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|dentification of General Fuzzy Measures by Genetic
Algorithms Based on Partial Information

Ting-Yu Chen, Jih-Chang Wang, and Gwo-Hshiung Tzevigmber, IEEE

Abstract—This study develops an identification procedure for —are still unknown. Thus, [19] took the evaluation of an alterna-
general fuzzy measures using genetic algorithms. In view of the tive in each subset into consideration. To reduce the difficulty
difficulty in data collection in practice, the amount of input data is in data collection, they used, as a convenience, the weighted

simplified through a sampling procedure concerning attribute sub- . . . .
sets, and the corresponding detail design is adapted to the partial M€&n of single-attribute evaluations to replace the evaluation of

information acquired by the procedure. A Specia”y designed ge- asubset. SUCh a.Wa.y represents that fUZZy measures are additive,
netic algorithm is proposed for better identification, including the  but this additivity assumption is quite unnecessary for general
development of the initialization procedure, fitness function, and fuzzy measures. References [7] and [11] proposed an identifi-

three genetic operations. To show the applicability of the proposed cation method based on quadratic programming algorithms, and
method, this study simulates a set of experimental data that are '
the method produced good results.

representative of several typical classes. The experimental analysis 8
indicates that using genetic algorithms to determine general fuzzy A|th0U9_h SeY?ra[ studies have been.made on Qenera| fu;zy
measures can obtain satisfactory results under the framework of measure identification, most of them did not consider the dif-

partial information. ficulty in data collection. Suppose that the universal set/has
Index Terms—Fuzzy measure, genetic algorithm, identification, attributes. We must collect the data of human-provided mea-
partial information. sure values of2™ — 2) subsets to determine general fuzzy mea-

sures. From the practical standpoint, this requirement is highly
infeasible and is hardly implemented in many realistic prob-
lems. Thus, we use a sampling procedure of attribute subsets
N multiattribute decision-making reality, fuzzy measurefl] to capture enough partial information and then develop an
have been widely used to demonstrate the significangintification procedure to acquire the values of general fuzzy
of attribute subsets [13], [18], [19], [23], [24], [26], [31]. measures.
Compared with other types of fuzzy measures, general fuzzyReferences [15], [28], and [30] used genetic algorithms to de-
measures fulfilling the boundary conditions, monotonicityermine A\-fuzzy measures [23]. According to their successful
and continuity provide more useful information, such as thexperiences, we employ genetic algorithms [3], [6] as the solu-
characterization of the coupling coefficient, overlap coefficiention strategy for general fuzzy measure identification. Recently,
degree of overlap, and necessity coefficient [13], [19]. In rece[®7] applied genetic algorithms to determine the nonadditive
years, [7]-[10] and [17] extended Shapley’s idea [21] to definset function. When their method is applied in multiattribute de-
the interaction between attributes. Based on the Shapley valtigsion making, the situation of information insufficiency may
they proposed valuable notions involving the importance otcur in real-life problems. That is, the data provided by the in-
attributes, interaction indexes, symmetric attributes, and velividual information sources cannot certainly cover most of the
and pass effects. attribute subsets. The detailed discussion will be clarified later.
The identification of general fuzzy measures is a fundament@h the contrary, the author's sampling procedure can not only
task to be capable of using them in practice. [13] developedtapture most of the useful information using the fewest samples,
fuzzy measure learning identification algorithm (FLIA) to debut also control the information demand clearly and definitely.
termine fuzzy measure values. However, FLIA only consideBased on the partial information acquired by the sampling pro-
the overall evaluation of an alternative as the solution objectivésdure, we propose an appropriate procedure to identify general
thus, the exact patterns of degrees of importance for all subsgtary measures in this study. We improve the detailed steps to
develop a specially designed genetic algorithm that can easily
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Il. Fuzzy MEASURES ANDFUZZY INTEGRALS ways of controlling an optimal search from the parent genera-
t(@)qn to the offspring, including reproduction, crossover, and mu-
tation. Genetic algorithms randomly produce a certain amount
of chromosomes and select a portion of the better ones. Then,
these chromosomes will be recombined to bring forth the chro-
mosomes of the next generation with a certain mutation propor-
g: P(X) — [0, 1]. tion. The _above_steps are repeated until an approximate chro-
mosome is obtained.
The axioms of fuzzy measures include boundary conditionsReference [15] proposed’afuzzy measure [23] identifica-
(g(¢) = 0 andg(X) = 1) and monotonicity (for every tlon methoq based on genetic algorithms. They ShOW_ed that ge-
A,B € P(X),if AC B, theng(A) < ¢(B)). If the universal netl_c algorlt_hms could be succ_e_ssfully Conducf[ed without the
set is infinite, we must add an extra axiom of continuity. ifull information of all fuzzy densities. Therefore, if the data col-
practice, it is enough to consider a finite universal set. L&ction is really difficult, it would be acceptable to take partial
X = {z1,20,...,2,} andi = 1,2,...,n. Fuzzy density, aspects to conduct an investigation for identifying general fuzzy
g({z;}), is a fuzzy measure of a subset with a single elemeff€asures.
z;, and we denotg; = g({z;}).
Consider a fuzzy measugeof (X, P(X)) andX a finite set. IV. I DENTIFICATION OF GENERAL FUZZY MEASURES
Let f be a measurable function frofi to [0,1] (i.e., f: X — In this section, we first introduce the design of reducing
[0, 1]). Then, without loss of generality, assume that the functiqRe information demand of general fuzzy measures. Then,
f(z;) is monotonically nonincreasing with respectitdhatis, e present a flowchart to explain the solution procedure of

f@1) 2 f(wz) 2 -+ 2 f(an). Renumber the elements ¥ measure values using genetic algorithms and list the operational
if the inequality does not hold. The Sugeno’s fuzzy integral, &eps in detail.

widely used type of fuzzy integrals, gfwith respect tg; is

The purpose of this section is to review the basic concept
fuzzy measures and fuzzy integrals. X(¢be a universal set and
P(X) be the power set ak'. A fuzzy measurey, is defined as
follows:

A. Reducing Information Demand

][f(x) dg= VvV, [F@i) A g(Xo)] @) To resolve the difficulty in data collection of general fuzzy
measure identification, the author developed a sampling
whereX; := {x1,22,...,2:{,7 = 1,2,...,n. We can use the procedure of attribute aspects through experimental design
same fuzzy measure, but the Choquet integral is used insteadmbroaches [1]. To facilitate the experimental desifymust
the max-min integral [5], [18], [20], [26]. That is, be monotonically nondecreasing. Consider a fuzzy mea-
sure g of (X, P(X)), whereX is a finite attribute set. Let
(c) / fdg = f(22)9(X0) + [f(zn-1) — flz)]g(Xn—y) f: X — [0,1] and f(z;) is monotonically nondecreasing
with respect toj; i.e., f(z1) < f(z2) < -+ < f(z,). Let
+ o+ [f(z1) = fz2)]g(X1). (@) X, = {zi, %41, xahi = 1,2,...,n,thenthe overall eval-
uation, E({x1, z2,...,2,}) (OF F.,4,...., fOr convenience),

Even if there is complete information regardiff —2) sub- ¢ 5 particular alternative iX is as follows:
sets, the max-min integral calculation can only determine some

interval at which the measure values are possibly located. On t _
contrary, the unique solution will be obtained if the Choquet inlﬁ({xl’ 2 tn}) =(0) | f(x)dg
tegral is used. In addition, using the Choquet integral can obtain = f(z0)g(X1)+[f(22)— f(z1)]g(X2)

more reasonable results than using the fuzzy mtegral in many b [fon) = f@neD)]g(Xn).
cases [29]. Therefore, we use Choquet integrals in this study.

Finally, for convenience in applications, we denote an element ®)
in the power seP(X) of X as an “attribute aspect.” The col-
lection of all of the aspects that contaielements is called the
ith aspect set, where= 1,2, ..., n.

Besides the importance measure, the given data can be re-
placed by the synthetic evaluation [27], [29], [30]. That is, the
input is the values of synthetic evaluation, while the output is the
measure values. This is the inverse problem of synthetic evalu-
ation [29]. In this study, we also solve the inverse problem to

Based on Darwin’s “survival of the fittest,” genetic algo-determine general fuzzy measures.
rithms use mathematical methods to demonstrate the naturarhe author termed the aspects, including attribute as
evolutionary process of artificial life under a competitivébasic information aspects,” and denoted the collection of basic
environment [12]. Since genetic algorithms need only theformation aspects as;~. For instancez;~ of X means
information of environmental fitness, they can easily be applighatz; ~:= {A|A C X,z; € A}. According to the proof
in numerous fields, such as programming problems, machiresult in [1], all of the basic information aspects can cover the
learning, artificial intelligence, etc. [2], [4], [6], [16]. information of grades of importance of all aspects\inThus,

Genetic algorithms propose an innovative idea in that thelgnote the data of;~ as “sufficient information.” Based
simultaneously employ a set of chromosomes to conduct an @p- the framework of sufficient information, the monotonicity
timal search. In addition, three main genetic operators providgiom of fuzzy measures can be used to design a sampling

I1l. GENETIC ALGORITHMS
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procedure regarding the basic information aspects, as shofun, zg}, {zs}, and{z1,zs, 24, x5, 26 }. Except for these six
in Appendix I. According to the sampling procedure, theraspects, the information of other 56 aspects remains uncovered.
may be some aspects left unselected or uncovered. Thiisus, when most of the subjects give similar opinions, the
the information collected using this procedure is termed asnount of human-provided information may be too little to
“partial information.” Partial information significantly reducessecure an approximate pattern of measure values.
the amount of the data requirement and the correspondingMaybe in the case of-fuzzy measure identification, the
investigation procedure is effective and feasible in actuptoblem of low information is not critical because of theule.
applications. Therefore, based on partial information, we uk®wever, there are no consistent rules among general fuzzy
genetic algorithms to develop an identification method faneasures of each aspect. Thus, it is very difficult to determine
general fuzzy measures. the measure values for all aspects using the limited infor-
Reference [27] developed a genetic algorithm to determingation. Of course, if the human-provided evaluation values
nonadditive set functions. The required data in their study inan cover distinct ranking situations, then we can anticipate a
clude the measurable function of single-element aspects andgbed solution of general fuzzy measures. Unfortunately, it is
universal set. They gave an exampte= 4) to show the effi- impossible to control people’s ranking regarding the evaluation
ciency of their method. Although a good result was obtained alues, and thus researchers have not a scheme to master the
this case, the data of the example might be not realistic in magayount of covered information on the premise of producing a
multiattribute decision-making applications. In the light of theatisfactory solution.
measurable functioff) toward a specific alternative (e.g., the In addition, according to our simulation results toward the
public attitude toward the nuclear energy usage), subjects nwases oh = 6, 7, 8, we found that a local optimal solution (i.e.,
express similar opinions in evaluating the performance of thige error of the evaluation values is very small but the pattern of
alternative. If this situation occurs, the rankingfif;)’'s will  estimated values is totally unlike the actual measure values) was
seldom vary much such that the calculation of the Choquet i@asily obtained under the situation of similar ranking. Someone
tegral may only involve a few measure values of specific astay argue that this problem could be lessened through col-
pects. For example, |IeX = {x1, 22,23, 24, 25, 26} and there lecting the evaluation data of distinct alternatives. However, the
are three subjects. The subjects give the evaluation values of@@asure values depend on the individual alternatives because
alternative in each single-element aspect and the overall evahe attribute importance is relative to the particular alternative
ation as shown at the bottom of the page. under consideration [14], [22], [25]. Viewed in this light, we
Then we can list the following three equations by (3) still apply the author’s sampling procedure to rigidly control the
necessary data under the requirement of practical feasibility.
0.5=0.1+4 (0.3 —0.1)g9({x2, x3,24, x5, 26})
+ (0.4 - 0.3)g({xs, 74, %5, 76 }) _ _ _ _
+(0.5 — 0.4)g({z4, 5, 76}) _ Since the_ evaluation value of each sample aspect is the input
. in our solution procedure, we may encounter a problem of the
+(0.7 = 0.5)g({ws, z6}) + (0.9 — 0.7)ge. Choquet integral with an incomplete series of arguments. In
(subject 1) general, the subjective evaluation can be obtained through the
0.7=0.34+ (0.5 —0.3)g9({x2, x3, 24, 5, 26 }) investigation. When respondents evaluate the performance of an
alternative in a particular aspect, they have already given consid-

B. Genetic Algorithms for Solving General Fuzzy Measures

+ (0.7 = 0.5)g({z4, x5, 76 }) : . ; )
eration to the overall importance of the attributes in that aspect.
+(08-0.7)g({zs, 76}) + (0.9 — 0.8)ge. Thus, based on the evaluation values, we can employ the equa-
(subject 2) tion of Choquet integrals to derive grades of importance.
0.4 =0.1+4(0.2—-0.1)g9({x1, 23,24, 25, 26}) When we calculate the Choquet integral, the grade of impor-
+(0.3 — 0.2)g({ws, 34, 25, T6}) tance of the discussion universe is one (igg.X) = 1) be-

cause of the boundary condition. However, when a subsét,
+(0.6 —0.3)g({zs, 25, 26}) of the discussion universe is considered to be evaluated alone, it
+ (0.7 = 0.6)g({z5, x6}) + (0.8 — 0.7)gs. may be not subject to the conditiof{ X’) = 1, for the aspect
(subject3) X' (X’ C X). Thus, we normalize the fuzzy measure of as-
pectX’ to render a consistent basis for comparison. Namely, the
From the above input data, we only cover the information gfrade of importance(.X!) for eachX/ C X’ will be divided by
aspects {x2, 73, ¥4, %5, %6}, {¥3,%4,%5,%6}, {71, 75,76}, sup; g(X}). Because the grades of importance meet the mono-

Subject f(z1) flz2) f(xzs) flza) f(zs) f(ze) Overall evaluation

1 0.1 0.3 0.4 0.5 0.7 0/9 0.5
2 0.3 0.5 0.5 0.7 0.8 0.9 0.7
3 0.2 0.1 0.3 0.6 0.7 0.8 0.4
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tonicity axiom, it follows thatup, g(X}) = g(X’). Let X’ =
{xi17xi27 .- '7xik} andf(xil) < f(xlz) < < f(xlk) In

addition, letX; = {z;,, 2, ,,... 2}, j = 1,2,..., k. The

Initialization

create initial population

overall evaluationE({x;, , iy, ...,z }) (OF By, s, fOT R
convenience), of an alternative in aspéet, , ;,, ..., z;, } iS ( -
as follows:

Fitness: compute fitness of all solutions by
their objective and conformance values

E({xilvxizv"'vxik})

_ 9(X2)
= fl@i) + [f(@i) — fl@i)] - 9(X1) Reproduction: take fitness as weight, select
- K solutions as "children” randomly
FUa) - S 25
3 2 g(Xl)
X, Crossover: exchange some genes by a ratio
+ [f(xzk) - f(xik—l)] ’ zEin (4) <. randomly for each two solutions
1

In the following, we apply genetic algorithms to determine
the values of general fuzzy measures. When genetic algorithms
are applied to an optimization procedure, a chromosome is
equivalent to a solution during the searching process, while a
gene is taken as a variable. Moreover, the population refers
to the collection of all chromosomes. Genetic algorithms are
based on a parallel structure, and a generation is constructed
by continuously conducting a parallel search to the entire . - .
population. The optimization process refers to the usage of Quit and list the best solution '
generation evolution until a generation has matured. Thus, the during whole process
population is also the collection of all current solutions through
a parallel search. Fig.

There are three main operators in each generation. First, the
reproduction operator reallocates the search domain according
to the solution performance. The domain with the better perfdine, respectively. Moreover, according to the sampling proce-
mance will be allocated more search points. Next, the crossoggire under partial information, the grades of importance of all
operator is to exchange the partial superior information duri@gpects in the first aspect set will be investigated. The measure
the search process. Last, the mutation operator is used to cerlues of the basic information aspects in the second aspect set
duct a neighborhood search around each chromosome (i.e.,adhe be also exactly determined (see Appendix I). Therefore,
search point). The solution procedure of genetic algorithmsagier the investigation has been conducted, the grades of im-

Mutation: do neighborhood-search
for each solution

1. Solution procedure of genetic algorithms.

presented in Fig. 1. portance already known includg¢) = 0,¢(X) = 1,¢,(: =
1) Initialization: the determination of the initial values ofl,2,.-.,n), andg({x1,z;})(j = 2,3,...,n). Nevertheless,
search points. the grades of importance for other aspects still remain unknown.

2) Calculation of Fitnessthe fitness is defined by the objec- We consider every chromosome as a solution during the
tive and conformance function, where the conforman&garching process, while each gene code represents the grade
values are obtained from the constraints. Moreover, figf importance of an aspect. Thus, the chromosome encoding is
ness determines the weighting during the reproductiélenoted a${g(A)|A € P(X)\¢}); i.e., each chromosome can

operation. be represented by a vector with® — 1) real-valued elements
3) Reproduction Operatoreallocates the search points acwithin the interval [0,1].
cording to the fitness. In the following, we elaborate on the initialization of the pop-

4) Crossover Operatorparts of the variables are exchangedlation, establishment of the fitness function, and the detailed
between two chromosomes. The chromosomes wittesign of the three genetic operators.
higher fithess can .brlng out more offspring generations 1) |njtialization of Population: Since it is difficult for a
after the reproduction operation. _ _ random initialization procedure to locate a solution that
5) Mutation Operator:conducts a local search in the neigh- is consistent with monotonicity, we propose an efficient

borhood of every chromosome. method to conduct the initialization procedures regarding
6) Parameter Controlrefers to the fact that users can con- each of the chromosomes.

trol the proportion in h rator t rive the in- . e
0’ the proportio each operator so as to derive the a) LetUY denote the collection of aspects with initial
dividual effects needed. : ; S
given grades of importance, i.dJ° = {¢,{z1},

{z2}, Az bz w2} {7, 23}, - {7, 20 4
X}. Let U be the collection of aspects with
From the boundary conditions of fuzzy measures, the grades assigned grades of importance. ThUs= U? in
of importance of the empty set and universal set are zero and the very beginning. The collection of aspects

C. Detail Design
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with  unknown grades of importance is k(g(U))
U, U = P(X)\U. 4
b) Select any element from U’. According to the 1

monotonicity axiom, letg(U/) be a continuous
random variable, uniformly distributed within the
interval[g~(I/), g7 (U)], where

g (U)=sup{g(V)|V C U,V € U},

and 0
gt(U) = inf{g(V)|V D U,V € U}.

That is,g(U) = random (g—(U), g™ (U)).
ClassifyU into the given collection. Lety(®") =
Ul y {7}, Ueew) = U/ {17}, and re-
peat the aforementioned process ubtilbecomes
an empty set.

c)

2) Calculation of FitnessDegree of fitness is determined

by the objective function and the constraints of a pro-
gramming model. If any solution is given, the objective
function value and constraint values can be attained. The
objective function is generally defined as the error sum of
squares between the estimated values and the investigated
data of evaluations. Léf(A) andE(A) respectively rep-
resent the human-provided evaluation value (obtained by
investigation) and the estimated evaluation value of an al-
ternative in aspect.. For comparison, we use the average
error sum of squares to redefine the objective function,
which is denoted ag. Additionally, the constraint is the
monotonicity condition.

Since the evaluation values of aspects in the first as-
pect set and:;~ in the second aspect set can be derived
directly from the investigation results, we use the aspects
with given evaluations from the third tath aspect sets to
define the solution objective. L& denote the collection
of aspects with investigated data of evaluations from the
third to nth aspect sets, whili=| indicates the number
of elements ir=. Then, the solution objective and con-
straints for general fuzzy measure identification are as fol-
lows:

3)

Y [B(A) - B4

AcC

1

min Z = B %)
subject tog™ () < g(U) < g+(U) WU € P(X) ()
where

g~ (U) = sup{g(V)|V = U\{z;},z; € U}, )
gt (U) =inf{gM)IV =U U {;},2; € X\U}. (8)

Equations (6)—(8) are referring to the monotonicity
axiom.

Fig. 2.

g(U)c, &)
Tolerance interval of the conformance functi@, ).

Due to the possibility that crossover and reproduction
operators could produce grades of importance that dis-
obey monotonicity, a conformance functiénis desig-
nated to lower the fitness of an unqualified chromosome.
Then, the reproduction operator will filter out the chromo-
somes with low conformance degrees. To conduct a flex-
ible search, we allow searching outside the feasible do-
main but still near the boundary by assigning the tolerance
interval,C,, to the conformance. The conformance func-
tion used here is a trapezoidal fuzzy number, as indicated
in Fig. 2. The tolerance intervél, gradually decreases to
zero until the search process is completed. Meanwhile, no
chromosomes violating the monotonicity constraint will
be allowed. The conformance function of the aspect with
importancey(U) is denoted as(g(U)), and is defined in
(9) at the bottom of the page.

The conformance function values of aspects with un-
known grades of importance can be used to define the
overall conformanceH, of each chromosome:

H = inf{h(gU))|U € P(X)\U’}. (10)
Reproduction OperatorFirst, we normalize the objec-
tive value of each chromosome and take the conformance
function value as the weight. Then, we integrate the objec-
tive and the conformance values into the fitness of every
chromosome. Next, we conduct a weighted random sam-
pling until the sample number is identical with the amount
of the original population. LelK denote the population
size (i.e., the number of chromosomes), and the indicator,
k, as the serial number of chromosomes in the population.
The detailed steps are as follows.

a) First, we must find the best solutio#;", and the
worst solution, Z—, in the current population,

where
Zt = min Z*¥ and
kC[L,K]
Z~ = max Z*.
ke(1,K]

c, ’
hgU) = 4 b 9~ (U) < g(U) < g*(U); ©)
g+(U) _(é]([])‘i‘c(P7 g"’(U) <g(U) < g"'(U)—i—Cp;
0, : otherwise.
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b) The objective valueZ*, of the kth chromosome
and the overall conformance valuE*, are nor-
malized into fitness/™*. The significance of the
conformance function here is the extent of nonpun-
ishment if the constraint holds:

Zk — 7~

Fk = H*. = _Vke{l,z,...,K}. (12)

c) Calculate the accumulated fitnegdt, which rep-
resents the total of fitness of the entire population.

k
=> FiVke{l,2,... K} (12)
=1

d) Reproduction is implemented as a linear search
through a Roulette wheel with slots weighted
in proportion to solution fitness values. L&,
represent a continuous random variable that is
uniformly distributed over the intervdD, F'*]. If
R, > F*!, then all information of thésth chro-
mosome will be added to the next new generation.
It is noted thatF® = 0.

e) Repeat the above steps until the chromosome
number of the offspring generation is the same as
that of the parent.

4) Crossover OperatorGenerally, the crossover operator

gi(U) _ {QJ(U)v

deals with two chromosomes at a time, but we will em-
ploy a multipoint crossover in this study. In other words,
every two adjacent variables might, at any rate, be cut off.

range of the amount of change is controlled by the mu-
tation rate,C,,,. The steps of the mutation operation are
as follows.

a) Letg*(U) denote the grade of importance of ttta
chromosome in aspett. For allU € P(X)\U",
implement the following mutation operation:

g = g (1) 4 rundom (—Chn, Crn)
YU € P(X)\U°. (14)

b) Conduct the aforementioned step to every chromo-
some until all chromosomes in the population have
been addressed.

Parameter SpecificationThere are several parameters
needed to be specified in genetic algorithms, including
population size, stopping conditions, and each rate pa-
rameter required in the genetic operation. The population
size has influence upon the use of memory space and the
stability of sampling. The stopping condition is related
to the implementation time and the quality of results. It
can be specified by the CPU implementation time, the
change of objective values, the expected quality of the
solutions, and the maximum generation size. Since the
previous three methods are unable to control the actual
search steps in different computer hardware, we decided
to use the maximum generation size as the stopping
condition. Finally, each rate parameter would primarily
employ piecewise linear functions. We disclose more
details concerning the experiment analysis in the next
section.

V. EXPERIMENT ANALYSIS

The multipoint crossover operator needs only to designateln this section, we conducted an experimental analysis to test

a crossover ratd; .; then, select any random numbig,,

the validity of our proposed method. First, we simulated a set

for every variablelR, represents a continuous randonof experimental data according to some requirements. Each at-
variable that is uniformly distributed over the intervatribute is categorized into several selected classes respectively,
[0,1], that is,IR. = random(0,1). If R. < C,, then and these classes refer to distinct characteristics of individual
exchange. The detailed operation method is as followsattributes. Then, for facilitating the experimental design, the

a) Select any two chromosomes (called title an

jth chromosomes) from the population, then th;ﬁu

grades of importance of any unknown aspétt
(U € P(X)\U®) willbe ¢(U) andg’ (U), respec-
tively.

b) Select a random numbdR,., toward everyl/, and
conduct the exchange judgment. That is,

g Single-attribute evaluations have to fulfifl(z1) < f(z2) <
< f(wn).
strated in the following.

). The generation process of simulated data will be

A. Design of Experimental Data

The experiment illustrates the identification of general fuzzy
measures using genetic algorithms+#foe 7. We use the fuzzy

densities and the mean degree of overlapping between an at-
tribute and the other attributes to demonstrate the characteristics

if R, = random(0,1) < C.
g"(U), otherwise

YU € P(X)\U°. (13)

of each attribute, where the definition of the degree of overlap,
7, 1S cited from [13], [19]. Based on the levels of overlapping
and importance, the experimental data was designed to repre-

sent several specific classes.

c) Select any two chromosomes from the rest of t
population, and repeat the aforementioned ste
until all of the chromosomes have been addressegf

As shown in Fig. 3, according to the degree of overlap

d grade of importance, all attributes can be categorized
0 nine classes. Class 1 indicates that those attributes can
ovide nonoverlap information and have a great influence on

5) Mutation Operator: The mutation operator toward thethe model structure. In addition, Class 1 has high a grade of
real variable involves adding a slight change, and thmportance. Attributes in Class 3 also have their influence, but
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low grade of medium grade of high grade of tribute aspect must be investigated in practice, where
importance 1mp0rtance 1mp0rtance . 1 2 7
gie(0,0.07] 2:e(0.07,0.14) 2ic(0.14, 1) t=1,4,..., 0.
Class 3 Class 2 Class 1 Step 2) forz;~ of the second aspect set
non-overlapping % = The exact solution forg({z1,z;}) (¢ =
Miel0, 1] B4=0. - = gs=0. . . .
1420278 750,102 2,3,..., 7) can be uniquely derived, so it is neces-
Class 6 Class 5 Class 4 sary to investigate the data 8., .. (= E.,4,)-
low OV[e(f)lgp%l)“g _-’g 0 —XS - Step 3) for the seventh aspect set
helt e 240 299 The overall evaluationf, ,......, of the uni-
Class 9 Class 8 Class 7 versal set must be surveyed.
high overlappin Xe X2 X 4) forr,~ ofth h =4 .
Ml 05) g 520106 40,09 o021 Step 4) forz;~ of thekth aspect se; = 4,5, 6
16=-0.501 1p=-0.538 17120545 a) Select aspect{xy,xs,x3, x5, 26,27} from
x1~ Of the sixth aspect set, and this aspect

Fig. 3. Category of each attribute in the experimental date= 7). covers the information for aspedts; , z2, 3,

T5, %6}, {71, %2, %3, 75,77}, {71, T2, T3, T6,
TABLE | w7}, {w1, 22,25, 26,27}, and {xy,xs, s,
ASPECTS WITHERRORSLARGER THAN 0.01IN THE THIRD ASPECTSET zg, 27} in the fifth aspect set.

Hlustration Aspect (absolute value of the error) b) Select aspem{xl’ x2_’ T4, T35 xG} . from the
Aspects with errors | {x2,x4,%6}(0.0270) {x3,%5,%7}(0.0249) {x1,x4,%7}(0.0219) unmarked aspects im of the fifth aspect
ifge“han.%mo }M»xmigg-g?gg; { T OO set, and this aspect covers the information

spects with errors X1.%6,x7 } (0. Xx1.x3.%6 t (U X1,X5,X6 j (U
larger than 0.0100 and|(x2,ta,x5} (0.0157)  {x206,07}(0.0126)  {x3,05,%6}(0.0109) for aspectqz1, x2, 74, 75}, {71, 72, T4, To},
no more than 0.0200 |{x1,x5,%7}(0.0101) {z1, 22, 25,26}, and {xy1, x4, x5, 26} In the

fourth aspect set.

c) Examine other aspects (including those
marked aspects) in the fifth aspect set. Two
additional aspects, which can cover the in-
formation of four unmarked aspects in the
fourth aspect set are selected, including
{z1, 22, 23,24, 27} @and{xy, z3, x5, 26,27}

d) Continue to examine other aspects in the
fourth aspect set. AspectSey, 23, 24,5},
{371,372,373,376}, {371,372,374,377}, and {371,
x5, 26,27} are also selected from the fourth
aspect set.

the grades of importance are low. Class 7 indicates that the
attributes with high grades of importance have a high degree of
overlap with other attributes. The attributes in Class 9 make no
salient contributions to the provision of nonoverlap information
and to the grade of importance. The most common situation
is Class 5, which has low overlapping and a medium grade
of importance. We first selected the five classes above, and
they are respectively represented by one attribute. In addition,
for those nonparticular situations in Classes 2, 4, 6, and 8,
any two classes are selected and each is represented by one
attribute. Thus, seven classes were selected. We simulated the ]
relevant data and the single-attribute evaluations must fulfill StéP 5) forz; of the third aspect set

f(z1) < f(zz) < -+ < flzs) to implement the experi- Because the investigated data in the lower aspect
mental design. The simulated experimental data are listed in set are relatively accurate, we hope to capture all
Appendix Il andz represents Class &, for Class 33 for of the aspect information of the third aspect set.
Class 4, for Class 5,z for Class 7,z for Class 8, and:g Thus, those aspects uncovered by the selected sz_im—
for Class 9. The solution result for the third aspect set is shown ples of the fourth aspect set must be explored in
in Fig. 9. In general, the error is greater than that in the second practice, including{x1, 2,25}, {x1, s, 27}, and
aspect set. The aspects with errors (absolute values) larger {x1, w4, 26}

than 0.0100 are listed in Table I, where aspeats, x4, 76}, According to the results from aspect sampling, we can calcu-

{x3, 5,27}, {z1, 24, 77} @and{zy, x5, 76} have a little greater late the evaluation values of sample aspects using the simula-
difference between the estimated and actual values of flien data. Those evaluation values are considered as the objec-
grades of importance. Even so, the error, as a whole, remain$te upon which the subsequent solution procedure can be based.
be insignificant and the solution quality is very satisfactory. The details of the evaluation values are listed in Appendix II.

B. Sampling Process of Attribute Aspects C. Experiment Results

After simulating the experimental data (including the mea- To show the feasibility and applicability of the solution
sure values of each aspect and the evaluation values of eggbtedure for general fuzzy measures using genetic algo-
single-attribute aspect), we conducted the sampling procedtms, we applied the proposed method to the experimental
under partial information to determine the sample aspects, ®a. Besides the boundary conditions, the input data include

indicated in Flg 4. Gi (L = 17 27 ) 7)’ g({.’IZ'l,.’L'j}) (J = 27 37 ) 7)’ f(xz)
Step 1) for the first aspect set (i=12,...,7), Eps, ( =2,3,...,7), and the evaluation
Since the first aspect set provides the primary insalues of twelve sample aspects.
formation, the fuzzy density; (= g;) and eval-  According to the sampling procedure, we selected twelve

~

uation valuef(z;) (= f(z;)) of each single-at- sample aspectdxy, 22,25}, {21, 23,27}, {z1, 24,26}, {21,
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2nd aspect set
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<
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<X
@ @?@ Sth aspect set

COICHICHI COICDICEY RN
6th aspect set
@ Tth aspect set

(O : attribute aspect () :investigated aspect o : sample aspect

Fig. 4. Sampling procedure of attribute aspdets= 7).

22,23,%6}, {21,%0, 24,27}, {21,23, 24,25}, {21,235, %6, )
.1'7}, {xlv L2,T3,T4, .1'7}, {xlv L2,L4,T5, ‘TG}I {xlv X3, L, Cpl ‘
x6, 377}, {371, T2,%3,L5,L6, 377}, and {371, T2,L3,L4,L5, L6,
x7}. The actual evaluation values of these aspects can 4
obtained through the investigation in practice. We used tfcp2 rrrrrrr P ,
twelve aspects to specify the objective equation, i.e., minim. : : :
average error sum of squares. 0 0.25G 0.5G 0.756G G
In using genetic algorithms to solve general fuzzy measures
with the proposed procedure, there are some parameterstgr
users to control. To determine the favorable range of parameter
values and obtain desirable performance within such a rangiee genetic operation, the tolerance interég), concerning the
we conducted pilot tests on the experimental data. Accordingdgonformance function is as indicated in Fig. 5, wh@ltez 0.1
the trial-and-error results, the population sig,is designated andC? = 0.01. The specification of the crossover rat,, is
as 30. Lets be the generation number. The stopping conditicas shown in Fig. 6, wher€l = 0.1 andC? = 0.5. Moreover,
is specified by defining the maximum of generation siz&2*, the specification of the mutation ratg,,,, is as seen in Fig. 7,
which is 100. In regard to each of the rate parameters needesvimereC!, = 0.1 andC2, = 0.01.

Number of Generation

»
>

5. Tolerance interval of the conformance functi@), ).

1
m
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Number of Generation

»
!

0 0.25G6 0.5G 0.75G G

Fig. 6. Parameter specification of the crossover rdfe, Parameter
specification of the mutation rat€;,.,.

Number of Generation

»
>

0 G
Fig. 7. Parameter specification of the mutation rate,.
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Solution result of grades of importance in the fourth aspect set.

TABLE 1

ASPECTS WITHERRORSLARGER THAN 0.01IN THE FOURTH ASPECTSET

Illustration

Aspect (absolute value of the error)

Aspects with errors larger than 0.0400

{x1,x2.X3.%2}(0.0574) {x3,x3,x5,%7}(0.0445)

Aspects with errors larger than 0.0300
and no more than 0.0400

{x2,%5.26,%7}(0.0377) {x1,x3,x5,%7}(0.0310)

Aspects with errors
larger than 0.0200 and
no more than 0.0300

{x2.63.%a,%6}(0.0282) {x1,x3,x5,%6 }(0.0249) {x),x2,X3,x5}(0.0247)
{x2.03,%4,%5 }(0.0237) {x3,%4,%6,%7}(0.0224) {x2,x4,%5,%7}(0.0219)
{x1,%4,%5,%7}(0.0208)

Aspects with errors
larger than 0.0100 and
no more than 0.0200

{x2.xa.26.%71(0.0191) {x(,%3,%4.%7}(0.0166) {x1,x2,%2,x6}(0.0154)
{x1,x3,X6,%7}(0.0153) {x2,x3,x4,x7}(0.0149) {x1,x2,%4,x7}(0.0135)
{x3.x4,x5,7 }(0.0133) {x1,x2,%3,%7}(0.0114) {x3,x4,%5.%6 }(0.0111)
{x1,Xa,X5,%6 }(0.0105)
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e
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Attribute Aspect

Solution result of grades of importance in the fifth aspect set.

TABLE Il

ASPECTS WITHERRORSLARGER THAN 0.01IN THE FIFTH ASPECTSET

1llustration Aspect (absolute value of the error)
Aspects with errors larger {x1,x3.4,x5,%7}(0.0259) {x1,x2.%3,x6,x7 }(0.0252)
than 0.0200 and no more {x1x2.x4,%5,%7 }(0.0250) {x1%2,%3.%4,%6 }(0.0232)
than 0.0300 {x1,22,%5,%6,%7}(0.0228) {x1,%2.x4,%5,%6 } (0.0220)

Aspects with errors larger
than 0.0100 and no more

than 0.0200

{x1.02,%3,%4,5}(0.0183) {x2,x3.%4,%5,%6 }(0.0183)
{x2.x3.%4,x5.x7}(0.0179) (x3,x4,%5,%6,%7}(0.0178)
{x2,%4,x5,x6,x7 }(0.0166) {x2,x3,%5,%6,%7}(0.0162)

{x1.x2,%3,05.x7}(0.0121)

The solution results of measure values are exhibited in Ap-
pendix Ill, where an attribute aspect is indicated by U. For exith error 0.0119. As for the other aspects, the difference is
ample, U237 stands for aspets, z3, 27} and U13467 rep- extremely slim. This indicates that the estimated results for
resents aspedtry, z3, x4, g, x7 . FOr most aspects, the differ-grades of importance are very close to the actual values.
ence between the estimated and actual values of the grade of imAs for the fourth aspect set, Fig. 10 shows that the dif-
portance is rather slight. Thus, the identification procedure usifeyence between the estimated and actual values becomes
genetic algorithms has an excellent performance in solving géarge, where the error 0.0574 ¥y, z2, 3, 24} and 0.0445
in {x2,x3,25,27} are most prominent. The aspects with

Fig. 8 shows the solution result for aspects exclusive;e6f errors lying within (0.0300,0.0400], (0.0200,0.0300] and
in the second aspect set. Here, we only consider the absol{@®100,0.0200] are listed in Table Il. The errors of the re-
value of errors. The aspect with the greater difference betwemaining aspects in this aspect set are very slim.
the estimated and actual values of the grade of importance iShe solution result of the fifth aspect set is indicated in
Fig. 11. Additionally, the aspects with errors lying within
(0.0200,0.0300] and (0.0100,0.0200] are listed in Table IlI.

eral fuzzy measures.

{z2,24} with error 0.0209, seconded Hys, x5} with error
0.0157, then{xz, s} with error 0.0149, and nex{zy,z7}
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o “Of - ical classes. The experiment results showed that using genetic
Q I . . . . .
S o095 | - algorithms to identify general fuzzy measures under partial in-
é 09 T formation performs very well. Moreover, the average error sum
2% e : memacdvane | of squares, Z, is only 0.0009, showing a satisfactory solution
g ot o quality.
§ o7} N
0.65
g & & B B B B % APPENDIX |
s 5 5 5 5 5 § &8 SAMPLING PROCEDURE
Attribute Aspect The first author developed a sampling procedure to surmount

the data collection difficulty when using general fuzzy measures
. She used the concept that any aspect ofitieaspect set
can, at most, cover the information @f — 1) unrepeated as-

Fig. 12. Solution results of grades of importance in the sixth and seve
aspect sets.

TABLE IV pects in thek — 1)th aspect set. To reduce the sample size, the
ESTIMATED RESULT OF EVALUATIONS FOR SAMPLE ASPECTS information of each aspect would be covered by no more than
— ___ one aspect (excluding itself). The sampling procedure for each
Aspect  Estimation Error Aspect Estimation Error is d ibed foll
Groxs)  0.2783  0.0007 | {xixaxenca] 03708 0.0012 aspect set Is described as follows.
{x1,x3.07} 0.2692 0.0008 {x102,%3,X4,x7} 0.2882 0.0001 Step 1) First aSpeCt set
{X1XeX) 02853 -0.0002 | [x1.x2.aksXe} 0.2970 0.0004 . . — .
[rotxaxs)  0.2267 00017 | {xixnxs.xsxe) 0.3317 0.0014 This aspect set provide the essential information,
{raexsxs} 03294 00009 |{manxsasxrd 03261 0.0028 so the fuzzy density; (= §;) and evaluation value
{x1,x3.xa,x5}  0.2900 -0.0003  |{x1,x2.x3.%4.X5.%6,%7}  0.3179 0.0001

f(x;) (= f(x;)) of each attribute must be investi-
gated, wheré = 1,2,....n.
Comparing Figs. 10 and 11, the error in the fifth aspect set isStep 2) z;~ of the second aspect set

smaller than that of the fourth aspect set on average. Since the exact solution ofg({z1,z;})
Finally, with respect to the sixth and seventh aspect sets ( = 2,3,...,n) can be uniquely determined,
(Fig. 12), the error 0.0379 in aspetty, z3, x4, 5, Te, L7} itis necessary to investigate the dataif{«1, <, })
comes out the highest, trailed HQy1, z2, x4, z5, T6, 27} With (= E({z1,z;})). From (4), we know that for
error 0.0283{x2, x3, 24, x5, zs, 27} With error 0.0172, and 7=23,...,nm,
{z1, 22,23, x4, xg, v7} With error 0.0168.
In regard to the solution objective, the average error sum of gj

squares isZ = 0.0009, indicating excellent performance using  f(@1) + [f(z;) — f(z1)] - o) E({x1,2;}).
genetic algorithms to solve general fuzzy measures under par- Y
tial information. The estimated evaluation values and errors of
the 12 sample aspects are listed in Table IV. The aspect with the Sinceg;, f(z1), f(z;), andE({x,z;}) are given,
highest error is{x1, z2, 3, 25, 26, 27}, and the difference be- g({x1,z;}) can be derived:
tween the estimated value and the actual datum is 0.0028, trailed
by aspect{x1, z2, 23,26} With error 0.0017. As a whole, the
error of each aspect is negligible. g({z1,2;}) = [f(xj) — J@)]-g; )
To summarize, the experiment result using genetic algorithms E({zy, z;}) — fz1)
to solve general fuzzy measures under partial information is de-
sirable. This indicates that even with a lack of complete informa- Step 3) nth aspect set
tion, as long as the sampling procedure under partial information Investigate the overall evaluatiorE({xl, 9,
is employed, most information can be adequately captured with ...,z }), of the alternative inX .
the least number of sample aspects. Then, genetic algorithmg;telo 4) z1~ of thekth aspectse; = 4,5,...,n — 1
can be used as a solution strategy for identifying general fuzzy
measures to obtain a satisfactory estimated result.

a) Select any aspect randomly in the — 1)th
aspect set. In then — 2)th aspect se{;n — 2)
aspects whose information can be covered by

VI. CONCLUSIONS the preceding selected aspect are marked.

To resolve the difficulty that general fuzzy measures expose b) Fork = n — 2, n — 3,...,4, conduct the
in data collection and identification, we applied genetic algo- following steps:
rithms to develop a solution procedure for fuzzy measure values c¢) First, select any unmarked aspect intieas-
based on partial information. The corresponding detailed design pect set, andt — 1) aspects whose informa-
was also proposed to facilitate high efficiency of genetic algo- tion can be covered in thé& — 1)th aspect set
rithms, including the initialization of the population, establish- are marked.
ment of the fithess function, and detailed design of the three d) Continue to examine other aspects in #tle
genetic operators. aspect set (the previously marked aspects are
To show the applicability of our proposed method, we simu- also taken into consideration). If an aspect can

lated the experimental data that are representative of several typ- cover the information ofk — 1) aspects in
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EXPERIMENTAL DATA IN THE FIRST ASPECTSET (n =

TABLE V

)

TABLE VI

527

EXPERIMENTAL DATA IN THE FIFTH AND SIXTH ASPECTSETS (n = 7)

Aspect set Aspect Grade of importance Evaluation Aspect Aspect Grade of Aspect Grade of Aspect Grade of
x =6 =021 _ 7 _ set importance importance Importance
{(x1} 8 =8 fx) = f(x)=0.13
R RO (xixxxaxs) 073 [(xoxexsaa) 069 [{vxexsxexs)  0.70
=0.09
{x2) 8: =87 fx) = f(x,)=0.20 (rxxxaxs) 054 [[xxoxaxexs) 048 |(xaxsxexsxs)  0.71
* {x3) g, =§,=0.17 f(x,) = fix,)=0.21 St [(xoaxen) 059 [{nndsxex) 067 |rxnxexsx) 0.80
aspect set (e} 5 =005 ? o aspect | {x1.x2.3,%5,%6 ) 0.64  |{xi.xs.x4Xs5.X} 0.68  |{x2x3.x40x6,x7) 0.63
P e 8. =8, Flx) = f(x,)=036 set |[{xxoxxsxa) 072 [{oxxersx) 078 [(nxxsxexs) 074
{xs} g, =§,=0.15 fx) = f(xi)=0.39 {xi02 230607} 0.51 {o1,%3,X4,%6,X7} 0.60  |{x2x4,x5.x6,x7} 0.76
(x6) _ 5 =0.06 " {xix2.xa,%5,%6 1 0.67  [{xixaxsxex7) 0.69  |{xs,xexs,x6,07) 0.82
6 85 = 8sT flxg) = f(xs)=0.41 6" [nmrurssl 081 |(xantsaer) 078 |(eisXetsien)  0.89
{x7} ¢, =8,=0.11 flx) = fr( x,)=045 aspect |{xxmkexsxs) 093 |Inmxasyenl 084 |[oxxssxex) 091
set  |{noxxaxer) 069
TABLE VI TABLE IX
EXPERIMENTAL DATA IN THE SECOND ASPECTSET (n = 7) EVALUATION VALUES OF THE SAMPLE ASPECTS(n = T7)
Aspect Aspect  Oradeof  Overlap |, Gradeof  Overlap Aspect set Sample of x;~ Evaﬁluation
set P importance coefficient* P importance coefficient {x1xe} E., =E,,=0.1586
A e (i) E,, =E,,=0.1891
X1,X3 . =V X3,X5 . S od N
{x1xe) 030 0444 | {x3xe) 0.18 -0.833 27 aspect set brixa) E,, =E,,=0.1683
§ {x1.xs5} 0.27 -0.600 {x3.x7} 0.31 0214 {x1.x5) E, =£E  =02744
2" {x1.%6) 0.21 -1.000 {xa,xs) 0.35 0.750 o
aspect {107} 0.22 -0.909 {xax6) 0.21 0.667 {xixe) E,, =E,,=02100
set {x2,%3} 0.17 -1.000 {xax7} 0.29 0.722 {107} E., = EA‘W =0.2900
{xoxs) 018 0444 | {xx) 028 0538 o -
axs 021 0333 | (v} 043 0.607 . s} E s, 02190
{x2,%) 0.10 0.833 (6.7} 0.13 0.667 3" aspect set {x1x03.07) r, =0.2684
{xa.x7} 0.11 -1.000 {x1.0a06} £ —0.2855
*: The definition of the overlap coefficient is cited from [13], [19]. e
{xixa,xa,x) E, v, =0.2250
4™ aspect set {x1.x2,x4,%7) £, s, =0.3303
{x1x3, 04,05} E,...,=0.2903
{21, 05.06,%7} E, 11, =0.3696
TABLE VII {x1x2,03,58.07) E, . ... =02881
EXPERIMENTAL DATA IN THE THIRD AND FOURTH ASPECTSETS (n = 7) th Rikaas
5™ aspect set {001, x2,4,X5,%6 } E, o, =0-2966
{x1.x3,%5,%6,%7) E =0.3303
Aspect Aspect ﬁrzcri‘eanczg Aspect Qrade of Aspect Qrade of Aspect Qrade of . A.r,x\x,w,
set P p P P 6" aspect set {1,02,3,X5.X6,%7 ) E.\ oo, =0.3233
{roxh 026 |{nxexs) 041 el 037 [{oxeg) 042 e Tl - - FE
{rioxa) 032 |{nxexs) 033 [mwxs) 039 [{oasx) 046 aspect se [0 25,805,657 E ionsnien =0-3178
{xixs)  0.29 [{xixexs) 035 [xaxaxs) 024 [{xxsxi) 048
39 et 023 [{nasxs) 031 [{xxex) 034 |{oaexs) 034
aspect |{xmaax} 025 [{oxsxr) 045 [{oxsxs) 032 [{xaxsxs) 041
set  [{xixaxe} 038 |{xixexs) 027 [(wxsxol 051 Hxexsx) 049 APPENDIX |l
{x1,003,x5} 0.44 Hxpxxs} 0.40 |{x2.x6.x7) 0.16 {xs,x6.x7} 0.35
{nxaxs) 025 [{xxxst 047 [{xxexs) 053 {xsxexs) 048 EXPERIMENTAL DATA
{rxsxr) 037 Jloxxe) 021 |{xaxx)  0.39
{xixanxs) 047 [lanxexexs) 034 [{xiaaxexs) 039 |{xxaxsal  0.60 See Tables V-IX.
{rivxxs) 051 Hoaxxaxs) 062 |{xnasxexrt  0.55 |{xnxaxexrd  0.39
{xaxxe) 030 Hxooxaxs) 045 Hxoxsxexs) 0.64 |{x2xs.xex1) (.58
4" nmxn) 041 |nxen] 050 [(oarexs) 044 |(oxxsy)  0.62 APPENDIX Il
aspect [{xirxaxs) 049 [(nxasx)  0.53 |exnxax) 051 [{oxersx)l  0.66
set  |(nxaxexs) 038 [{unooasx) Q.58 [{xexaxsxst  0.57 [(oxexsx) 048 EXPERIMENTAL RESULT
{xpxzxaat 040 [{axoaexd  0.43 |Iessasx) 0.61 [{oasxsas)  0.56 .
skl 035 [(xussid  0.54 |(odren) 042 |(rssren)  0.63 See Figs. 8-12.
{xixaxsxr)  0.56 [{xovaxsia) 059 |[laxexsxs) 052
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