
Optimal tile partition for space region of integrated
circuits geometry

P.-Y. Hsiao
C.-Y. Lin
P.-W. Shew

Indexing terms: VLSI layout, Channel partition, Corner stitching, Tile generation

Abstract: An optimal tile partition (OTP) is pre-
sented for partitioning the space region of a VLSI
layout plane into rectangular space tiles. It modi-
fies the corner stitching data structure to optimise
the space tile partition. There is a serious
restriction in the original corner stitching data
structure, i.e. the solid rectangles cannot overlap
each other, whereas our OTP allows overlapping.
This paper also shows three theorems with rigor-
ous proofs and experimental results to obtain the
minimal number of the space tiles through the
OTP. Moreover, a dynamic plane-sweep algo-
rithm based on region query for the OTP has
been developed. Using the OTP, the memory
efficiency and the local query operations of the
original corner stitching data structure have been
enhanced.

1 Introduction

To represent a number of ‘solid rectangles’ in a two-
dimensional VLSI layout plane, many efficient spatial
data structures [2-41 have been presented for the design
of various layout tools. ‘Corner stitching’ [l] is one of the
well known data structures for designing layout editor
[SI, router [SI, compactor and plower [7]. It provides a
variety of powerful local region query operations, such as
neighbour finding, point finding, area searches, directed
area enumeration and channel finding. Corner stitching
was originally incorporated into the Magic VLSI system
[5] and has contributed to the success of the system.

The primary idea of corner stitching is to divide the
space region of a layout plane, which consists of various
nonoverlapped solid rectangles, into ‘space tiles’ by using
‘horizontal partition edges’ [l] or by using ‘vertical parti-
tion edges’. For example, a layout with five non-
overlapped solid rectangles can be represented by
horizontal partition (HCSP), or vertical partition (VCSP)
as illustrated in Fig. 1 and Fig. 2, respectively. Since the
number of space tiles from HCSP or VCSP
(1 HCSP I = 13, I VCSP I = 14) is not minimal, neither

~C IEE, 1993
Paper 9361E (ElO), first received 23rd December 1991 and in revised
form 2lst September 1992
P.-Y. Hsiao and C.-Y. Lin are with the Department of Computer and
Information Science, National Chaio Tung University, Hsinchu,
Taiwan, Republic of China
P.-W. Shew is with the Department of Electrical Engineering, National
University of Singapore, IO Kent Ridge Crescent, Singapore 051 1

IEE PROCEEDINGS-E, Vol. 140, N o . 3, M A Y 1993

HCSP nor VCSP is an optimal tile partition (OTP) An
OTP should partition the space region into a minimal
number of space tiles [21]. Fig. 3 and Fig. 4 show
the horizontal oriented OTP (HOTP) and the vertical
oriented OTP (VOTP) for the same layout, where the
number of space tiles, I HOTP I = 1 VOTP I = 11.

In corner stitching representation, as described in Ref-
erence 1, the space region is partitioned into space tiles

1

I l3

Fig. 1 Horizontal partition by corner stitchlng, HCSP

Fig. 2 Vertical partition by corner stitching, V C S P

-
I

This work was supported in part by the National
Science Council, Republic of China, under con-
tract number NSC 80-0404-E-009-73 and NSC 81-
0404-E-009-525. Thanks are also due to Ms. Fang
Fang, Mr. Fang-Chi Li and Mr. Jun-Ren Tzong
for their contributions in the preliminary stages of
this work.

145

such that no space tile has other space tiles immediately
to its left or right. In a layout with N nonoverlapped
solid rectangles, there will be no more than 3N + 1 space
tiles. Hence, in the worst case, the memory requirement
for corner stitching is three times more than that for

1

Fig. 3 The horizontal oriented optimal tile partition, HOTP

6

I l l

--@
Fig. 4 The uertical oriented optimal tile partition, V O T P

linked lists. To obtain a minimal number of space tiles, as
presented in the following sections, will promote the
memory efficiency and the local search speed.

The neighbouring solid rectangles and space tiles are
linked together at their corners (hence the name ‘corner
stitching’). Referring to Fig. 5 , the four corner stitches
(pointers) are the top-right stitch (tr), the right-top stitch
(rt), the left-bottom stitch (lb), and the bottom-left stitch
(bl), respectively. When a solid rectangle is deleted from
or inserted into the layout, these pointers are easily
updated.

rt

A

t
Ib

Fig. 5 Using Jour corner pointers to connect the neighbouring
rectangles

146

In this paper we present the general rules for treating
the OTP (HOTP and VOTP) along with theoretical dis-
cussion and rigorous proofs. Also, we shall present our
algorithm, the plane-sweep OTP. In our approach, we
use the quad list quad tree (QLQT) data structure [9] to
store the layout information of the solid rectanglzs. This
data structure provides a fast region query speed. The
plane-sweep OTP algorithm first uses the plane-sweeping
technique and region queries on the QLQT, to determine
some parameters (such as those defined in Section 5) and
enumerate a set of candidates for critical partition edges
(CPE). A CPE is basically a space tile edge extending
between corners of two solid rectangles and will ccrtainly
appear in both the HOTP and VOTP (refer to Fig. 6 and
Section 2 for its formal definition). Second, an elim-
ination algorithm is applied on the enumerated set to
obtain a subset of non-intersected CPEs. Next, the outer
edges of all clusters of intersected rectangles are traced.
Then with the nonintersected CPEs and outer edges, the
HOTP and VOTP are obtained by applying the plane-
sweep algorithm again.

Fig. 6

2 Preliminary definitions and modelling

Before presenting the OTP, we assume the layout plane is
large enough so that the solid rectangles are iricluded
entirely inside the layout plane. In other words, the edges
of the solid rectangles are never located outside or
exactly at the boundary of the layout plane. Some formal
definitions used in later parts of this paper now follow.

DeJinition I: partition edge (P E) . The ‘partition edge’, as
shown in Fig. 7, is a vertical or horizontal line segment,

The critical partition edges by the H O T P and the VO TP

1 1
Fig. 7 Each dashed line segment representing a reliable partit on edge.
The whole partition in the figure shows an example of reliable partition
edge

IEE PROCEEDINGS-E, Vol. 140, No. 3, M 4 Y 1993

which satisfies the following two conditions, used to par-
tition the spacing region of a given layout:

(i) All the interior points of the line segment must be
included inside the space region.

(ii) The end points of the line segment must locate
exactly at the boundary rectangle of the layout plane, the
edge of a solid rectangle, the corner of a solid rectangle,

Definition 2: reliable partition edge (RPE) . A partition
edge satisfying the condition that at least one of its end
points is locating at the corner of a solid rectangle is

w

Definition 3: reliable tile partition (RTP) . For a given
layout, the ‘reliable tile partition’ (see Fig. 7) is a partition
of space region by reliable partition edges only and each
corner of the solid rectangles should intersect with at
least one end point of the reliable partition edge except
those corners overlapped with other solid rectangles. w

Note that for a given layout, there may be a number of
different reliable tile partitions. From definition 3, it is
obvious that the partition of original corner stitching
partition is a kind of reliable tile partitions. As such, Fig.
1 to Fig. 4 are reliable tile partitions of the same layout.
Among the possible reliable tile partitions there must be
some which possess the minimal number of partitioned
space tiles. Those reliable tile partitions with minimal
number of space tiles are called ‘optimal tile partitions’
(OTPs). In this paper, we will focus our argument on two
of the most important OTPs: the horizontal oriented
OTP (HOTP) and the vertical oriented OTP (VOTP).

Definition 4 : horizontal oriented optimal tile partition
(HOTP) . A horizontal oriented optimal tile partition is
defined as a reliable tile partition which has a minimal
number of partitioned space tiles and satisfies the condi-
tion that changing any one of its vertical reliable parti-
tion edges into a horizontal reliable partition edge
(leaving the end point intersected with the corner of the
solid rectangle unchanged) will increase the number of
space tiles. w

Note that most of the reliable partition edges of the
HOTP are horizontal. If any of the horizontal reliable
partition edges is changed into a vertical one, the number
of space tiles (1 S P T I) must be the same. Moreover, both
of the original horizontal reliable partition edge and the
updated new vertical reliable partition edge should have
a same end point intersected with the corner of the solid
rectangle.

Definition 5 : vertical oriented optimal tile partition
(YOTP) . VOTP is defined as a reliable tile partition
which has a minimal number of space tiles and satisfies
the condition that changing any of its horizontal reliable
partition edges into vertical reliable partition edge
(keeping the end point intersected with the corner of a
solid rectangle unchanged), will increase the number of

w

Dejnition 6: critical partition edge (C P E) . For a given
layout, the vertical reliable partition edges appeared in
the HOTP and the horizontal reliable partition edges
appeared in the VOTP are defined as ‘critical partition

It is obvious that the CPEs play a key role in finding
the general partition rules for HOTP and VOTP. Notice

or the interior point of another partition edge.

defined as a ‘reliable partition edge’.

space tiles (see Fig. 4).

edges’ (refer to Figs. 3,4 and 6).

I E E PROCEEDINGS-E, Vol. 140, N o . 3, M A Y 1993

that an OTP is obtained from a set of nonintersecting
CPEs and other reliable partition edges. We know that
the minimal I SPT I can be calculated from the minimal
total number of edges of space tiles (I Espt I). That means
the minimal I SPT I equals the minimal I Espt I divided by
four. As a result, to solve the problem of the HOTP and
the VOTP, we should focus our argument on II:sptI
instead of directly counting I S P T 1 . And the following
theorem gives a classification of the Espt. It would be
helpful for the discussion in the following Section.

Theorem I : For a given layout with Nsor overlapped
solid rectangles, L = {Ri 1 i = 1 , 2, . . . , N,,,} , the minimal
number of the edges of the space tiles (1 Espt Jmin) can be
calculated from the number of the boundary edges of the
whole layout (I E b r l) , the number of the edges of the
solid rectangles (I Esor 1) and the number of reliable par-
tition edges for the HOTP or the VOTP (1 Erpe lo,J In
other words,

I OTP I = I m t ~ 1 4 , (1)

(2)
Where I OTP I denotes the minimal I SPT 1 partitioned by
the HOTP or the VOTP and f (.) means an algebraic
function with three variables.

Proof: As each space tile has four orthogonal boundary
edges, eqn. 1 is obvious.

Each edge of space tile may come from six different
sources, namely Ebr, Esor, Erpe, segment of Ebr, segment
of Esor, and segment of Erpe. However, the segment of
Ebr is produced by the intersection between Ebr and
Erpe, hence the number of partitioned segments of Ebr
can be determined by 1 Ebr 1 and 1 Erpe lot,. For the same
reason, the number of partitioned segments of Esor can
be determined by I Esor I and I Erpe l o t p . Similarly, since
the segment of Erpe is produced by the crossover
occurred between a couple of Erpe, the number of parti-
tioned segment of Erpe can be determined by IErpeI,,,
itself. Therefore, we conclude that

I Espt I m L n = function of I Ebr 1 , I Esor 1 , and I Erpe l o r ,

= f (I Ebr I , I Esor I , I E v e I,,,)

(3)
From eqns. 1 and 3, eqn. 2 is proven. QED

3

Our discussion is now limited to finding out the general
rules for the HOTP and the VOTP but not for the other
kinds of OTP. To obtain the final equation of the general
tules shown in theorem 3 in Section 5 , first, the given
layout should be restricted by some assumptions, and
secondly, those assumptions are removed step by step so
that the final partition rules presented in theorem 2 can
solve any kind of the given layout with a large number of
overlapped rectangles.

Lemma 1: For a given layout with Nsor solid rectangles
satisfying the following three assumptions:

Assumption I : The solid rectangles are disjointed
(nonoverlapped).

Assumption 2: The reliable partition edges are disjointed
(nonintersected).

Horizontal oriented OTP and vertical oriented
OTP

147

Assumption 3 : Each reliable partition edge, starting from
the corner of solid rectangle must end at the edge of solid
rectangle or at the boundary edge of the layout plane but
not end at the corner of the other solid rectangles or at
the other reliable partition edge.

Eqns. 4-7 must hold:

l O T P l = IHCSPl (4)

= I VCSPl (5)

= [IEbr l + [Esor l + IErpe*1]/4 (7)

= 14 + (4 * Nsor) + (2 * (4 * Nsor))] /4 (6)

where I Erpe* I = 2 * I Erpe l D f P .

Proof: According to theorem 1, the I Espt l m i n comes from
l E b r (, IEsorl , (E r p e I , lsegment of E b r l , lsegment of
Esorl and lsegment of ErpeI. Here, it is obvious that
1 Ebr I = 4 and I Esor I = 4 * Nsor. From definition 3 and
assumption 1 and 3, we have I Erpe I = 4 * Nsor. Further-
more, assumption 2 implies that I segment of Erpe I = 0.

According to assumption 3, consider line segments
shown in Fig. 8, p p l , r-rl and i-il which are reliable
partition edges starting from the corner of solid rectangle

L I A
C

Fig. 8
equal to I segment of Ebr I + 1 segment of Esor I = I Erpe 1

Examplefor proving that the number of new’ generated Espt is

and ending at the Ebr. Each of them partitions the Ebr or
segment of Ebr into two edges of space tiles. For the
same reason, each reliable partition edge of 4-41 and
s-sl will partition the Esor or segment of Esor into two
edges of space tiles. Consequently, the number of new
space tiles generated from the intersections between reli-
able partition edge and Ebr (or Esor) is equal to I Erpe 1 .
In other words, the sum of the I segment of Ebr 1 and the
I segment of Esor 1 equals the 1 Erpe 1 . Hence, we have

lOTPl = { I E b r l + IEsorl + /Erpe l

+ [I segment of Ebr I + I segment of Esor 11
+ I segment of Erpe I } / 4 (8)

(6)

(7)

Furthermore, from definition 6, every reliable partition
edge under the above three assumptions is not a CPE.
Thus we conclude that the HOTP and the HCSP are
equal and, likewise, the VOTP and VCSP are equal.

QED

= [4 + 4 * Nsor + IErpeJ + IErpel + 0] / 4

= [4 + 4 * Nsor + 2 * (4 * Nsor)] /4

= [[E b r l + lEsorl + IErpe* j] /4

Hence eqns. 4 and 5 hold.

148

If there is a reliable partition edge violating ‘issump-
tion 3 and whose end point is exactly intersected with the
corner of the other solid rectangle, then the reliable parti-
tion edge is called the candidate critical partition edge
(CCPE). Most of the CCPEs will become CPEs as shown
in Fig. 6. However, some of them will disappear in the
HOTP or the VOTP.

Lemma 2: For a given layout with Nsor solid rectangles
satisfying assumptions 1, 2‘, 4, and 5, eqns. 8 and 9 must
hold.

Assumption 2’: The reliable partition edges do not cross
over with each other. But the end point of reliable parti-
tion edge may touch the other reliable partition edge.

Assumption 4 : All the CCPEs existing in the given layout
must be built up.

Assumption 5 : There is no double corner for an) pair of
CCPEs. A double corner as shown in Fig. 9 is a corner of

Fig. 9
double corner

The bottom-leji corner of solrd rectangle I repnsenting a

solid rectangle such that both of its orthogonal reliable
partition edges are CCPEs.

l O T P l = { 4 + (4 * N s o r)

+ 12 * (4 * Nsor) - (4 * N c c p e)] } / 4 (8)
= (I Ebr I + I Esor I + I Erpe** 1)/4 (9)

where
Nccpe is the total number of CCPEs in the given layout.

I Erpe** I = 2 * [(4 * Nsor) - (2 * Nccpe)] and

Proof: The discard of assumption 3 and the modification
from assumption 2 to 2 imply that some of the reliable
partition edges become the CCPEs. The difference
between lemma 1 and lemma 2 comes from the influence
of the CCPEs. Assumption 4 says that every CCPE must
be built up. However, assumption 5 gives a restriction so
that the complicated situation (the existence of the
double corner) is excluded from this lemma. As a result,
the proof should focus on the influence of each simplified
and separated CCPE.

From lemma 1 , each corner of solid rectangle will
project exactly one reliable partition edge for the OTP.
Consider Fig. loa, each projected reliable partition edge,
ec, will increase two edges of space tiles: splitting ub to ac
for SI and bc for S2, and extending de to cd for SI and ce
for S2 , where SI and S2 stand for two new generated
space tiles. However, if the projected reliable partition
edge is a CCPE, then the CCPE will nullify two corners

IEE PROCEEDINGS-E, Vol. 140, No. 3, M A Y 1993

of different solid rectangle. According to Fig. lob, each
CCPE generates zero edge of space tiles: both BC and
AC for S4, and both A D and BD for S2 . Hence, conse-
quently, we obtain that the (Esptl generated from the

a C b

I C I

sj " 3': ,
D

I I

a b

Fig. 10
U A normal reliable partition edge increases two edges of space tiles
h A CCPE will not generate any new edge of space tiles

Example for prooing lemma 2

reliable partition edges (some of them are CCPEs), which
defined as I Erpe** 1 , is equal to 2 * (I Erpe I - 2 * Nccpe).
Then, from theorem 1 and eqns. 6 and 7, we have

I O T P J = (I E b r I +lEsor) +IErpe**1)/4 (9)

= {4 + (4 * Nsor) + [2 * I Erpe I - 4 * Nccpe]}/4

= (4 + (4 * Nsor)

+ [2 * (4 * Nsor) ~ (4 * Nccpe)]}/4 (8)

QED

In lemma 2, firstly, all the CCPEs are built up, and then
the normal reliable partition edges are linked up. All the
reliable partition edges are allowed to touch the other
reliable partition edge by their end points, but are for-
bidden to cross over each other. Fig. 1 1 shows the parti-
tion process of the HOTP, where the source layout has
one CCPE.

U

L I 1 I

a b

An H O T P example to ihs t ra te the partition proress of Fig. 11
lemma 2
a The source layout and the CCPE
b After the HOTP, the reliable partition edge* and 3 should not cross over the
other reliable partition edge p4

To completely solve the problem of OTP, the above
assumptions (1, 2', 4, 5) must be removed one by one. In
other words, we have to solve the following three sub-
problems

(i) how to eliminate the crossovers among the CCPEs
(ii) how to correctly maintain the OTP while the

(iii) how to partition a group of overlapped solid rec-
double corners exist

tangles.

I E E PROCEEDINGS-€, Vol . 140, No. 3, M A Y 1993

4 Eliminating crossovers and redundant double
corners

4.1 Algorithm for optimising crossovers and double
corners

The crossover of any pair of reliable partition cdges
(including CCPEs) does inherently increase the number
of space tiles except one horizontal CCPE cross over one
vertical CCPE only (including 'single double corner'
which means that a double corner does not connect with
the other double corners through the CCPEs). For an
OTP, to remove assumption 2' will not affect the number
of space tiles. However, if we try to remove assumption 2'
and 4 at the same time, the conflict that for a random
layout there may be some CCPEs which cross over each
other does exist.

To remove assumption 2', 4 and 5 at the same time,
this Section presents an elimination algorithm to discard
some of the CCPEs to make all of the remaining CCPEs
not crossing and all of the double corners disappear. This
algorithm is designed to reserve a maximal number of
disjointed CCPEs, because the more the amount of dis-
jointed CCPEs is, the less the amount of space tiles will
be.

Elimination algorithm: This algorithm will eliminate some
of the redundant CCPEs to make all of the remaining
CCPEs disjointed. That means after elimination there
will be no more crossover and no more intersection at
the same double corner for each pair of CCPEs.

Step 1
Build up all the CCPEs for the given layout.

Step 2
Put the intersected CCPEs into a group Gi.
Put the non-intersected CCPEs into a group Gn.
(All the CCPEs intersected at their end points or
interior points are put together into Gi. For example,
the set of the dashed line segments shown in Fig. 12 is
partial of Ci.)

V30 V9
r - ; - - -eH1

......
...................

....... "5

......

+ three double contiguous corners

Fig. 12
Each dashed line segment represents one CCPE
The Intersection points occurred between (V 2 , H J , (H&. V5), and (V 5 , H ,) are
double corners

Example for illustrating a group of connected CCPEs

Step 3
Let all the vertical CCPEs in Gi labelled VI, I.
F, be a set Su.
Let all the horizontal CCPEs in Gi labelled H , , H , ,
.... H,, be a setSlr.

149

Step 4
Mark Su, do reduction function. We obtain a new
group Gu of disjointed CCPEs.
Mark Sh, do reduction function. We obtain a new
group Gh of disjointed CCPEs.

If lGhl > IGul, then the set of maximal disjointed
CCPEs, Sd, is the union of Gh and Gn; else, Sd is the
union of Cu and Gn.

Stop.

Step 5

Step 6

Reduction function: This function will be used in the
elimination algorithm.

Step I
Let the marked set be Sm, the unmarked set be Su and
the temporary group Gt be the group Gi.

Classify the group Gt into several subgroups such that
(i) Each CCPE in Su and all of its intersected CCPEs,
Gs, in Sm are put in one subgroup.
(ii) Any pair of CCPEs in Su which their Cs are the
same must be put into same subgroup. So that each
CCPE in Su should belong to one and only one sub-
group.

(From Fig. 12, there are six subgroups, such as {VI, H 6 } ,

Step 2

{ V 2 , V,, H , , HK}, {Va, H i , H 2 , H , , H , , Hi,, Hi,}, { V s ,
H , , H9}, { V , , V, , H , , H , , H , } , and [vs, V9, Vi,, H , ,
H 5 , H 6 3 H 7 } .)

Step 3
For each subgroup, do the following statement:
If (I unmarked CCPEs I > I marked CCPEs 1) then:
(i) Delete the marked CCPEs from Gt and all of the
subgroups.
(ii) Mark the homologous unmarked CCPEs in Gt.
(iii) Remove this subgroup.

Go to step 3 until there is no subgroup satisfying the
condition described in step 3.

(Fig. 13 shows how the process is undergoing in steps 3
and 4 for the example illustrated in Fig. 12).

Step 4

1 delete Hg, mark V5
deleteH4.H5,markV6.V7 I

C

delete He. mark V1
delete Ha. mark V2 ,V,

b

d

Fig. 13 After the process ofs tep 4 in reductionfunction, only one sub-
group, { V,. HI, H , , H , , H , , , H , ,] , is not remotied. Six CCPEs, uiz. H , ,
H,, H, , H,, H , , and H , , are deleted in this step

Step 5
Delete all the unmarked CCPEs in Gt, the remaining
CCPEs in Gt are disjointed now.

150

(For the group shown in Fig. 12, V3 will be deleted. Fig.
14 shows the final result of Fig. 12 after the elimination of
this algorithm).

O------.H1
V9

.......... H
v2 e - - - - - - a H j

? v,
, I * ,

I t
, I , I

.......... *H

Fig. 14 After the process of the elimination algorithm, 14 disjointed
CCPEs are reserved from the 21 connected CCPEs shown in Fig. 12.
Note that the double corners have disappeared

Step 6
Stop.

4.2 The OTP is superior to the corner stitching
partition

According to lemma 1, 2, and the elimination algorithm
shown above, lemma 3 (below) is proposed to remove
assumptions 2’, 4, and 5 at the same time. Subsequently,
theorem 2 will prove that for a nonoverlapped layout
(assumption l) , our OTP (HOTP or VOTP) is indeed
superior to the corner stitching partition (HCSP or
VCSP).

Lemma 3; For a given layout with Nsor solid reciangles
satisfying assumption 1, eqns. 10 and 11 must hold.

IOTPl = { 4 + (4 * Nsor)

+ 12 * (4 * Nsor) - (4 * Nccpe*)] } /4 (10)

(1 1) = (IEbrl + IEsorl + IErpe***1)/4

where I Erpe*** I = 2 * [(4 * Nsor) - (2 * Nccpe*) J, and
Nccpe* is the maximal number of disjointed (3CPEs
which are obtained by applying the elimination algo-

W

Proof: For an OTP, because each corner of solid rect-
angle needs one and only one reliable partitiori edge,
hence one of the CCPEs of the double corner is
redundant. It has to be deleted from the OTP. On the
other hand, the crossover of any pair of CCPEs will
increase or not change the number of space tiles. Each
crossover also have to be avoided in the OTP As a
result, by applying the elimination algorithm to obtain
the maximal value of Nccpe* from the original Nccpe,
eqn. 8 has to be updated to eqn. 10. Thus the 1emma.QED

Theorem 2: For a given layout with a number of non-
overlapped solid rectangles, the number of the space tiles
partitioned by the OTP is not larger than that parti-
tioned by the corner stitching partition. Hence, we have

rithm to all of the CCPEs in the given layout.

lOTPl > IHCSPl (12)

l O T P l < I VCSPI (13)

and

W

Proof: As mentioned before, the I O T P I can be calculated
from eqn. 10. For the same reason, the following two

IEE PROCEEDINGS-E, Vol . 140, N o . 3, M 4 Y 1993

equations hold for corner stitching partition

I H C S P 1 = (4 + (4 * Nsor)

+ [2 * (4 * Nsor) - (4 * N h c c p e)] } / 4 (14)

I VCSP j = (4 + (4 * Nsor)

+ [2 * (4 * Nsor) - (4 * Nuccpe)] } /4 (15)
where Nhccpe (Nvccpe) represents the total amount of the
horizontal (vertical) CCPEs for the HCSP (VCSP).

Therefore, to prove eqns. 12 and 13 we need to prove
that

Nccpe* 2 max {Nhccpe, Nvccpe} (16)
To prove eqn. 16, let us consider the connectivity of the
CCPEs:

(i) If all of the CCPEs are disjointed (no crossover and
no double corner), then

Nccpe* = Nccpe = Nhccpe + Nvccpe

Hence eqn. 16 is true.
(ii) If some of the CCPEs are jointed, according to the

elimination algorithm, the number of CCPEs remaining
in the OTP must be larger than or equal to Nhccpe
(Nuccpe). Hence eqn. 16 is true. Thus the theorem. QED

5 Concerning the overlapped rectangles

In lemma 3 and theorem 2, the given layout is limited to
the nonoverlapped solid rectangles. For a number of
overlapped solid rectangles in the 2-D plane, we should
find them to get some value. Some items defined below
will be useful in proving theorem 3 which is the final and
most important theorem of this paper.

For a given layout with overlapped rectangles, we
define that:

(i) N i c : the number of the inactive corners.
An inactive corner is a corner of solid rectangle such

that from which there is no reliable partition edge shot
out in the OTP. For example, the inactive corners in Fig.
15a are corners of H , I , J , K , and L .

(ii) N a c : the number of the active corners.
If the corner of solid rectangle is not an inactive

corner, then it is called an active corner. Hence, in Fig.
15a, the corners of A , B, C , D , E, F, and G are active
corners.

From the definition of Nic and Nac, if the given layout
has no overlapped solid rectangle, then N i c = 0 and
N a c = 4 * Nsor.

(iii) Nisor: the total number of intersected (overlapped)
solid rectangles in the given layout.

(iv) Noe: the number of Manhattan edges located
between the SPTs and the boundary of the overlapped
solid rectangles. Such a Manhattan edge is also called an
outer edge. In other words, an outer edge is the contour
edge of the hole (containing in overlapped solid
rectangles) and the overlapped rectilinear polygon. For
example, in Fig. 15a and b, we have N o e = 10 and

a b C

Fig. 15

IEE PROCEEDINGS-E, Vo l . 140, No. 3, M A Y 1993

Example illustration for defining Nic , Nac, Nisor, and Noe

Noe = 20, respectively. The outer edges in Fig. 15a are
A B , B M , M C , CD, D N , N E , EF, FL, LG, and C A .

Similarly, from the definition of Nisor and Noe, if the
given layout has no overlapped solid rectangle, then
Nisor = 0 and N o e = 0. However, for some cases, Noe
may be larger than 4 * Nisor; for example, in Fig. 1 5 ~ . we
have N o e (= 12) > 4 * Nisor (=8).

Theorem 3; For a given layout with a number of over-
lapped solid rectangles, eqn. 17 must hold.

I O T P I = (4 + {[4 * (Nsor - Nisor)] + N o e }

+ { 2 * [(4 * Nsor) - (2 * Nccpe*) - Nic] }}/4

(17)

(18) = (I Ebrl + I Esor* 1 + I Erpe**** 1)/4

where

1 Esor* I = 4 * (Nsor ~ Nisor) + N o e

and

1 Erpe**** I = 2 * [(4 * Nsor) - (2 * Nccpe*) - Nic I W

Proof: Consider eqn. 10 in lemma 3, if the given layout
has no overlapped solid rectangles, then Nisor = 0,
Noe = 0 and Nic = 0. Therefore, eqn. 17 can be degcner-
ated into eqn. 10.

Consider eqn. 11 in lemma 3, if the given layout has
Nisor overlapped solid rectangle, then the I Espt I should
decrease 4 * Nisor; however, the generated outer edges
will increase the I Espt I by N o e . Therefore, the I Espt I par-
titioned by edges of solid rectangle is equal to
4 * (Nsor - Nisor) + N o e ; that means

I Esor* I = I Esor I ~ 4 * Nisor + N o e

= 4 * (Nsor - Nisor) + Noe

For the same reason, the 1 Espt 1 partitioned by reliable
partition edges will decrease 2 * N i c ; hence, we have

I Erpe**** 1 = I Erpe*** I - 2 * Nic

= 2 * [(4 * Nsor) - (2 * Nccpe*) - Nic]

By combining eqns. 10 and 11 and the values of I E m * I
and 1 Erpe****J calculated above, eqns. 17 and 18 have
been proven. QED

6 Plane-sweep OTP algorithm

Consider theorem 3, the elimination algorithm, and the
plane-sweep technique described in Reference 19, we have
developed the plane-sweep OTP algorithm (shown
below). The input of this algorithm is a large number of
overlapped or nonoverlapped rectangles represented by
any of the VLSI quad trees [S, 9, 201. After processing by
this algorithm, the irregular space regions of the original
layout are partitioned into a minimal number space rect-
angles so that the designed VLSI layout tools such as
editor, router, and compactor, will be speeded up and
require less memory storage.

O T P algorithm:
Begin Apply ‘plane-sweep algorithm’; (see Reference 19)

for each sweeping-line event do
Begin Using the region query technique based on the

quad tree data structure to:

151

Judge whether each solid rectangle is overlapped by
the other solid rectangles or not;

(to obtain Nisor)
Judge whether each corner is covered by the other
solid rectangles or not;

(to obtain Nnc)
For each uncovered corner determine the possible
CCPE;

(to obtain Nccpe)
End ;
if (Nccpe # 0) Apply elimination algorithm to get the
maximum set of nonintersected CCPEs;

(to obtain Ncpe)
(The elimination algorithm eliminates redundant
CCPEs and the remaining CCPEs will not intersect
each other)
if (Nisor # 0) Apply the plane-sweep algorithm and
region query technique again to decide whether each
edge is an outer edge or not;

(to obtain NOP)
Apply plane-sweep algorithm to the source layout and
the remaining CCPEs, and then output the spacing
rectangles by the optimal tile partition;

End.

7 Result and conclusion

This paper presents an optimal tile partition method
which is superior to the partition of corner stitching.
Table 1 illustrates some experimental results for the OTP

Table 1 : Experimental results based on IBM/386PC for the
OTP and the corner stitching partition

No of Experimental results
rectangles

IOTPl IHCSPI IVCSPl Runtime Improvement
= 1 HOTPI for OTP. of speed and
=IVOTPI S memory

17 31 36 37 1 32 1507%
52 97 107 111 302 1098X
92 169 186 208 445 1 4 2 1 ” ~ ~

150(Fig16) 270 319 326 1532 1628%
200 320 363 410 2363 17 21%

and the corner stitching partition. Besides the theoretical
discussion and their rigorous proofs, we also give a prac-
tical elimination algorithm and the OTP algorithm in
detail. Furthermore, our O T P algorithm can be applied
to a given layout with both nonoverlapped and over-
lapped rectangles. Another experiment result shown in
Fig. 16 and the dotted area of Table 1 took 15.32 seconds
to obtain our I OTP I = 270, which is less than both the
original JHCSPI = 319 and 1 VCSPJ = 326. In this
example, the presented OTP has improved the finding-
speed and the memory efficiency by about 16.28% with
respect to those of the corner stitching data structure.
The source code was written in C-language under
MS DOS and ran on the IBM/386 compatible micro-
computer.

The technique of the OTP not only can be used to
improve corner stitching but also can be extended to
promote the region query operations for the space rect-
angles represented by quad trees [S-1 01 and dynamic
bucket data structure [I l l . With the assistance of the
OTP, the corner stitching and the quad trees are able to
be applied to solve the problems of layout editing [22],

152

routing, plowing and compaction [6, 7, 12, 131 more effi-
ciently.

b

Fig. 16 This tested random layout took 1 5 3 2 s to ohrain our
IOTPJ = J H O T P J = 1 V O T P l = 270, which I S less than both of the orrg-
mal I HCSP I = 319 and I V C S P I = 326
a Nsor = IS0 N c p e = 179 IVOTPI = 278
h Nsor = 150, Ncpe = 179 1 HOTPI = 278

8 References

1 OUSTERHOUT, J.K: ‘Corner stitching: a data-structuring tech-
nique for VLSI layout tools’, I E E E Trans. Computer-Aide,l Design,
1984, CAD-3, pp. 87-100

2 SAMET, H.: ‘The design and analysis of spatial data slructures’
(Addison-Wesley, New York, 1990)

3 SAMET, H.: ‘Applications of spatial data structures’ l4ddison-
Wesley, New York, 1990)

4 ROSENBERG, J.B.: ‘Geographical data structures compared: a
studv of data structures supporting region queries’, IEEE Trans.
Compter-Aided Design, 198i.CAD-k pp. 53-67

5 OUSTERHOUT, J.K., HAMACHI, G.T., MAYO, R.N., SCOTT,
W S . and TAYLOR. G.S.: ‘Maeic: A VLSI layout system’. Berkeley . . ~

EECS Rep. UCSICSD 83/154, Dec. 1983
6 MARGARINO, A.. ROMANO, A., DE GLORIA, A. CURA-

TELLI. F., and ANTOGNETTI, P.: ‘A tile-expansion router’, IEEE
Trans. Computer-Aided Design, 1987, CAD-6, pp. 507-517

7 SCOTT, W., and OUSTERHOUT, J.K.: ‘Plowing: interactive
stretching and compaction in Magic’. Proc. 21st IEEli Design
Automation Conierence, June 1984, pp. 180-187

8 BROWN, R.L.: ‘Multiple storage quad trees: A simpler faiter alter-
native to bisector list quad trees’, IEEE Trans. Computer-Aided
Design, 1986, CAD-5, pp. 413-419

9 WEYTEN, L., and DE PAUW, W.: ‘Quad-list quad tree: a geo-
metrical data structure with improved performance for large regon
queries’, I E E E Trans. Computer-Aided Design, 1989. CADJ ,
pp. 229-233

10 PITAKSANONKUL, A., THANAWASTIEN, S.. and LURSIN-
SAP, C.: ‘Bisection trees and half-quad trees: memory and lime efti-
cient data structures for VLSI layout editors’. I N T E G R A T I O N , the
VLSI J., 1989, No. 8, pp. 285-300

1 I KUO, Y.S., HWANG, S.Y., and HU, H.F.: ‘A data structure for fast
region searches’. I E E E Design & Test Comput., October 1989,
pp. 20-28

I E E PROCEEDINGS-€, Vol. 140, No. 3, A1.4Y 1993

I2 HSIAO, P.Y., and FENG, W.S.: ‘An edge-oriended compaction
scheme based on multiple storage quad tree’, I E E E Proc. ISCAS,
June 1988. pp. 2435-2438

13 HSIAO, P.Y., and FENG, W.S.. ‘Using multiple storage quad tree
on a hierarchical VLSI compaction scheme’, IEEE Trans.
Computer-Aided Design, 1990, CAD-9, pp. 522-536

14 GOURLEY. K.D., and GREEN, D.M.: ’A polygon-to-rectangle
conversion algorithm’, I E E E Comput. Graph. Appl., 1983, 3, pp
31-36

15 FERRARI, L., SANKAR. P.V., and SKLANSKY, J . : ‘Minimal rect-
angular partition of digitized blobs’, Comput. Visiun, Graph. lrnaye
Proc., 1984, 23, pp. 58-71

16 IMAI, H., and ASANO. T.: ‘Efficient algorithms for geometric
graph search problems’, S l A M J . Comput., 1986, 15, pp. 478-494

I7 LIOU. W.T., TAN, J.J.M., and LEE, R.C.T.. ’Minimum rectangular
partition problem for simple rectilinear polygons’, I E E E Trans.
Computer-Aided Design, 1990, 9, (7), pp. 720-733

18 TSAI, C.C., CHEN, S.J., HSIAO, P.Y. and FENG, W.S.: ‘A new

iteration construction approach to routing with compacted area’,
I E E Proc. E, Computers and Digital Techniques, 1991, 138, (I) , pp.
57-71

19 HSIAO, P.Y., and TSAI, C.C.: ‘A new plane-sweep algorithm based
on spatial data structure for overlapped rectangles in 2-D plane’.
IEEE 14th Int. Computer Software & Applications Conference,
1990, pp. 347-352

20 HSIAO, P.Y., and JANG, L.D.: ‘On VLSI layout systems’ spatial
data structures: the binary balanced quad list quad trees’. Submitted
to I E E E Trans. Computer-Aided Design

21 HSIAO, P.Y., and LIN, CHIAO-YI.. ‘Minnnum partition for the
space regon of VLSI layout’. Accepted for publication in the 5th
International Conference on VLSI Design, Bangalore, India , Jan.
1992

22 HSIAO, P.Y., and YAN, J.T.: ‘PC-UNION: a low cost IayoLit tool
for consumer IC design’. Int. Symp. on IC Design, Manufactui e and
Applications Conference, Singapore, Sep. 1991, pp. 452-457

I E E PROCEEDINGS-E, Vol. 140, No. 3, M A Y 1993 153

