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Abstract: An optimal tile partition (OTP) is pre- 
sented for partitioning the space region of a VLSI 
layout plane into rectangular space tiles. It modi- 
fies the corner stitching data structure to optimise 
the space tile partition. There is a serious 
restriction in the original corner stitching data 
structure, i.e. the solid rectangles cannot overlap 
each other, whereas our OTP allows overlapping. 
This paper also shows three theorems with rigor- 
ous proofs and experimental results to obtain the 
minimal number of the space tiles through the 
OTP. Moreover, a dynamic plane-sweep algo- 
rithm based on region query for the OTP has 
been developed. Using the OTP, the memory 
efficiency and the local query operations of the 
original corner stitching data structure have been 
enhanced. 

1 Introduction 

To represent a number of ‘solid rectangles’ in a two- 
dimensional VLSI layout plane, many efficient spatial 
data structures [2-41 have been presented for the design 
of various layout tools. ‘Corner stitching’ [l] is one of the 
well known data structures for designing layout editor 
[SI, router [SI, compactor and plower [7]. It provides a 
variety of powerful local region query operations, such as 
neighbour finding, point finding, area searches, directed 
area enumeration and channel finding. Corner stitching 
was originally incorporated into the Magic VLSI system 
[5] and has contributed to the success of the system. 

The primary idea of corner stitching is to divide the 
space region of a layout plane, which consists of various 
nonoverlapped solid rectangles, into ‘space tiles’ by using 
‘horizontal partition edges’ [l] or by using ‘vertical parti- 
tion edges’. For example, a layout with five non- 
overlapped solid rectangles can be represented by 
horizontal partition (HCSP), or vertical partition (VCSP) 
as illustrated in Fig. 1 and Fig. 2, respectively. Since the 
number of space tiles from HCSP or VCSP 
( 1  HCSP I = 13, I VCSP I = 14) is not minimal, neither 
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HCSP nor VCSP is an optimal tile partition (OTP) An 
OTP should partition the space region into a minimal 
number of space tiles [21]. Fig. 3 and Fig. 4 show 
the horizontal oriented OTP (HOTP) and the vertical 
oriented OTP (VOTP) for the same layout, where the 
number of space tiles, I HOTP I = 1 VOTP I = 11. 

In corner stitching representation, as described in Ref- 
erence 1, the space region is partitioned into space tiles 

1 

I l3 

Fig. 1 Horizontal partition by corner stitchlng, HCSP 

Fig. 2 Vertical partition by corner stitching, V C S P  
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such that no space tile has other space tiles immediately 
to its left or right. In a layout with N nonoverlapped 
solid rectangles, there will be no more than 3N + 1 space 
tiles. Hence, in the worst case, the memory requirement 
for corner stitching is three times more than that for 

1 

Fig. 3 The horizontal oriented optimal tile partition, HOTP 

6 

I l l  

--@ 
Fig. 4 The uertical oriented optimal tile partition, V O T P  

linked lists. To obtain a minimal number of space tiles, as 
presented in the following sections, will promote the 
memory efficiency and the local search speed. 

The neighbouring solid rectangles and space tiles are 
linked together at their corners (hence the name ‘corner 
stitching’). Referring to Fig. 5 ,  the four corner stitches 
(pointers) are the top-right stitch (tr), the right-top stitch 
(rt), the left-bottom stitch (lb), and the bottom-left stitch 
(bl), respectively. When a solid rectangle is deleted from 
or inserted into the layout, these pointers are easily 
updated. 

rt 

A 

t 
Ib 

Fig. 5 Using Jour corner pointers to connect the neighbouring 
rectangles 
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In this paper we present the general rules for treating 
the OTP (HOTP and VOTP) along with theoretical dis- 
cussion and rigorous proofs. Also, we shall present our 
algorithm, the plane-sweep OTP. In our approach, we 
use the quad list quad tree (QLQT) data structure [9] to 
store the layout information of the solid rectanglzs. This 
data structure provides a fast region query speed. The 
plane-sweep OTP algorithm first uses the plane-sweeping 
technique and region queries on the QLQT, to determine 
some parameters (such as those defined in Section 5) and 
enumerate a set of candidates for critical partition edges 
(CPE). A CPE is basically a space tile edge extending 
between corners of two solid rectangles and will ccrtainly 
appear in both the HOTP and VOTP (refer to Fig. 6 and 
Section 2 for its formal definition). Second, an elim- 
ination algorithm is applied on the enumerated set to 
obtain a subset of non-intersected CPEs. Next, the outer 
edges of all clusters of intersected rectangles are traced. 
Then with the nonintersected CPEs and outer edges, the 
HOTP and VOTP are obtained by applying the plane- 
sweep algorithm again. 

Fig. 6 

2 Preliminary definitions and modelling 

Before presenting the OTP, we assume the layout plane is 
large enough so that the solid rectangles are iricluded 
entirely inside the layout plane. In other words, the edges 
of the solid rectangles are never located outside or 
exactly at the boundary of the layout plane. Some formal 
definitions used in later parts of this paper now follow. 

DeJinition I: partition edge ( P E ) .  The ‘partition edge’, as 
shown in Fig. 7, is a vertical or horizontal line segment, 

The critical partition edges by the H O T P  and the VO TP 

1 1 
Fig. 7 Each dashed line segment representing a reliable partit on edge. 
The whole partition in the figure shows an example of reliable partition 
edge 
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which satisfies the following two conditions, used to par- 
tition the spacing region of a given layout: 

(i) All the interior points of the line segment must be 
included inside the space region. 

(ii) The end points of the line segment must locate 
exactly at the boundary rectangle of the layout plane, the 
edge of a solid rectangle, the corner of a solid rectangle, 

Definition 2: reliable partition edge (RPE) .  A partition 
edge satisfying the condition that at least one of its end 
points is locating at the corner of a solid rectangle is 

w 

Definition 3: reliable tile partition (RTP) .  For a given 
layout, the ‘reliable tile partition’ (see Fig. 7) is a partition 
of space region by reliable partition edges only and each 
corner of the solid rectangles should intersect with at 
least one end point of the reliable partition edge except 
those corners overlapped with other solid rectangles. w 

Note that for a given layout, there may be a number of 
different reliable tile partitions. From definition 3, it is 
obvious that the partition of original corner stitching 
partition is a kind of reliable tile partitions. As such, Fig. 
1 to Fig. 4 are reliable tile partitions of the same layout. 
Among the possible reliable tile partitions there must be 
some which possess the minimal number of partitioned 
space tiles. Those reliable tile partitions with minimal 
number of space tiles are called ‘optimal tile partitions’ 
(OTPs). In this paper, we will focus our argument on two 
of the most important OTPs: the horizontal oriented 
OTP (HOTP) and the vertical oriented OTP (VOTP). 

Definition 4 :  horizontal oriented optimal tile partition 
(HOTP) .  A horizontal oriented optimal tile partition is 
defined as a reliable tile partition which has a minimal 
number of partitioned space tiles and satisfies the condi- 
tion that changing any one of its vertical reliable parti- 
tion edges into a horizontal reliable partition edge 
(leaving the end point intersected with the corner of the 
solid rectangle unchanged) will increase the number of 
space tiles. w 

Note that most of the reliable partition edges of the 
HOTP are horizontal. If any of the horizontal reliable 
partition edges is changed into a vertical one, the number 
of space tiles ( 1  S P T  I ) must be the same. Moreover, both 
of the original horizontal reliable partition edge and the 
updated new vertical reliable partition edge should have 
a same end point intersected with the corner of the solid 
rectangle. 

Definition 5 :  vertical oriented optimal tile partition 
(YOTP) .  VOTP is defined as a reliable tile partition 
which has a minimal number of space tiles and satisfies 
the condition that changing any of its horizontal reliable 
partition edges into vertical reliable partition edge 
(keeping the end point intersected with the corner of a 
solid rectangle unchanged), will increase the number of 

w 

Dejnition 6: critical partition edge ( C P E ) .  For a given 
layout, the vertical reliable partition edges appeared in 
the HOTP and the horizontal reliable partition edges 
appeared in the VOTP are defined as ‘critical partition 

It is obvious that the CPEs play a key role in finding 
the general partition rules for HOTP and VOTP. Notice 

or the interior point of another partition edge. 

defined as a ‘reliable partition edge’. 

space tiles (see Fig. 4). 

edges’ (refer to Figs. 3,4 and 6). 
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that an OTP is obtained from a set of nonintersecting 
CPEs and other reliable partition edges. We know that 
the minimal I SPT I can be calculated from the minimal 
total number of edges of space tiles ( I Espt I ). That means 
the minimal I SPT I equals the minimal I Espt I divided by 
four. As a result, to solve the problem of the HOTP and 
the VOTP, we should focus our argument on II:sptI 
instead of directly counting I S P T  1 .  And the following 
theorem gives a classification of the Espt. It would be 
helpful for the discussion in the following Section. 

Theorem I :  For a given layout with Nsor overlapped 
solid rectangles, L = {Ri 1 i = 1 ,  2, . . . , N,,,} ,  the minimal 
number of the edges of the space tiles ( 1  Espt Jmin) can be 
calculated from the number of the boundary edges of the 
whole layout ( I E b r l ) ,  the number of the edges of the 
solid rectangles ( I Esor 1 ) and the number of reliable par- 
tition edges for the HOTP or the VOTP ( 1  Erpe lo,J In 
other words, 

I OTP I = I m t  ~ 1 4 ,  (1) 

(2) 
Where I OTP I denotes the minimal I SPT 1 partitioned by 
the HOTP or the VOTP and f ( . )  means an algebraic 
function with three variables. 

Proof: As each space tile has four orthogonal boundary 
edges, eqn. 1 is obvious. 

Each edge of space tile may come from six different 
sources, namely Ebr, Esor, Erpe, segment of Ebr, segment 
of Esor, and segment of Erpe. However, the segment of 
Ebr is produced by the intersection between Ebr and 
Erpe, hence the number of partitioned segments of Ebr 
can be determined by 1 Ebr 1 and 1 Erpe lot,. For the same 
reason, the number of partitioned segments of Esor can 
be determined by I Esor I and I Erpe l o t p .  Similarly, since 
the segment of Erpe is produced by the crossover 
occurred between a couple of Erpe, the number of parti- 
tioned segment of Erpe can be determined by IErpeI,,, 
itself. Therefore, we conclude that 

I Espt I m L n  = function of I Ebr 1 ,  I Esor 1 ,  and I Erpe l o r ,  

= f (  I Ebr I , I Esor I , I E v e  I,,,) 

(3) 
From eqns. 1 and 3, eqn. 2 is proven. QED 

3 

Our discussion is now limited to finding out the general 
rules for the HOTP and the VOTP but not for the other 
kinds of OTP. To obtain the final equation of the general 
tules shown in theorem 3 in Section 5 ,  first, the given 
layout should be restricted by some assumptions, and 
secondly, those assumptions are removed step by step so 
that the final partition rules presented in theorem 2 can 
solve any kind of the given layout with a large number of 
overlapped rectangles. 

Lemma 1:  For a given layout with Nsor solid rectangles 
satisfying the following three assumptions: 

Assumption I :  The solid rectangles are disjointed 
(nonoverlapped). 

Assumption 2: The reliable partition edges are disjointed 
(nonintersected). 

Horizontal oriented OTP and vertical oriented 
OTP 
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Assumption 3 :  Each reliable partition edge, starting from 
the corner of solid rectangle must end at the edge of solid 
rectangle or at the boundary edge of the layout plane but 
not end at the corner of the other solid rectangles or at 
the other reliable partition edge. 

Eqns. 4-7 must hold: 

l O T P l =  IHCSPl ( 4 )  

= I VCSPl (5) 

= [ IEbr l  + [Esor l  + IErpe*1]/4 ( 7 )  

= 14 + ( 4  * Nsor)  + (2 * ( 4  * Nsor ) ) ] /4  (6) 

where I Erpe* I = 2 * I Erpe l D f P .  

Proof: According to theorem 1, the I Espt l m i n  comes from 
l E b r ( ,  IEsorl ,  ( E r p e I ,  lsegment of E b r l ,  lsegment of 
Esorl and lsegment of ErpeI.  Here, it is obvious that 
1 Ebr I = 4 and I Esor I = 4 * Nsor.  From definition 3 and 
assumption 1 and 3, we have I Erpe I = 4 * Nsor.  Further- 
more, assumption 2 implies that I segment of Erpe I = 0. 

According to assumption 3, consider line segments 
shown in Fig. 8, p p l ,  r-rl and i-il which are reliable 
partition edges starting from the corner of solid rectangle 

L I A 
C 

Fig. 8 
equal to I segment of Ebr I + 1 segment of Esor I = I Erpe 1 

Examplefor proving that the number of new’ generated Espt is 

and ending at the Ebr. Each of them partitions the Ebr or 
segment of Ebr into two edges of space tiles. For the 
same reason, each reliable partition edge of 4-41 and 
s-sl will partition the Esor or segment of Esor into two 
edges of space tiles. Consequently, the number of new 
space tiles generated from the intersections between reli- 
able partition edge and Ebr (or Esor) is equal to I Erpe 1 .  
In other words, the sum of the I segment of Ebr 1 and the 
I segment of Esor 1 equals the 1 Erpe 1 .  Hence, we have 

lOTPl = { I E b r l  + IEsorl + /Erpe l  

+ [ I  segment of Ebr I + I segment of Esor 11 
+ I segment of Erpe I } / 4  (8) 

(6)  

( 7 )  

Furthermore, from definition 6,  every reliable partition 
edge under the above three assumptions is not a CPE. 
Thus we conclude that the HOTP and the HCSP are 
equal and, likewise, the VOTP and VCSP are equal. 

QED 

= [ 4  + 4 * Nsor + IErpeJ + IErpel + 0 ] / 4  

= [4 + 4 * Nsor + 2 * ( 4  * Nsor ) ] /4  

= [ [ E b r l  + lEsorl + IErpe* j ] /4  

Hence eqns. 4 and 5 hold. 
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If there is a reliable partition edge violating ‘issump- 
tion 3 and whose end point is exactly intersected with the 
corner of the other solid rectangle, then the reliable parti- 
tion edge is called the candidate critical partition edge 
(CCPE). Most of the CCPEs will become CPEs as shown 
in Fig. 6. However, some of them will disappear in the 
HOTP or the VOTP. 

Lemma 2: For a given layout with Nsor solid rectangles 
satisfying assumptions 1, 2‘, 4, and 5, eqns. 8 and 9 must 
hold. 

Assumption 2’: The reliable partition edges do not cross 
over with each other. But the end point of reliable parti- 
tion edge may touch the other reliable partition edge. 

Assumption 4 :  All the CCPEs existing in the given layout 
must be built up. 

Assumption 5 :  There is no double corner for an) pair of 
CCPEs. A double corner as shown in Fig. 9 is a corner of 

Fig. 9 
double corner 

The bottom-leji corner of solrd rectangle I repnsenting a 

solid rectangle such that both of its orthogonal reliable 
partition edges are CCPEs. 

l O T P l = { 4 + ( 4 * N s o r )  

+ 12 * (4  * Nsor)  - (4  * N c c p e ) ] } / 4  (8) 
= ( I Ebr I + I Esor I + I Erpe** 1)/4 (9) 

where 
Nccpe is the total number of CCPEs in the given layout. 

I Erpe** I = 2 * [ (4  * Nsor )  - (2 * Nccpe)]  and 

Proof: The discard of assumption 3 and the modification 
from assumption 2 to 2 imply that some of the reliable 
partition edges become the CCPEs. The difference 
between lemma 1 and lemma 2 comes from the influence 
of the CCPEs. Assumption 4 says that every CCPE must 
be built up. However, assumption 5 gives a restriction so 
that the complicated situation (the existence of the 
double corner) is excluded from this lemma. As a result, 
the proof should focus on the influence of each simplified 
and separated CCPE. 

From lemma 1 ,  each corner of solid rectangle will 
project exactly one reliable partition edge for the OTP. 
Consider Fig. loa, each projected reliable partition edge, 
ec, will increase two edges of space tiles: splitting ub to ac 
for SI and bc for S2,  and extending de to cd for SI and ce 
for S2 ,  where SI and S2  stand for two new generated 
space tiles. However, if the projected reliable partition 
edge is a CCPE, then the CCPE will nullify two corners 
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of different solid rectangle. According to Fig. lob, each 
CCPE generates zero edge of space tiles: both BC and 
AC for S4, and both A D  and BD for S2 .  Hence, conse- 
quently, we obtain that the (Esptl generated from the 

a C b 

I C I 

sj  " 3': , 
D 

I I 

a b 

Fig. 10 
U A normal reliable partition edge increases two edges of space tiles 
h A CCPE will not generate any new edge of space tiles 

Example for prooing lemma 2 

reliable partition edges (some of them are CCPEs), which 
defined as I Erpe** 1 ,  is equal to 2 * ( I Erpe I - 2 * Nccpe). 
Then, from theorem 1 and eqns. 6 and 7, we have 

I O T P J = ( I E b r I  +lEsor)  +IErpe**1)/4 (9) 

= {4 + (4 * Nsor) + [2 * I Erpe I - 4 * Nccpe]}/4 

= (4 + (4 * Nsor) 

+ [2 * (4 * Nsor) ~ (4 * Nccpe)]}/4 (8) 

QED 

In lemma 2, firstly, all the CCPEs are built up, and then 
the normal reliable partition edges are linked up. All the 
reliable partition edges are allowed to touch the other 
reliable partition edge by their end points, but are for- 
bidden to cross over each other. Fig. 1 1  shows the parti- 
tion process of the HOTP, where the source layout has 
one CCPE. 

U 

L I 1  I 

a b 

An H O T P  example to ihs t ra te  the partition proress of Fig. 11 
lemma 2 
a The source layout and the CCPE 
b After the HOTP, the reliable partition edge* and 3 should not cross over the 
other reliable partition edge p4 

To completely solve the problem of OTP, the above 
assumptions (1, 2', 4, 5) must be removed one by one. In 
other words, we have to solve the following three sub- 
problems 

(i) how to eliminate the crossovers among the CCPEs 
(ii) how to correctly maintain the OTP while the 

(iii) how to partition a group of overlapped solid rec- 
double corners exist 

tangles. 
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4 Eliminating crossovers and redundant double 
corners 

4.1 Algorithm for optimising crossovers and double 
corners 

The crossover of any pair of reliable partition cdges 
(including CCPEs) does inherently increase the number 
of space tiles except one horizontal CCPE cross over one 
vertical CCPE only (including 'single double corner' 
which means that a double corner does not connect with 
the other double corners through the CCPEs). For an 
OTP, to remove assumption 2' will not affect the number 
of space tiles. However, if we try to remove assumption 2' 
and 4 at the same time, the conflict that for a random 
layout there may be some CCPEs which cross over each 
other does exist. 

To remove assumption 2', 4 and 5 at the same time, 
this Section presents an elimination algorithm to discard 
some of the CCPEs to make all of the remaining CCPEs 
not crossing and all of the double corners disappear. This 
algorithm is designed to reserve a maximal number of 
disjointed CCPEs, because the more the amount of dis- 
jointed CCPEs is, the less the amount of space tiles will 
be. 

Elimination algorithm: This algorithm will eliminate some 
of the redundant CCPEs to make all of the remaining 
CCPEs disjointed. That means after elimination there 
will be no more crossover and no more intersection at 
the same double corner for each pair of CCPEs. 

Step 1 
Build up all the CCPEs for the given layout. 

Step 2 
Put the intersected CCPEs into a group Gi. 
Put the non-intersected CCPEs into a group Gn. 
(All the CCPEs intersected at their end points or 
interior points are put together into Gi. For example, 
the set of the dashed line segments shown in Fig. 12 is 
partial of Ci.) 

V30 V9 
r - ; - - -eH1 ........ 

...... ....... 
................... 

....... ..... .... "5 

...... 

+ three double contiguous corners 

Fig. 12 
Each dashed line segment represents one CCPE 
The Intersection points occurred between ( V 2 ,  H J ,  (H&. V5), and ( V 5 ,  H , )  are 
double corners 

Example for illustrating a group of connected CCPEs 

Step 3 
Let all the vertical CCPEs in Gi labelled VI, I. . . . . .  
F, be a set Su. 
Let all the horizontal CCPEs in Gi labelled H , ,  H ,  , 
.... H,, be a setSlr. 
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Step 4 
Mark Su, do reduction function. We obtain a new 
group Gu of disjointed CCPEs. 
Mark Sh, do reduction function. We obtain a new 
group Gh of disjointed CCPEs. 

If lGhl > IGul, then the set of maximal disjointed 
CCPEs, Sd, is the union of Gh and Gn; else, Sd is the 
union of Cu and Gn. 

Stop. 

Step 5 

Step 6 

Reduction function: This function will be used in the 
elimination algorithm. 

Step I 
Let the marked set be Sm, the unmarked set be Su and 
the temporary group Gt be the group Gi. 

Classify the group Gt into several subgroups such that 
(i) Each CCPE in Su and all of its intersected CCPEs, 
Gs, in Sm are put in one subgroup. 
(ii) Any pair of CCPEs in Su which their Cs are the 
same must be put into same subgroup. So that each 
CCPE in Su should belong to one and only one sub- 
group. 

(From Fig. 12, there are six subgroups, such as {VI, H 6 } ,  

Step 2 

{ V 2 ,  V,, H , ,  HK}, {Va, H i ,  H 2 ,  H , ,  H , ,  Hi,, Hi,}, { V s ,  
H , ,  H9}, { V , ,  V, , H , ,  H ,  , H , } ,  and [ vs, V9, Vi,, H , ,  
H 5 ,  H 6  3 H 7 } . )  

Step 3 
For each subgroup, do  the following statement: 
If ( I unmarked CCPEs I > I marked CCPEs 1 ) then: 
(i) Delete the marked CCPEs from Gt and all of the 
subgroups. 
(ii) Mark the homologous unmarked CCPEs in Gt. 
(iii) Remove this subgroup. 

Go to step 3 until there is no subgroup satisfying the 
condition described in step 3. 

(Fig. 13 shows how the process is undergoing in steps 3 
and 4 for the example illustrated in Fig. 12). 

Step 4 

1 delete Hg, mark V5 
deleteH4.H5,markV6.V7 I 

C 

delete He. mark V1 
delete Ha. mark V2 ,V, 

b 

d 

Fig. 13 After the process ofs tep 4 in reductionfunction, only one sub- 
group, { V,. HI, H , ,  H , ,  H , , ,  H , , ] ,  is not remotied. Six CCPEs, uiz. H , ,  
H,,  H, ,  H,, H , ,  and H , ,  are deleted in this step 

Step 5 
Delete all the unmarked CCPEs in Gt, the remaining 
CCPEs in Gt are disjointed now. 
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(For the group shown in Fig. 12, V3 will be deleted. Fig. 
14 shows the final result of Fig. 12 after the elimination of 
this algorithm). 

O------.H1 
V9 

.......... H 
v2 e - - - - - - a H j  

? v, 
, I * ,  

I t  
, I  , I  

.......... *H 

Fig. 14 After the process of the elimination algorithm, 14 disjointed 
CCPEs are reserved from the 21 connected CCPEs shown in Fig. 12. 
Note that the double corners have disappeared 

Step 6 
Stop. 

4.2 The OTP is superior to the corner stitching 
partition 

According to lemma 1, 2, and the elimination algorithm 
shown above, lemma 3 (below) is proposed to remove 
assumptions 2’, 4,  and 5 at the same time. Subsequently, 
theorem 2 will prove that for a nonoverlapped layout 
(assumption l) ,  our OTP (HOTP or VOTP) is indeed 
superior to the corner stitching partition (HCSP or 
VCSP). 

Lemma 3; For a given layout with Nsor solid reciangles 
satisfying assumption 1, eqns. 10 and 11 must hold. 

IOTPl = { 4  + ( 4  * Nsor)  

+ 12 * (4 * Nsor) - ( 4  * Nccpe*) ] } /4  (10) 

(1 1) = (IEbrl + IEsorl + IErpe***1)/4 

where I Erpe*** I = 2 * [ (4  * Nsor) - (2 * Nccpe*) J, and 
Nccpe* is the maximal number of disjointed (3CPEs 
which are obtained by applying the elimination algo- 

W 

Proof: For an OTP, because each corner of solid rect- 
angle needs one and only one reliable partitiori edge, 
hence one of the CCPEs of the double corner is 
redundant. It has to be deleted from the OTP. On the 
other hand, the crossover of any pair of CCPEs will 
increase or not change the number of space tiles. Each 
crossover also have to be avoided in the OTP As a 
result, by applying the elimination algorithm to obtain 
the maximal value of Nccpe* from the original Nccpe, 
eqn. 8 has to be updated to eqn. 10. Thus the 1emma.QED 

Theorem 2: For a given layout with a number of non- 
overlapped solid rectangles, the number of the space tiles 
partitioned by the OTP is not larger than that parti- 
tioned by the corner stitching partition. Hence, we have 

rithm to all of the CCPEs in the given layout. 

lOTPl > IHCSPl  (12) 

l O T P l <  I VCSPI (13) 

and 

W 

Proof: As mentioned before, the I O T P  I can be calculated 
from eqn. 10. For the same reason, the following two 
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equations hold for corner stitching partition 

I H C S P  1 = ( 4  + ( 4  * Nsor)  

+ [2 * ( 4  * Nsor)  - ( 4  * N h c c p e ) ] } / 4  (14) 

I VCSP j = (4 + ( 4  * Nsor)  

+ [2 * (4 * Nsor)  - ( 4  * Nuccpe)] } /4  (15) 
where Nhccpe (Nvccpe)  represents the total amount of the 
horizontal (vertical) CCPEs for the HCSP (VCSP). 

Therefore, to prove eqns. 12 and 13 we need to prove 
that 

Nccpe* 2 max {Nhccpe, Nvccpe} (16) 
To prove eqn. 16, let us consider the connectivity of the 
CCPEs: 

(i) If all of the CCPEs are disjointed (no crossover and 
no double corner), then 

Nccpe* = Nccpe = Nhccpe + Nvccpe 

Hence eqn. 16 is true. 
(ii) If some of the CCPEs are jointed, according to the 

elimination algorithm, the number of CCPEs remaining 
in the OTP must be larger than or equal to Nhccpe 
(Nuccpe).  Hence eqn. 16 is true. Thus the theorem. QED 

5 Concerning the overlapped rectangles 

In lemma 3 and theorem 2, the given layout is limited to 
the nonoverlapped solid rectangles. For a number of 
overlapped solid rectangles in the 2-D plane, we should 
find them to get some value. Some items defined below 
will be useful in proving theorem 3 which is the final and 
most important theorem of this paper. 

For a given layout with overlapped rectangles, we 
define that: 

(i) N i c :  the number of the inactive corners. 
An inactive corner is a corner of solid rectangle such 

that from which there is no reliable partition edge shot 
out in the OTP. For example, the inactive corners in Fig. 
15a are corners of H ,  I ,  J ,  K ,  and L .  

(ii) N a c :  the number of the active corners. 
If the corner of solid rectangle is not an inactive 

corner, then it is called an active corner. Hence, in Fig. 
15a, the corners of A ,  B, C ,  D ,  E, F, and G are active 
corners. 

From the definition of Nic  and Nac,  if the given layout 
has no overlapped solid rectangle, then N i c  = 0 and 
N a c  = 4 * Nsor. 

(iii) Nisor: the total number of intersected (overlapped) 
solid rectangles in the given layout. 

(iv) Noe: the number of Manhattan edges located 
between the SPTs and the boundary of the overlapped 
solid rectangles. Such a Manhattan edge is also called an 
outer edge. In other words, an outer edge is the contour 
edge of the hole (containing in overlapped solid 
rectangles) and the overlapped rectilinear polygon. For 
example, in Fig. 15a and b, we have N o e  = 10 and 

a b C 

Fig. 15 
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Example illustration for  defining Nic ,  Nac, Nisor, and Noe  

Noe  = 20, respectively. The outer edges in Fig. 15a are 
A B ,  B M ,  M C ,  CD, D N ,  N E ,  EF, FL, LG, and C A .  

Similarly, from the definition of Nisor and Noe,  if the 
given layout has no overlapped solid rectangle, then 
Nisor = 0 and N o e  = 0. However, for some cases, Noe 
may be larger than 4 * Nisor; for example, in Fig. 1 5 ~ .  we 
have N o e  ( =  12) > 4 * Nisor (=8). 

Theorem 3; For a given layout with a number of over- 
lapped solid rectangles, eqn. 17 must hold. 

I O T P I  = (4 + {[4 * (Nsor  - Nisor)] + N o e }  

+ { 2 * [(4 * Nsor) - ( 2  * Nccpe*) - Nic]  }}/4 

(17) 

(18) = ( I  Ebrl + I Esor* 1 + I Erpe**** 1)/4 

where 

1 Esor* I = 4 * (Nsor  ~ Nisor) + N o e  

and 

1 Erpe**** I = 2 * [(4 * Nsor) - (2 * Nccpe*) - Nic  I W 

Proof: Consider eqn. 10 in lemma 3, if the given layout 
has no overlapped solid rectangles, then Nisor = 0, 
Noe = 0 and Nic = 0. Therefore, eqn. 17 can be degcner- 
ated into eqn. 10. 

Consider eqn. 11 in lemma 3, if the given layout has 
Nisor overlapped solid rectangle, then the I Espt I should 
decrease 4 * Nisor;  however, the generated outer edges 
will increase the I Espt I by N o e .  Therefore, the I Espt I par- 
titioned by edges of solid rectangle is equal to 
4 * (Nsor  - Nisor) + N o e ;  that means 

I Esor* I = I Esor I ~ 4 * Nisor + N o e  

= 4 * (Nsor  - Nisor) + Noe 

For the same reason, the 1 Espt 1 partitioned by reliable 
partition edges will decrease 2 * N i c ;  hence, we have 

I Erpe**** 1 = I Erpe*** I - 2 * Nic  

= 2 * [ ( 4  * Nsor)  - (2 * Nccpe*) - Nic]  

By combining eqns. 10 and 11 and the values of I E m *  I 
and 1 Erpe****J calculated above, eqns. 17 and 18 have 
been proven. QED 

6 Plane-sweep OTP algorithm 

Consider theorem 3, the elimination algorithm, and the 
plane-sweep technique described in Reference 19, we have 
developed the plane-sweep OTP algorithm (shown 
below). The input of this algorithm is a large number of 
overlapped or nonoverlapped rectangles represented by 
any of the VLSI quad trees [S, 9, 201. After processing by 
this algorithm, the irregular space regions of the original 
layout are partitioned into a minimal number space rect- 
angles so that the designed VLSI layout tools such as 
editor, router, and compactor, will be speeded up and 
require less memory storage. 

O T P  algorithm: 
Begin Apply ‘plane-sweep algorithm’; (see Reference 19) 

for each sweeping-line event do 
Begin Using the region query technique based on the 

quad tree data structure to: 
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Judge whether each solid rectangle is overlapped by 
the other solid rectangles or not; 

(to obtain Nisor) 
Judge whether each corner is covered by the other 
solid rectangles or not; 

(to obtain Nnc) 
For each uncovered corner determine the possible 
CCPE; 

(to obtain Nccpe) 
End ; 
if (Nccpe # 0) Apply elimination algorithm to get the 
maximum set of nonintersected CCPEs; 

(to obtain Ncpe)  
(The elimination algorithm eliminates redundant 
CCPEs and the remaining CCPEs will not intersect 
each other) 
if (Nisor # 0) Apply the plane-sweep algorithm and 
region query technique again to decide whether each 
edge is an outer edge or not; 

(to obtain NOP) 
Apply plane-sweep algorithm to the source layout and 
the remaining CCPEs, and then output the spacing 
rectangles by the optimal tile partition; 

End. 

7 Result and conclusion 

This paper presents an optimal tile partition method 
which is superior to the partition of corner stitching. 
Table 1 illustrates some experimental results for the OTP 

Table 1 : Experimental results based on IBM/386PC for the 
OTP and the corner stitching partition 

No of Experimental results 
rectangles 

IOTPl IHCSPI IVCSPl Runtime Improvement 
= 1 HOTPI for OTP. of speed and 
=IVOTPI S memory 

17 31 36 37 1 32 1507% 
52 97 107 111 302  1098X 
92 169 186 208 445 1 4 2 1 ” ~ ~  

150(Fig16)  270 319 326 1532 1628% 
200 320 363 410 2363 17 21% 

and the corner stitching partition. Besides the theoretical 
discussion and their rigorous proofs, we also give a prac- 
tical elimination algorithm and the OTP algorithm in 
detail. Furthermore, our O T P  algorithm can be applied 
to a given layout with both nonoverlapped and over- 
lapped rectangles. Another experiment result shown in 
Fig. 16 and the dotted area of Table 1 took 15.32 seconds 
to obtain our I OTP I = 270, which is less than both the 
original JHCSPI = 319 and 1 VCSPJ = 326. In this 
example, the presented OTP has improved the finding- 
speed and the memory efficiency by about 16.28% with 
respect to those of the corner stitching data structure. 
The source code was written in C-language under 
MS DOS and ran on the IBM/386 compatible micro- 
computer. 

The technique of the OTP not only can be used to 
improve corner stitching but also can be extended to 
promote the region query operations for the space rect- 
angles represented by quad trees [S-1 01 and dynamic 
bucket data structure [ I l l .  With the assistance of the 
OTP, the corner stitching and the quad trees are able to 
be applied to solve the problems of layout editing [22], 
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routing, plowing and compaction [6, 7, 12, 131 more effi- 
ciently. 

b 

Fig. 16 This tested random layout took 1 5 3 2 s  to ohrain our 
IOTPJ = J H O T P J  = 1 V O T P l  = 270, which I S  less than both of the orrg- 
mal I HCSP I = 319 and I V C S P  I = 326 
a Nsor = IS0 N c p e  = 179 IVOTPI = 278 
h Nsor = 150, Ncpe = 179 1 HOTPI = 278 

8 References 

1 OUSTERHOUT, J.K: ‘Corner stitching: a data-structuring tech- 
nique for VLSI layout tools’, I E E E  Trans. Computer-Aide,l Design, 
1984, CAD-3, pp. 87-100 

2 SAMET, H.: ‘The design and analysis of spatial data slructures’ 
(Addison-Wesley, New York, 1990) 

3 SAMET, H.: ‘Applications of spatial data structures’ l4ddison- 
Wesley, New York, 1990) 

4 ROSENBERG, J.B.: ‘Geographical data structures compared: a 
studv of data structures supporting region queries’, IEEE Trans. 
Compter-Aided Design, 198i.CAD-k pp. 53-67 

5 OUSTERHOUT, J.K., HAMACHI, G.T., MAYO, R.N., SCOTT, 
W S .  and TAYLOR. G.S.: ‘Maeic: A VLSI layout system’. Berkeley . .  ~ 

EECS Rep. UCSICSD 83/154, Dec. 1983 
6 MARGARINO, A.. ROMANO, A., DE GLORIA, A. CURA- 

TELLI. F., and ANTOGNETTI, P.: ‘A tile-expansion router’, IEEE 
Trans. Computer-Aided Design, 1987, CAD-6, pp. 507-517 

7 SCOTT, W., and OUSTERHOUT, J.K.: ‘Plowing: interactive 
stretching and compaction in Magic’. Proc. 21st IEEli Design 
Automation Conierence, June 1984, pp. 180-187 

8 BROWN, R.L.: ‘Multiple storage quad trees: A simpler faiter alter- 
native to bisector list quad trees’, IEEE Trans. Computer-Aided 
Design, 1986, CAD-5, pp. 413-419 

9 WEYTEN, L., and DE PAUW, W.: ‘Quad-list quad tree: a geo- 
metrical data structure with improved performance for large regon 
queries’, I E E E  Trans. Computer-Aided Design, 1989. CADJ ,  
pp. 229-233 

10 PITAKSANONKUL, A., THANAWASTIEN, S.. and LURSIN- 
SAP, C.: ‘Bisection trees and half-quad trees: memory and lime efti- 
cient data structures for VLSI layout editors’. I N T E G R A T I O N ,  the 
VLSI J., 1989, No. 8, pp. 285-300 

1 I KUO, Y.S., HWANG, S.Y., and HU, H.F.: ‘A data structure for fast 
region searches’. I E E E  Design & Test Comput., October 1989, 
pp. 20-28 

I E E  PROCEEDINGS-€, Vol. 140, No.  3, A1.4Y 1993 



I2 HSIAO, P.Y., and FENG, W.S.: ‘An edge-oriended compaction 
scheme based on multiple storage quad tree’, I E E E  Proc. ISCAS, 
June 1988. pp. 2435-2438 

13 HSIAO, P.Y., and FENG, W.S.. ‘Using multiple storage quad tree 
on a hierarchical VLSI compaction scheme’, IEEE Trans. 
Computer-Aided Design, 1990, CAD-9, pp. 522-536 

14 GOURLEY. K.D., and GREEN, D.M.: ’A polygon-to-rectangle 
conversion algorithm’, I E E E  Comput. Graph. Appl., 1983, 3, pp 
31-36 

15 FERRARI, L., SANKAR. P.V., and SKLANSKY, J . :  ‘Minimal rect- 
angular partition of digitized blobs’, Comput. Visiun, Graph. lrnaye 
Proc., 1984, 23, pp. 58-71 

16 IMAI, H., and ASANO. T.: ‘Efficient algorithms for geometric 
graph search problems’, S l A M  J .  Comput., 1986, 15, pp. 478-494 

I7 LIOU. W.T., TAN, J.J.M., and LEE, R.C.T.. ’Minimum rectangular 
partition problem for simple rectilinear polygons’, I E E E  Trans. 
Computer-Aided Design, 1990, 9, (7), pp. 720-733 

18 TSAI, C.C., CHEN, S.J., HSIAO, P.Y. and FENG, W.S.: ‘A new 

iteration construction approach to routing with compacted area’, 
I E E  Proc. E, Computers and Digital Techniques, 1991, 138, ( I ) ,  pp. 
57-71 

19 HSIAO, P.Y., and TSAI, C.C.: ‘A new plane-sweep algorithm based 
on spatial data structure for overlapped rectangles in 2-D plane’. 
IEEE 14th Int. Computer Software & Applications Conference, 
1990, pp. 347-352 

20 HSIAO, P.Y., and JANG, L.D.: ‘On VLSI layout systems’ spatial 
data structures: the binary balanced quad list quad trees’. Submitted 
to I E E E  Trans. Computer-Aided Design 

21 HSIAO, P.Y., and LIN, CHIAO-YI.. ‘Minnnum partition for the 
space regon of VLSI layout’. Accepted for publication in the 5th 
International Conference on VLSI Design, Bangalore, India , Jan. 
1992 

22 HSIAO, P.Y., and YAN, J.T.: ‘PC-UNION: a low cost IayoLit tool 
for consumer IC design’. Int. Symp. on IC Design, Manufactui e and 
Applications Conference, Singapore, Sep. 1991, pp. 452-457 

I E E  PROCEEDINGS-E, Vol. 140, No. 3, M A Y  1993 153 


