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Identification of General Fuzzy Measures by Genetic
Algorithms Based on Partial Information
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Abstract—This study develops an identification procedure for
general fuzzy measures using genetic algorithms. In view of the
difficulty in data collection in practice, the amount of input data is
simplified through a sampling procedure concerning attribute sub-
sets, and the corresponding detail design is adapted to the partial
information acquired by the procedure. A specially designed ge-
netic algorithm is proposed for better identification, including the
development of the initialization procedure, fitness function, and
three genetic operations. To show the applicability of the proposed
method, this study simulates a set of experimental data that are
representative of several typical classes. The experimental analysis
indicates that using genetic algorithms to determine general fuzzy
measures can obtain satisfactory results under the framework of
partial information.

Index Terms—Fuzzy measure, genetic algorithm, identification,
partial information.

I. INTRODUCTION

I N multiattribute decision-making reality, fuzzy measures
have been widely used to demonstrate the significance

of attribute subsets [13], [18], [19], [23], [24], [26], [31].
Compared with other types of fuzzy measures, general fuzzy
measures fulfilling the boundary conditions, monotonicity,
and continuity provide more useful information, such as the
characterization of the coupling coefficient, overlap coefficient,
degree of overlap, and necessity coefficient [13], [19]. In recent
years, [7]–[10] and [17] extended Shapley’s idea [21] to define
the interaction between attributes. Based on the Shapley value,
they proposed valuable notions involving the importance of
attributes, interaction indexes, symmetric attributes, and veto
and pass effects.

The identification of general fuzzy measures is a fundamental
task to be capable of using them in practice. [13] developed a
fuzzy measure learning identification algorithm (FLIA) to de-
termine fuzzy measure values. However, FLIA only considers
the overall evaluation of an alternative as the solution objective;
thus, the exact patterns of degrees of importance for all subsets
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are still unknown. Thus, [19] took the evaluation of an alterna-
tive in each subset into consideration. To reduce the difficulty
in data collection, they used, as a convenience, the weighted
mean of single-attribute evaluations to replace the evaluation of
a subset. Such a way represents that fuzzy measures are additive,
but this additivity assumption is quite unnecessary for general
fuzzy measures. References [7] and [11] proposed an identifi-
cation method based on quadratic programming algorithms, and
the method produced good results.

Although several studies have been made on general fuzzy
measure identification, most of them did not consider the dif-
ficulty in data collection. Suppose that the universal set has
attributes. We must collect the data of human-provided mea-
sure values of subsets to determine general fuzzy mea-
sures. From the practical standpoint, this requirement is highly
infeasible and is hardly implemented in many realistic prob-
lems. Thus, we use a sampling procedure of attribute subsets
[1] to capture enough partial information and then develop an
identification procedure to acquire the values of general fuzzy
measures.

References [15], [28], and [30] used genetic algorithms to de-
termine -fuzzy measures [23]. According to their successful
experiences, we employ genetic algorithms [3], [6] as the solu-
tion strategy for general fuzzy measure identification. Recently,
[27] applied genetic algorithms to determine the nonadditive
set function. When their method is applied in multiattribute de-
cision making, the situation of information insufficiency may
occur in real-life problems. That is, the data provided by the in-
dividual information sources cannot certainly cover most of the
attribute subsets. The detailed discussion will be clarified later.
On the contrary, the author’s sampling procedure can not only
capture most of the useful information using the fewest samples,
but also control the information demand clearly and definitely.
Based on the partial information acquired by the sampling pro-
cedure, we propose an appropriate procedure to identify general
fuzzy measures in this study. We improve the detailed steps to
develop a specially designed genetic algorithm that can easily
be applied in other research areas.

The rest of this paper is organized as follows. Section II
reviews fuzzy measures and fuzzy integrals. Section III in-
troduces the concept of genetic algorithms. Section IV first
presents the sampling process of attribute subsets to surmount
the difficulty in data collection. Based on the framework of
partial information, Section IV then proposes the details of the
solution procedure for general fuzzy measures using genetic
algorithms. Section V generates the experimental data and
discusses the experiment results. Finally, Section VI presents
our conclusions.

1083–4419/00$10.00 © 2000 IEEE
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II. FUZZY MEASURES ANDFUZZY INTEGRALS

The purpose of this section is to review the basic concept of
fuzzy measures and fuzzy integrals. Letbe a universal set and

be the power set of . A fuzzy measure,, is defined as
follows:

The axioms of fuzzy measures include boundary conditions
and and monotonicity (for every
, if , then . If the universal

set is infinite, we must add an extra axiom of continuity. In
practice, it is enough to consider a finite universal set. Let

and . Fuzzy density,
, is a fuzzy measure of a subset with a single element

, and we denote .
Consider a fuzzy measureof and a finite set.

Let be a measurable function from to [0,1] (i.e.,
. Then, without loss of generality, assume that the function
is monotonically nonincreasing with respect to, that is,

. Renumber the elements in
if the inequality does not hold. The Sugeno’s fuzzy integral, a
widely used type of fuzzy integrals, ofwith respect to is

(1)

where , . We can use the
same fuzzy measure, but the Choquet integral is used instead of
the max-min integral [5], [18], [20], [26]. That is,

(2)

Even if there is complete information regarding sub-
sets, the max-min integral calculation can only determine some
interval at which the measure values are possibly located. On the
contrary, the unique solution will be obtained if the Choquet in-
tegral is used. In addition, using the Choquet integral can obtain
more reasonable results than using the fuzzy integral in many
cases [29]. Therefore, we use Choquet integrals in this study.
Finally, for convenience in applications, we denote an element
in the power set of as an “attribute aspect.” The col-
lection of all of the aspects that containelements is called the
th aspect set, where .

III. GENETIC ALGORITHMS

Based on Darwin’s “survival of the fittest,” genetic algo-
rithms use mathematical methods to demonstrate the natural
evolutionary process of artificial life under a competitive
environment [12]. Since genetic algorithms need only the
information of environmental fitness, they can easily be applied
in numerous fields, such as programming problems, machine
learning, artificial intelligence, etc. [2], [4], [6], [16].

Genetic algorithms propose an innovative idea in that they
simultaneously employ a set of chromosomes to conduct an op-
timal search. In addition, three main genetic operators provide

ways of controlling an optimal search from the parent genera-
tion to the offspring, including reproduction, crossover, and mu-
tation. Genetic algorithms randomly produce a certain amount
of chromosomes and select a portion of the better ones. Then,
these chromosomes will be recombined to bring forth the chro-
mosomes of the next generation with a certain mutation propor-
tion. The above steps are repeated until an approximate chro-
mosome is obtained.

Reference [15] proposed a-fuzzy measure [23] identifica-
tion method based on genetic algorithms. They showed that ge-
netic algorithms could be successfully conducted without the
full information of all fuzzy densities. Therefore, if the data col-
lection is really difficult, it would be acceptable to take partial
aspects to conduct an investigation for identifying general fuzzy
measures.

IV. I DENTIFICATION OF GENERAL FUZZY MEASURES

In this section, we first introduce the design of reducing
the information demand of general fuzzy measures. Then,
we present a flowchart to explain the solution procedure of
measure values using genetic algorithms and list the operational
steps in detail.

A. Reducing Information Demand

To resolve the difficulty in data collection of general fuzzy
measure identification, the author developed a sampling
procedure of attribute aspects through experimental design
approaches [1]. To facilitate the experimental design,must
be monotonically nondecreasing. Consider a fuzzy mea-
sure of , where is a finite attribute set. Let

and is monotonically nondecreasing
with respect to ; i.e., . Let

, , then the overall eval-
uation, (or for convenience),
of a particular alternative in is as follows:

(3)

Besides the importance measure, the given data can be re-
placed by the synthetic evaluation [27], [29], [30]. That is, the
input is the values of synthetic evaluation, while the output is the
measure values. This is the inverse problem of synthetic evalu-
ation [29]. In this study, we also solve the inverse problem to
determine general fuzzy measures.

The author termed the aspects, including attribute, as
“basic information aspects,” and denoted the collection of basic
information aspects as . For instance, of means
that . According to the proof
result in [1], all of the basic information aspects can cover the
information of grades of importance of all aspects in. Thus,
denote the data of as “sufficient information.” Based
on the framework of sufficient information, the monotonicity
axiom of fuzzy measures can be used to design a sampling
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procedure regarding the basic information aspects, as shown
in Appendix I. According to the sampling procedure, there
may be some aspects left unselected or uncovered. Thus,
the information collected using this procedure is termed as
“partial information.” Partial information significantly reduces
the amount of the data requirement and the corresponding
investigation procedure is effective and feasible in actual
applications. Therefore, based on partial information, we use
genetic algorithms to develop an identification method for
general fuzzy measures.

Reference [27] developed a genetic algorithm to determine
nonadditive set functions. The required data in their study in-
clude the measurable function of single-element aspects and the
universal set. They gave an example to show the effi-
ciency of their method. Although a good result was obtained in
this case, the data of the example might be not realistic in many
multiattribute decision-making applications. In the light of the
measurable function toward a specific alternative (e.g., the
public attitude toward the nuclear energy usage), subjects may
express similar opinions in evaluating the performance of the
alternative. If this situation occurs, the ranking of ’s will
seldom vary much such that the calculation of the Choquet in-
tegral may only involve a few measure values of specific as-
pects. For example, let and there
are three subjects. The subjects give the evaluation values of an
alternative in each single-element aspect and the overall evalu-
ation as shown at the bottom of the page.

Then we can list the following three equations by (3)

(subject 1)

(subject 2)

(subject 3)

From the above input data, we only cover the information of
aspects , , ,

, , and . Except for these six
aspects, the information of other 56 aspects remains uncovered.
Thus, when most of the subjects give similar opinions, the
amount of human-provided information may be too little to
secure an approximate pattern of measure values.

Maybe in the case of -fuzzy measure identification, the
problem of low information is not critical because of the-rule.
However, there are no consistent rules among general fuzzy
measures of each aspect. Thus, it is very difficult to determine
the measure values for all aspects using the limited infor-
mation. Of course, if the human-provided evaluation values
can cover distinct ranking situations, then we can anticipate a
good solution of general fuzzy measures. Unfortunately, it is
impossible to control people’s ranking regarding the evaluation
values, and thus researchers have not a scheme to master the
amount of covered information on the premise of producing a
satisfactory solution.

In addition, according to our simulation results toward the
cases of = 6, 7, 8, we found that a local optimal solution (i.e.,
the error of the evaluation values is very small but the pattern of
estimated values is totally unlike the actual measure values) was
easily obtained under the situation of similar ranking. Someone
may argue that this problem could be lessened through col-
lecting the evaluation data of distinct alternatives. However, the
measure values depend on the individual alternatives because
the attribute importance is relative to the particular alternative
under consideration [14], [22], [25]. Viewed in this light, we
still apply the author’s sampling procedure to rigidly control the
necessary data under the requirement of practical feasibility.

B. Genetic Algorithms for Solving General Fuzzy Measures

Since the evaluation value of each sample aspect is the input
in our solution procedure, we may encounter a problem of the
Choquet integral with an incomplete series of arguments. In
general, the subjective evaluation can be obtained through the
investigation. When respondents evaluate the performance of an
alternative in a particular aspect, they have already given consid-
eration to the overall importance of the attributes in that aspect.
Thus, based on the evaluation values, we can employ the equa-
tion of Choquet integrals to derive grades of importance.

When we calculate the Choquet integral, the grade of impor-
tance of the discussion universe is one (i.e., be-
cause of the boundary condition. However, when a subset,,
of the discussion universe is considered to be evaluated alone, it
may be not subject to the condition, , for the aspect

. Thus, we normalize the fuzzy measure of as-
pect to render a consistent basis for comparison. Namely, the
grade of importance for each will be divided by

. Because the grades of importance meet the mono-

Subject Overall evaluation
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tonicity axiom, it follows that . Let
and . In

addition, let , . The
overall evaluation, (or for
convenience), of an alternative in aspect is
as follows:

(4)

In the following, we apply genetic algorithms to determine
the values of general fuzzy measures. When genetic algorithms
are applied to an optimization procedure, a chromosome is
equivalent to a solution during the searching process, while a
gene is taken as a variable. Moreover, the population refers
to the collection of all chromosomes. Genetic algorithms are
based on a parallel structure, and a generation is constructed
by continuously conducting a parallel search to the entire
population. The optimization process refers to the usage of
generation evolution until a generation has matured. Thus, the
population is also the collection of all current solutions through
a parallel search.

There are three main operators in each generation. First, the
reproduction operator reallocates the search domain according
to the solution performance. The domain with the better perfor-
mance will be allocated more search points. Next, the crossover
operator is to exchange the partial superior information during
the search process. Last, the mutation operator is used to con-
duct a neighborhood search around each chromosome (i.e., the
search point). The solution procedure of genetic algorithms is
presented in Fig. 1.

1) Initialization: the determination of the initial values of
search points.

2) Calculation of Fitness:the fitness is defined by the objec-
tive and conformance function, where the conformance
values are obtained from the constraints. Moreover, fit-
ness determines the weighting during the reproduction
operation.

3) Reproduction Operator:reallocates the search points ac-
cording to the fitness.

4) Crossover Operator:parts of the variables are exchanged
between two chromosomes. The chromosomes with
higher fitness can bring out more offspring generations
after the reproduction operation.

5) Mutation Operator:conducts a local search in the neigh-
borhood of every chromosome.

6) Parameter Control:refers to the fact that users can con-
trol the proportion in each operator so as to derive the in-
dividual effects needed.

C. Detail Design

From the boundary conditions of fuzzy measures, the grades
of importance of the empty set and universal set are zero and

Fig. 1. Solution procedure of genetic algorithms.

one, respectively. Moreover, according to the sampling proce-
dure under partial information, the grades of importance of all
aspects in the first aspect set will be investigated. The measure
values of the basic information aspects in the second aspect set
can be also exactly determined (see Appendix I). Therefore,
after the investigation has been conducted, the grades of im-
portance already known include

, and . Nevertheless,
the grades of importance for other aspects still remain unknown.

We consider every chromosome as a solution during the
searching process, while each gene code represents the grade
of importance of an aspect. Thus, the chromosome encoding is
denoted as ; i.e., each chromosome can
be represented by a vector with real-valued elements
within the interval [0,1].

In the following, we elaborate on the initialization of the pop-
ulation, establishment of the fitness function, and the detailed
design of the three genetic operators.

1) Initialization of Population:Since it is difficult for a
random initialization procedure to locate a solution that
is consistent with monotonicity, we propose an efficient
method to conduct the initialization procedures regarding
each of the chromosomes.

a) Let denote the collection of aspects with initial
given grades of importance, i.e.,

. Let be the collection of aspects with
assigned grades of importance. Thus, in
the very beginning. The collection of aspects
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with unknown grades of importance is
.

b) Select any element from . According to the
monotonicity axiom, let be a continuous
random variable, uniformly distributed within the
interval , where

and

That is, random .
c) Classify into the given collection. Let

, , and re-
peat the aforementioned process untilbecomes
an empty set.

2) Calculation of Fitness:Degree of fitness is determined
by the objective function and the constraints of a pro-
gramming model. If any solution is given, the objective
function value and constraint values can be attained. The
objective function is generally defined as the error sum of
squares between the estimated values and the investigated
data of evaluations. Let and respectively rep-
resent the human-provided evaluation value (obtained by
investigation) and the estimated evaluation value of an al-
ternative in aspect . For comparison, we use the average
error sum of squares to redefine the objective function,
which is denoted as . Additionally, the constraint is the
monotonicity condition.

Since the evaluation values of aspects in the first as-
pect set and in the second aspect set can be derived
directly from the investigation results, we use the aspects
with given evaluations from the third toth aspect sets to
define the solution objective. Let denote the collection
of aspects with investigated data of evaluations from the
third to th aspect sets, while indicates the number
of elements in . Then, the solution objective and con-
straints for general fuzzy measure identification are as fol-
lows:

(5)

subject to (6)

where

(7)

(8)

Equations (6)–(8) are referring to the monotonicity
axiom.

Fig. 2. Tolerance interval of the conformance function( ).

Due to the possibility that crossover and reproduction
operators could produce grades of importance that dis-
obey monotonicity, a conformance functionis desig-
nated to lower the fitness of an unqualified chromosome.
Then, the reproduction operator will filter out the chromo-
somes with low conformance degrees. To conduct a flex-
ible search, we allow searching outside the feasible do-
main but still near the boundary by assigning the tolerance
interval, , to the conformance. The conformance func-
tion used here is a trapezoidal fuzzy number, as indicated
in Fig. 2. The tolerance interval gradually decreases to
zero until the search process is completed. Meanwhile, no
chromosomes violating the monotonicity constraint will
be allowed. The conformance function of the aspect with
importance is denoted as , and is defined in
(9) at the bottom of the page.

The conformance function values of aspects with un-
known grades of importance can be used to define the
overall conformance, , of each chromosome:

(10)

3) Reproduction Operator:First, we normalize the objec-
tive value of each chromosome and take the conformance
function value as the weight. Then, we integrate the objec-
tive and the conformance values into the fitness of every
chromosome. Next, we conduct a weighted random sam-
pling until the sample number is identical with the amount
of the original population. Let denote the population
size (i.e., the number of chromosomes), and the indicator,

, as the serial number of chromosomes in the population.
The detailed steps are as follows.

a) First, we must find the best solution, , and the
worst solution, , in the current population,
where

and

otherwise.

(9)
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b) The objective value, , of the th chromosome
and the overall conformance value, , are nor-
malized into fitness, . The significance of the
conformance function here is the extent of nonpun-
ishment if the constraint holds:

(11)

c) Calculate the accumulated fitness,, which rep-
resents the total of fitness of the entire population.

(12)

d) Reproduction is implemented as a linear search
through a Roulette wheel with slots weighted
in proportion to solution fitness values. Let
represent a continuous random variable that is
uniformly distributed over the interval . If

, then all information of the th chro-
mosome will be added to the next new generation.
It is noted that .

e) Repeat the above steps until the chromosome
number of the offspring generation is the same as
that of the parent.

4) Crossover Operator:Generally, the crossover operator
deals with two chromosomes at a time, but we will em-
ploy a multipoint crossover in this study. In other words,
every two adjacent variables might, at any rate, be cut off.
The multipoint crossover operator needs only to designate
a crossover rate, ; then, select any random number,,
for every variable. represents a continuous random
variable that is uniformly distributed over the interval
[0,1], that is, random . If , then
exchange. The detailed operation method is as follows:

a) Select any two chromosomes (called theth and
th chromosomes) from the population, then the

grades of importance of any unknown aspect
will be and , respec-

tively.
b) Select a random number, , toward every , and

conduct the exchange judgment. That is,

if random

otherwise

(13)

c) Select any two chromosomes from the rest of the
population, and repeat the aforementioned steps
until all of the chromosomes have been addressed.

5) Mutation Operator:The mutation operator toward the
real variable involves adding a slight change, and the

range of the amount of change is controlled by the mu-
tation rate, . The steps of the mutation operation are
as follows.

a) Let denote the grade of importance of theth
chromosome in aspect. For all ,
implement the following mutation operation:

random

(14)

b) Conduct the aforementioned step to every chromo-
some until all chromosomes in the population have
been addressed.

6) Parameter Specification:There are several parameters
needed to be specified in genetic algorithms, including
population size, stopping conditions, and each rate pa-
rameter required in the genetic operation. The population
size has influence upon the use of memory space and the
stability of sampling. The stopping condition is related
to the implementation time and the quality of results. It
can be specified by the CPU implementation time, the
change of objective values, the expected quality of the
solutions, and the maximum generation size. Since the
previous three methods are unable to control the actual
search steps in different computer hardware, we decided
to use the maximum generation size as the stopping
condition. Finally, each rate parameter would primarily
employ piecewise linear functions. We disclose more
details concerning the experiment analysis in the next
section.

V. EXPERIMENT ANALYSIS

In this section, we conducted an experimental analysis to test
the validity of our proposed method. First, we simulated a set
of experimental data according to some requirements. Each at-
tribute is categorized into several selected classes respectively,
and these classes refer to distinct characteristics of individual
attributes. Then, for facilitating the experimental design, the
single-attribute evaluations have to fulfill

. The generation process of simulated data will be
illustrated in the following.

A. Design of Experimental Data

The experiment illustrates the identification of general fuzzy
measures using genetic algorithms for . We use the fuzzy
densities and the mean degree of overlapping between an at-
tribute and the other attributes to demonstrate the characteristics
of each attribute, where the definition of the degree of overlap,

, is cited from [13], [19]. Based on the levels of overlapping
and importance, the experimental data was designed to repre-
sent several specific classes.

As shown in Fig. 3, according to the degree of overlap
and grade of importance, all attributes can be categorized
into nine classes. Class 1 indicates that those attributes can
provide nonoverlap information and have a great influence on
the model structure. In addition, Class 1 has high a grade of
importance. Attributes in Class 3 also have their influence, but
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Fig. 3. Category of each attribute in the experimental data(n = 7).

TABLE I
ASPECTS WITHERRORSLARGERTHAN 0.01IN THE THIRD ASPECTSET

the grades of importance are low. Class 7 indicates that the
attributes with high grades of importance have a high degree of
overlap with other attributes. The attributes in Class 9 make no
salient contributions to the provision of nonoverlap information
and to the grade of importance. The most common situation
is Class 5, which has low overlapping and a medium grade
of importance. We first selected the five classes above, and
they are respectively represented by one attribute. In addition,
for those nonparticular situations in Classes 2, 4, 6, and 8,
any two classes are selected and each is represented by one
attribute. Thus, seven classes were selected. We simulated the
relevant data and the single-attribute evaluations must fulfill

to implement the experi-
mental design. The simulated experimental data are listed in
Appendix II and represents Class 1, for Class 3, for
Class 4, for Class 5, for Class 7, for Class 8, and
for Class 9. The solution result for the third aspect set is shown
in Fig. 9. In general, the error is greater than that in the second
aspect set. The aspects with errors (absolute values) larger
than 0.0100 are listed in Table I, where aspects ,

, and have a little greater
difference between the estimated and actual values of the
grades of importance. Even so, the error, as a whole, remains to
be insignificant and the solution quality is very satisfactory.

B. Sampling Process of Attribute Aspects

After simulating the experimental data (including the mea-
sure values of each aspect and the evaluation values of each
single-attribute aspect), we conducted the sampling procedure
under partial information to determine the sample aspects, as
indicated in Fig. 4.

Step 1) for the first aspect set
Since the first aspect set provides the primary in-

formation, the fuzzy density and eval-
uation value of each single-at-

tribute aspect must be investigated in practice, where
.

Step 2) for of the second aspect set
The exact solution for

can be uniquely derived, so it is neces-
sary to investigate the data of .

Step 3) for the seventh aspect set
The overall evaluation, , of the uni-

versal set must be surveyed.
Step 4) for of the th aspect set, = 4, 5, 6.

a) Select aspect from
of the sixth aspect set, and this aspect

covers the information for aspects
, ,

, , and
in the fifth aspect set.

b) Select aspect from the
unmarked aspects in of the fifth aspect
set, and this aspect covers the information
for aspects , ,

, and in the
fourth aspect set.

c) Examine other aspects (including those
marked aspects) in the fifth aspect set. Two
additional aspects, which can cover the in-
formation of four unmarked aspects in the
fourth aspect set are selected, including

and .
d) Continue to examine other aspects in the

fourth aspect set. Aspects ,
, , and

are also selected from the fourth
aspect set.

Step 5) for of the third aspect set
Because the investigated data in the lower aspect

set are relatively accurate, we hope to capture all
of the aspect information of the third aspect set.
Thus, those aspects uncovered by the selected sam-
ples of the fourth aspect set must be explored in
practice, including , , and

.

According to the results from aspect sampling, we can calcu-
late the evaluation values of sample aspects using the simula-
tion data. Those evaluation values are considered as the objec-
tive upon which the subsequent solution procedure can be based.
The details of the evaluation values are listed in Appendix II.

C. Experiment Results

To show the feasibility and applicability of the solution
procedure for general fuzzy measures using genetic algo-
rithms, we applied the proposed method to the experimental
data. Besides the boundary conditions, the input data include

, ,
, , and the evaluation

values of twelve sample aspects.
According to the sampling procedure, we selected twelve

sample aspects: , , ,
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Fig. 4. Sampling procedure of attribute aspects(n = 7).

, , ,
, , ,

, , and
. The actual evaluation values of these aspects can be

obtained through the investigation in practice. We used the
twelve aspects to specify the objective equation, i.e., minimal
average error sum of squares.

In using genetic algorithms to solve general fuzzy measures
with the proposed procedure, there are some parameters for
users to control. To determine the favorable range of parameter
values and obtain desirable performance within such a range,
we conducted pilot tests on the experimental data. According to
the trial-and-error results, the population size,, is designated
as 30. Let be the generation number. The stopping condition
is specified by defining the maximum of generation size, ,
which is 100. In regard to each of the rate parameters needed in

Fig. 5. Tolerance interval of the conformance function( ).

the genetic operation, the tolerance interval,, concerning the
conformance function is as indicated in Fig. 5, where
and . The specification of the crossover rate,, is
as shown in Fig. 6, where and . Moreover,
the specification of the mutation rate, , is as seen in Fig. 7,
where and .
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Fig. 6. Parameter specification of the crossover rate,. Parameter
specification of the mutation rate, .

Fig. 7. Parameter specification of the mutation rate,.

Fig. 8. Solution result of grades of importance in the second aspect set.

Fig. 9. Solution result of grades of importance in the third aspect set.

The solution results of measure values are exhibited in Ap-
pendix III, where an attribute aspect is indicated by U. For ex-
ample, U237 stands for aspect and U13467 rep-
resents aspect . For most aspects, the differ-
ence between the estimated and actual values of the grade of im-
portance is rather slight. Thus, the identification procedure using
genetic algorithms has an excellent performance in solving gen-
eral fuzzy measures.

Fig. 8 shows the solution result for aspects exclusive of
in the second aspect set. Here, we only consider the absolute
value of errors. The aspect with the greater difference between
the estimated and actual values of the grade of importance is

with error 0.0209, seconded by with error
0.0157, then with error 0.0149, and next

Fig. 10. Solution result of grades of importance in the fourth aspect set.

TABLE II
ASPECTS WITHERRORSLARGERTHAN 0.01IN THE FOURTH ASPECTSET

Fig. 11. Solution result of grades of importance in the fifth aspect set.

TABLE III
ASPECTS WITHERRORSLARGERTHAN 0.01IN THE FIFTH ASPECTSET

with error 0.0119. As for the other aspects, the difference is
extremely slim. This indicates that the estimated results for
grades of importance are very close to the actual values.

As for the fourth aspect set, Fig. 10 shows that the dif-
ference between the estimated and actual values becomes
large, where the error 0.0574 in and 0.0445
in are most prominent. The aspects with
errors lying within (0.0300,0.0400], (0.0200,0.0300] and
(0.0100,0.0200] are listed in Table II. The errors of the re-
maining aspects in this aspect set are very slim.

The solution result of the fifth aspect set is indicated in
Fig. 11. Additionally, the aspects with errors lying within
(0.0200,0.0300] and (0.0100,0.0200] are listed in Table III.



526 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 4, AUGUST 2000

Fig. 12. Solution results of grades of importance in the sixth and seventh
aspect sets.

TABLE IV
ESTIMATED RESULT OFEVALUATIONS FOR SAMPLE ASPECTS

Comparing Figs. 10 and 11, the error in the fifth aspect set is
smaller than that of the fourth aspect set on average.

Finally, with respect to the sixth and seventh aspect sets
(Fig. 12), the error 0.0379 in aspect
comes out the highest, trailed by with
error 0.0283, with error 0.0172, and

with error 0.0168.
In regard to the solution objective, the average error sum of

squares is , indicating excellent performance using
genetic algorithms to solve general fuzzy measures under par-
tial information. The estimated evaluation values and errors of
the 12 sample aspects are listed in Table IV. The aspect with the
highest error is , and the difference be-
tween the estimated value and the actual datum is 0.0028, trailed
by aspect with error 0.0017. As a whole, the
error of each aspect is negligible.

To summarize, the experiment result using genetic algorithms
to solve general fuzzy measures under partial information is de-
sirable. This indicates that even with a lack of complete informa-
tion, as long as the sampling procedure under partial information
is employed, most information can be adequately captured with
the least number of sample aspects. Then, genetic algorithms
can be used as a solution strategy for identifying general fuzzy
measures to obtain a satisfactory estimated result.

VI. CONCLUSIONS

To resolve the difficulty that general fuzzy measures expose
in data collection and identification, we applied genetic algo-
rithms to develop a solution procedure for fuzzy measure values
based on partial information. The corresponding detailed design
was also proposed to facilitate high efficiency of genetic algo-
rithms, including the initialization of the population, establish-
ment of the fitness function, and detailed design of the three
genetic operators.

To show the applicability of our proposed method, we simu-
lated the experimental data that are representative of several typ-

ical classes. The experiment results showed that using genetic
algorithms to identify general fuzzy measures under partial in-
formation performs very well. Moreover, the average error sum
of squares, Z, is only 0.0009, showing a satisfactory solution
quality.

APPENDIX I
SAMPLING PROCEDURE

The first author developed a sampling procedure to surmount
the data collection difficulty when using general fuzzy measures
[1]. She used the concept that any aspect of theth aspect set
can, at most, cover the information of unrepeated as-
pects in the th aspect set. To reduce the sample size, the
information of each aspect would be covered by no more than
one aspect (excluding itself). The sampling procedure for each
aspect set is described as follows.

Step 1) First aspect set
This aspect set provide the essential information,

so the fuzzy density and evaluation value
of each attribute must be investi-

gated, where .
Step 2) of the second aspect set

Since the exact solution of
can be uniquely determined,

it is necessary to investigate the data of
. From (4), we know that for

,

Since , and are given,
can be derived:

Step 3) th aspect set
Investigate the overall evaluation,

, of the alternative in .
Step 4) of the th aspect set,

a) Select any aspect randomly in the th
aspect set. In the th aspect set,
aspects whose information can be covered by
the preceding selected aspect are marked.

b) For , , conduct the
following steps:

c) First, select any unmarked aspect in theth as-
pect set, and aspects whose informa-
tion can be covered in the th aspect set
are marked.

d) Continue to examine other aspects in theth
aspect set (the previously marked aspects are
also taken into consideration). If an aspect can
cover the information of aspects in
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TABLE V
EXPERIMENTAL DATA IN THE FIRST ASPECTSET (n = 7)

TABLE VI
EXPERIMENTAL DATA IN THE SECOND ASPECTSET (n = 7)

TABLE VII
EXPERIMENTAL DATA IN THE THIRD AND FOURTH ASPECTSETS(n = 7)

the th aspect set, select that aspect;
otherwise bypass it and the other aspects that
remain to be examined. Repeat the above steps
until there are no more aspects in the aspect set
to be selected.

Step 5) of the third aspect set
Since the investigated data in the lower aspect set

are relatively accurate, those aspects uncovered by
the selected samples in the fourth aspect set have to
be surveyed.

TABLE VIII
EXPERIMENTAL DATA IN THE FIFTH AND SIXTH ASPECTSETS(n = 7)

TABLE IX
EVALUATION VALUES OF THESAMPLE ASPECTS(n = 7)

APPENDIX II
EXPERIMENTAL DATA

See Tables V–IX.

APPENDIX III
EXPERIMENTAL RESULT

See Figs. 8–12.
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