.652 0.841 1.730/43.246 1.752/43.795 3.441/86.029

5000 4.447 4.086 3.756 3.423/85.575 3.725/93.135 4.053/101.318

10000 8.532 8.232 7.601 3.365/84.127 3.488/87.193 3.777/94.432

Speedup and Efficiency defined below can be used for comparing the performance between
different algorithms [20].

Speedup≡ T1

Tn
, (13)

Efficiency≡ Speedup

Processor numbern
. (14)

The numerical results were obtained using Pentium 166 MHz machines connected by
Ethernet Networks with 10Mbps transmission speed. The MIMD (multiple instructions
multiple data) parallel computing systems with distributed memory were used and the
convergence criterion is set toε = 10−4. Figures 5–8 show the speedups for NV= 1000 and
10000 with respect to variant number of parallel processors. These figures demonstrated that
the synchronous PSDM algorithm can have good performance with two and four processors.
However, as the processor number is greater than four processors, the efficiency decreases
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Table 3. Numerical results for the PSDM algorithm with 6 processors.

T2 (sec.) Speedup/Efficiency (%)

Synchronous Sequential Asynchronous Synchronous Sequential Asynchronous
Problem NV PSDM PSDM PSDM PSDM PSDM PSDM

#1 100 3.545 3.394 1.983 0.443/7.391 0.463/7.720 0.793/13.212

500 4.086 3.856 3.866 1.573/26.224 1.667/27.788 1.663/27.716

1000 4.416 3.845 4.006 2.873/47.890 3.300/55.002 3.167/52.792

5000 20.890 11.887 11.987 3.116/51.933 5.476/91.266 5.430/90.505

10000 36.042 22.552 22.963 3.709/61.819 5.928/98.798 5.822/97.029

#2 100 4.356 3.234 1.842 0.051/0.842 0.068/1.134 0.119/1.991

500 8.593 9.143 2.143 0.557/9.285 0.524/8.726 2.234/37.230

1000 11.046 13.520 3.555 1.401/23.345 1.144/19.073 4.352/72.536

5000 33.067 26.559 20.399 3.486/58.104 4.341/72.342 5.651/94.188

10000 191.916 92.553 90.640 2.090/34.834 4.334/72.230 4.425/73.755

#3 100 11.376 14.611 3.005 0.312/5.194 0.243/4.044 1.180/19.662

500 15.042 13.139 6.049 1.701/28.351 1.947/32.457 4.230/70.499

1000 20.300 18.838 11.626 2.698/44.966 2.907/48.455 4.711/78.514

5000 101.546 60.397 55.169 2.888/48.129 4.855/80.920 5.315/88.589

10000 223.091 115.416 112.632 2.680/44.667 5.180/86.338 5.308/88.472

#4 100 1.412 1.202 1.251 0.178/2.963 0.209/3.480 0.201/3.344

500 1.773 1.032 0.460 0.774/12.897 1.329/22.158 2.983/49.710

1000 1.732 1.793 0.641 1.671/27.848 1.614/26.901 4.515/75.247

5000 5.348 3.275 2.744 2.846/47.438 4.648/77.466 5.547/92.456

10000 11.356 5.778 5.588 2.528/42.138 4.969/82.817 5.138/85.633

significantly. This is due to the synchronization overhead will become significant when
the parallel processor number increased. The synchronization overhead can be decreased
by using high speed networks, such as the 100 Mbps Ethernet Networks. However, other
cheaper method to overcome the synchronization overhead is by the asynchronous PSDM
algorithm. Figures 5–8 also shown that the asynchronous PSDM algorithm can get the
most benefit from parallel processors. The efficiency is decreased slightly as the processor
number increased. It can also be observed from these figures that the sequential PSDM
algorithm can have good performance for large scale problems (NV= 10000). However,
for the small scale problems (NV= 1000), the synchronization overhead will also become
significant when the parallel processor number increased.

For the synchronous and the sequential PSDM algorithms, the coupled variables can be
read and wrote in synchronized. Therefore, the communication processes can be easily
tracked by programming. However, the asynchronous PSDM algorithm can result access
violation due to the same memory can not be simultaneously read and wrote by more than
one processor. Therefore, the direct connection (figure 9(A)) for the datum communication
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Figure 5. Speedups of the PSDM algorithm for Problem #1.

Figure 6. Speedups of the PSDM algorithm for Problem #2.
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Figure 7. Speedups of the PSDM algorithm for Problem #3.

Figure 8. Speedups of the PSDM algorithm for Problem #4.



100 LIU AND TSENG

Figure 9. Communication mechanism of data for asynchronous PSDM algorithm (A) direct connection
(B) through Mutex object (C) through buffer and Event.

among parallel processors can suddenly result in access violation. Two methods, as shown
in figure 9(B) and (C), can overcome such problem:

(1) The “Mutex” object, as shown in figure 9(B), is an unique object that can be owned by
only one processor. A memory block can be assigned a unique Mutex object. Therefore,
the processor 1 can access to such memory block of processor 2 only when the processor
1 obtains the Mutex object from processor 2, and vice versa. The Mutex object should
be released to original processor as soon as possible to allow the other processor to
access such memory block.

(2) Figure 9(C) shows that the data are communicated to the data buffer instead to processor
2 directly. When the data are fully communicated, the “Data Ready Event” is sent from
processor 1 to processor 2. Then, the processor 2 can be triggered to access data from
the data buffer.

Although the second method will take more buffer memory, it does not result the waiting
for Mutex object. Since the “Data Ready Event” is sent and received asynchronously, the
second method does take the most benefit of asynchronous mechanism. In this “Asyn-
chronously Event Driven” mechanism, the computation can take place on the foreground
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task and meanwhile, the data can be communicated among processors in the background
task. When the data are communicated ready, the background task can send an “Event” to
the foreground task to read the data. No processor will be idle in such multitask computation
and communication processes. Therefore, this method is particularly suited for the modern
multitask (multithread) and event driven computer operation systems.

7. Application of PSDM algorithms to parallel Madaline networks training

7.1. Introduction

The space decomposition minimization algorithm can be applied to the training of multilayer
neural networks. The multilayer Adaptive Linear Neurons (Madaline) [23] is a typical mul-
tilayer neural networks that can be trained by minimizing the mean-squared error function,
which is generally defined as

E(W) ≡ 1

2

P∑
p=1

∑
j

[ûpj − upj]
2, (15)

whereP is the number of training patterns,ûpj andupj are the desired linear outputs and
actual linear outputs of the Madaline networks, respectively. The minimization of the mean-
squared error function (15) is a typical unconstrained minimization problem. Therefore, a
lot of unconstrained minimization methods can be applied to the training of the multilayer
neural networks.

To apply the space decomposition minimization algorithm to the training of Madaline
networks, the multilayer mean-squared error function is defined as

Ẽ(W, û) ≡ 1

2

L∑
`=1

∑
j

[
E(`)

j

(
w
(`)
j , û

(`)
j

)]2
, (16)

whereE(`)
j (w

(`)
j , û

(`)
j ) is the mean-squared error function of thej th neuron in thè th layer.

The linear outputs of thèth layer neurons are computed byu(`)j = [x(`−1)]Tw
(`)
j , where

x(`−1) andw(`)j are the input vector and the adaptive weights of the`th layer neurons, res-
pectively. The relationship between the input vectorx(`−1) and the desired linear output
û(`−1)

j is x(`−1) = S(û(`−1)
j ), whereS(·) is the activation function of the neurons in the

hidden layers.
From the SDM Algorithm 2.4, the minimization of the mean-squared error function (16)

can be decomposed into two subproblems. The first subproblem is the mean-squared error
function

Ẽû(û) = 1

2

L∑
`=1

∑
j

[
E(`)

j

(
w
(`)∗
j , û(`)j

)]2
, (17)
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and the second subproblem is the mean-squared error function

ẼW(W) = 1

2

L∑
`=1

∑
j

[
E(`)

j

(
w
(`)
j , û

(`)∗
j

)]2
, (18)

wherew(`)∗j are the adaptive weights that will be adapted in the second subproblems, and
û(`)∗j is the solution of the first subproblem.

From the uncoupled space-decomposition theorem (Theorem 2.3), the subproblem (18)
can be further decomposed into a set of uncoupled subproblemsE(`)

j (w
(`)
j , û

(`)∗
j ) that can be

distributed among parallel processors. These uncoupled subproblemsE(`)
j (w

(`)
j , û

(`)∗
j ) are

the mean-squared error functions of a single Adaptive Linear Neuron (Adaline). They are
defined as

E(`)
j

(
w
(`)
j , û

(`)∗
j

) ≡ 1

2

P∑
p=1

[
û(`)∗pj − u(`)pj

]2
, (19)

whereu(`)pj = [x(`−1)
p ]Tw

(`)
j . The mean-squared error function (19) can be further expanded

as

E(`)
j

(
w
(`)
j , û

(`)∗
j

) = 1

2

P∑
p=1

[
û(`)∗pj

]2− P∑
p=1

û(`)∗pj

[
x(`−1)

p

]T
w
(`)
j

+ 1

2

[
w
(`)
j

]T P∑
p=1

[
x(`−1)

p

[
x(`−1)

p

]T]
w
(`)
j . (20)

If we define

b =
P∑

p=1

û(`)∗pj x(`−1)
p , (21)

and

Q =
P∑

p=1

[
x(`−1)

p

[
x(`−1)

p

]T]
, (22)

the Eq. (20) can thus be simplified to a standard quadratic function

E(`)
j

(
w
(`)
j

) = 1

2

[
w
(`)
j

]T
Qw(`)j − bTw

(`)
j + c, (23)

wherec = 1
2

∑P
p=1[û(`)∗pj ]2 is a constant value in these uncoupled subproblems. The matrix

Q is a symmetric and positive definite, or in rare case, positive semi-definite matrix [23].
That is, the second subproblems (18) and its further decomposed subproblems (19) are
both convex problems. Therefore, the three PSDM algorithm presented in this paper can be
applied to these convex subproblems.
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7.2. Application of the parallel Madaline networks training

The mechanical part recognition is a typical application of Madaline networks. In this
application, the Madaline networks are trained by the image patterns of mechanical parts.
Then, the trained Madaline networks can be used to recognize the mechanical part on
the manufacturing line. Training time is an important factor for such on-line applications
because a long time of training will suspend the manufacturing line. The parallel training
of the Madaline networks can thus be utilized to reduce the training time.

In this application, the Madaline networks are trained by twenty color image patterns.
The architecture of the parallel processors for such parallel training is shown in figure 10.
The first set of subproblems (17) are assigned to a shared memory computer with dual
processors and the second set of subproblems (18) are assigned to all parallel proces-
sors. In this architecture, only the actual linear outputsu and desired linear output̂u are
communicated among parallel processors. No communication is required among the sec-
ond set of subproblems. Therefore, the communication overhead can be significantly
reduced. Other architecture of parallel processors can also be applied to the parallel train-
ing. For example, both of the first subproblem (17) and the second subproblem (18) can
be decomposed into subproblems that can be distributed to parallel processors with shared
memory.

The numerical experiment results of variant processor numbers for the parallel training
are listed on the Table 4, which shows that the efficiency of the parallel training varies from
69.65 to 98.13. The Speedups of the parallel training are shown in figure 11. The good
performance of such architecture is due to the low communication overhead of the parallel
processor architecture. Further research can focus on the improvement of the parallel
minimization on the first set of subproblem (17), which can further improve the efficiency
of the parallel training.

Figure 10. Communication of data for parallel training of Madaline networks.
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Table 4. Numerical results for the PSDM algorithm application on the training of Madaline networks.

24 hidden nodes 36 hidden nodes

Processor Processor time Speedup/Efficiency Processor time Speedup/Efficiency
Input nodes numbers (sec.) (%) (sec.) (%)

64× 64 1 14.01 — 22.70 —

2 8.74 1.60/80.15 14.01 1.62/81.01

4 4.61 3.04/75.98 8.05 2.82/70.50

6 2.57 5.45/90.86 4.10 5.54/92.28

128× 128 1 59.01 — 89.61 —

2 31.92 1.85/92.44 49.85 1.80/89.88

4 20.01 2.95/73.73 22.83 3.93/98.13

6 14.12 4.18/69.65 16.81 5.33/88.85

Figure 11. Speedups for parallel training of Madaline networks.

8. Conclusions

This paper discusses three parallel PSDM algorithms for solving the unconstrained min-
imization problem (1) among parallel processors. These algorithms enable minimization
problem to be decomposed into subproblems that can be distributed among parallel pro-
cessors. It is shown that if the decomposed subproblems are not coupled to each other,
these subproblems can be solved among parallel processors independently without data
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communication; otherwise, the parallel algorithms discussed in this paper can be used.
Since only the coupled variables are communicated among processors, the data communi-
cation time among processors can be reduced. The PSDM algorithms can also be applied
to the training of Madaline networks. A new parallel architecture of processors based on the
PSDM algorithms is presented in this paper for the parallel training of Madaline networks.
Numerical experiments show that such architecture can benefit well from parallel training.

Among the three parallel algorithms, the synchronous and sequential PSDM algorithms
are particularly suitable for problem that can be decomposed into non-highly coupled sub-
problems. Numerical experiments show that these two PSDM algorithms can speed up
the SDM algorithm that run on a single processor. However, due to the synchronization
overhead, these two algorithms will be suspended if any processor or any network line slows
or suspends for any reason. Such problems can be overcome by the asynchronous PSDM
algorithm.

The asynchronous PSDM algorithm can benefit most from parallel computing among
the algorithms presented in this paper. However, the convergence of the original sequen-
tial algorithm may be destroyed by the asynchronous algorithm. Therefore, the additional
check condition (11) is required. It is shown in this paper that the asynchronous PSDM
algorithm is particularly suited for the modern multitask (multithread) and event driven
computer operation systems. Through the “Asynchronously Event Driven” mechanism,
the coupled variables can be communicated among processors in the background tasks
while the foreground tasks can be continuously computing without caring when the data
are communicated to or from other processors.

The SDM algorithm can also be applied to multilayer discrete neural networks [15]. Since
the activation functions of the multilayer discrete neural networks are non-differentiable
hard-limiting function, the gradient descent methods can not be directly applied to train
such neural networks. By the SDM algorithm, the multilayer discrete neural networks can
be decomposed into a set of single layer neural networks, which can thus be trained by
the perceptron learning rule that was developed for single layer discrete neural networks.
Further research can focus on the application of the PSDM algorithms to the multilayer
discrete neural networks.

Appendix: Test problems

Problem 1. Modified Powell Function [3, 12, 21]:

F =
n∑

i=4

[(xi−3+ 10xi−2)
2+ 5(xi−1− xi )

2+ (xi−2− 2xi−1)
4+ 10(xi−3− xi )

4],

x(1) = [3,−1, 0, 1, . . . ,3,−1, 0, 1]T .

Problem 2. TRIDIA Function [3]:

F =
n∑

i=2

[i (2xi − xi−1)
2],

x(1) = [3,−1, 0, 1, . . . ,3,−1, 0, 1]T .
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Problem 3. Modified Wood Function [11, 12]:

F =
n∑

i=4

{
100

(
x2

i−3− xi−2
)2+ (xi−3− 1)2+ 90

(
x2

i−1− xi
)2+ (1− xi−1)

2

+ 10.1[(xi−2− 1)2+ (xi − 1)2] + 19.8(xi−2− 1)(xi − 1)},
x(1) = [−3,−1,−3,−1, . . . ,−3,−1,−3,−1]T .

Problem 4. Modified Zangwill Function [19]:

F =
n∑

i=3

[(xi−2− xi−1+ xi )
2+ (−xi−2+ xi−1+ xi )

2+ (xi−2+ xi−1− xi )
2],

x(1) = [100,−1.0, 2.5, . . . ,100,−1.0, 2.5]T .
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