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TABLE I
WEIGHTS VALUES IN CONSEQUENCE

time period for one walking step reduces to 0.52 s. The final values of
wai are listed in Table I.

VI. CONCLUSION

Fuzzy neural network approaches for robotic gait synthesis are pre-
sented in this paper. The suggested scheme uses a fuzzy modeling
neural network controller with the BTT algorithm in the gait synthesis
of a walking robot. The uncertainty of the network size in the con-
ventional neural network learning scheme has been overcome by the
use of fuzzy modeling network. The fuzzy controller can generate con-
trol sequences and drive the biped along a desired pattern of a walking
gait. The desired pattern is used only as a reference trajectory. The pro-
posed learning scheme trains the controller to follow this given pat-
tern as closely as possible. Different pruning algorithms, membership
functions, and network structures are investigated. Simulation results
demonstrate that the desired goals—crossing over a specific clearance,
having a desired step length, and walking at a certain speed—were
achieved.
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Constructing Hysteretic Memory in Neural Networks

Jyh-Da Wei and Chuen-Tsai Sun

Abstract—Hysteresis is a unique type of dynamic, which contains an im-
portant property, rate-independent memory. In addition to other memory-
related studies such as time delay neural networks, recurrent networks, and
reinforcement learning, rate-independent memory deserves further atten-
tion owing to its potential applications. In this work, we attempt to define
hysteretic memory (rate-independent memory) and examine whether or
not it could be modeled in neural networks. Our analysis results demon-
strate that other memory-related mechanisms are not hysteresis systems.
A novel neural cell, referred to herein as the propulsive neural unit, is then
proposed. The proposed cell is based on a notion related the submemory
pool, which accumulates the stimulus and ultimately assists neural net-
works to achieve model hysteresis. In addition to training by backpropaga-
tion, a combination of such cells can simulate given hysteresis trajectories.

Index Terms—Hysteresis, hysteretic memory, rate independence, recur-
rent network, reinforcement learning, time delay neural network.

I. INTRODUCTION

In addition to its simple and practical nature, network computation
is adaptive. Network approximation is thus used in many control sys-
tems [31], [52]. Neural networks with a short-term memory, occasion-
ally referred to as belonging to dynamic systems, are also highly at-
tractive for processing time varying signals [32], [56]. In this work,
we study another type of dynamic, i.e., hysteresis, which is a unique
case of memory. Whether or not neural networks can model hysteresis
behaviors is discussed. Network computation can be more fully imple-
mented to achieve a better performance from those systems that are
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Fig. 1. Typical branches of hysteresis. The outcome of hysteresis is not only
based on the current input value, but is also related to the previous history.

Fig. 2. Hysteresis as a rate-independent memory effect (RIME), where (a) and
(b) plot the two different inputs, which have the same successive extreme inputs.
These input plots result in the samef -u effect diagram of hysteresis.

hysteresis embedded if neural networks could be constructed as hys-
teresis simulators.

Hysteresis is a memory effect, with its literal meaning implying to
“lag behind.” Fig. 1 depicts the typical shape of a hysteresis diagram.
This figure indicates the characteristic behavior of a hysteresis system,
a lag in evocation, and perseverance in recovery. When the input value
alternates between increasing and decreasing, the response curve does
not continue to follow the original path; instead, it draws a new effect
delayed curve. In other words, the outcome of a hysteretic mechanism
is not only based on the current input value, but is also related to the
previous history. Therefore, hysteresis behavior can be easily distin-
guished from conventional static mathematical functions.

Hysteresis also heavily concentrates on an important property,rate
independence. Generally speaking, in the discussion of hysteresis non-
linearity, only the previous extreme input values determine the hys-
teresis branches. The speed of input variations is not an influential
factor. Fig. 2 illustrates this property. Fig. 2(a) and (b) plot two dif-
ferent inputs,u1(t) andu2(t), whose successive extreme values are the
same. These inputs initially rise top, fall to q, and are then followed by
values such asr; s; t. Let the output of the hysteresis system bef(u).
Fig. 2(c) summarizes the results in the samef -u diagram. This prop-
erty is known as rate independence. Restated, hysteresis is considered
as the rate-independent memory effect (RIME) [47].

As an extreme example of rate independence, we track the output
in response to input sequencef1; 2; 5; 8; 8; 8; 8; 8; 9; 12; . . .g. Imagine
that the input sequence is adopted in a hysteresis system. The response
is varied with 1, 2, 5, 8 sequentially input, and remains on the same
measure during the run of unchanged 8’s. To emphasize the difference
from other memory-related schemes, we first consider the time delay

neural network (TDNN) [25], [51]. A TDNN uses delay kernels with
weight factors to ensure short-term memory. Therefore, the above in-
puts cause a TDNN to alter its output even with the same input values,
i.e., unless the memory depth is full. According to an earlier investiga-
tion on recurrent networks [14], [30], [53], [54], the response cannot
remain on the same value either, because the feedback requires some
iteration to converge (if at all possible). From another aspect, delayed
rewards in reinforcement learning (RL) may be considered as a case
of memory. Herein, we focus primarily on delayed rewards in RL by
employing methods such as temporal difference learning [TD(�)] [39]
andQ-learning [49]. The notion applied inTD(�) is credit assignment
toward temporal patterns, whileQ-learning is based on Markov chains.
These two concepts are both related to the time factor and, thus, differ
from hysteresis.

Consider another example, one involving the concept of rate
independence mentioned earlier. Assume not only that the sequence
f1; 2; 5; 30; 8; 9; 12; . . .g is the input, but also that the extreme value
30 is not attributed to noise. According to our results, the value
30 impacts the hysteresis system for an extended period. Notably,
presenting the value 30 changes the path in effect diagram [f -u
diagram in Fig. 2(c)]. Such an influence can be eliminated only after
the coming input is less than a certain scale, e.g., 0 or�30 in some
cases. Our results further indicate that for the same input sent into
some memory-related schemes (other than the hysteresis system): a)
time plays an important role and b) a certain long time or a sufficiently
long sequence of common inputs can neglect a circumstance in which
the value 30 occurred. In summing up these two examples, hysteresis
is characterized by rate-independent memory (also referred to as
“hysteretic memory”). Regardless of how slow or fast the input values
appear, only the previous extreme values determine the response, even
if the inputs remain for a long time or merely flash at once. This prop-
erty makes hysteresis markedly different from other memory-related
studies, thereby meriting its thorough investigation.

The rest of this paper is organized as follows. Section II reviews
hysteresis related literature, indicating its prominence in diverse fields.
This section also briefly introduces the Preisach model, which is the
most instructive and important model in study of hysteresis. Section III
defines the rate-independent memory by formulation. Section IV de-
scribes the structure of our approach to modeling hysteresis and derives
a backpropagation procedure to train this model. Concluding remarks
and areas for future research are finally made in Section V.

II. HYSTERESISRELATED LITERATURE

A. Review of Related Studies

The term hysteresis originates from ancient Greek and is first
used while describing ferromagnetism [see Visintin ([47], p. 9)]. In
fact, many useful models have emerged from this domain [17]–[19].
Another cradle for early hysteresis models to develop is plasticity.
After Tresca introduced the maximum shear stress yield criterion in
1864, successive investigations increasingly emphasized this criterion
[23], [47]. In addition to these two areas, many studies subsequently
followed. According to these studies, hysteresis can also be found in
various fields, including microelectronics (ferroelectricity [15], [27]),
thermodynamics (thermostat [6], [8], thermal relaxation [9]), and in
some recently developed materials (the shape memory effects [1], [2],
[28]) and mechanics [5], [44].

Besides physical engineering, this phenomenon also occurs in
cognitive engineering. Hysteresis can be observed in spatiotemporal
pattern recognition (nonstationary noise clearing [21], [42]), time
varying signal processing (phase transitions [4]), and cybernetics
(control of plants [29], [41]). Moreover, it is becoming increasingly
important in the fields of psychology (long-term memory and painful
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Fig. 3. Preliminary hysteresis operators in the Preisach model. The Preisach
model of hysteresis is based on the combination of
̂ operators.

experience [38]) and economics [10], [11], [45], [48]. There are still
some unresolved questions in all of the above fields, and rate-inde-
pendent memory can be a hint. Why is the wage rigidity [7], [22]
considered in the Keynesian model? Does the stock market rise
and become different after the indices have risen higher than some
level [16]? These are related, to certain extents, to rate-independent
memory. As generally known, reversing a situation (or even forgetting
it) after it occurs is extremely difficult. Such a situation can persist for
a long time, ultimately reducing the influence, not because time has
passed but because another new scene (extreme value) occurs.

B. Mathematical Models

As mentioned above, the study of hysteresis begins with ferromag-
netism. Pertinent literature regarding ferromagnetic hysteresis, which
can be found in [35], indicates that Lord Rayleigh [34] proposed the
first model in 1887, and the most important model, the Preisach model,
was proposed in 1935 [24], [33].

The Preisach model has received extensive attention [37], [43], [46]
since it was published in 1935. This model contains the notion that
a complicated system can be constructed as a superposition of sim-
plest operators (Fig. 3). The operator
̂�� is the unit of the Preisach
model. Footnotes� and� denote the operating limitation of each op-
erator. Each operator works with the current input value,u, and results
in bi-valued hysteresis (returns�1 or 1) owing to that the ascending
paths and the descending paths are switched. While combining opera-
tors, such aŝ
� � ; 
̂� � , etc., an entire system can be expressed by
the following equation:

f(t) =
���

�(�; �)[
̂��u(t)] d�d� (1)

where�(�; �) is the weight to each� � � operator̂
�� .
The Preisach model is known as a kind of “nonlocal memory hys-

teresis model” [26] since it responds to the outputs while thoroughly
considering the previous inputs. Another kind of hysteresis model is
called “local memory hysteresis model.” These models generate their
next output by consulting the local memory they have produced in the
current state. In this case, at most two curves pass through each point
in the input-output (I/O) matching diagram, say, thef -u diagram. For

an increasing inputu(t), the rising curve is followed, causing the re-
sponsef(u) to rise withu. If the input is decreased, then the falling
curve is traced.

The Hystery model [42] is an instance of local memory models. Both
the upper and lower branches of a hysteresis loop in this model are
described by hyperbolic tangent functions.

III. D EFINITION OF HYSTERESISSYSTEM

In the previous section, we introduced rate-independent memory and
briefly mentioned that hysteresis is frequently observed in many fields.
However, other memory related mechanisms are not rate-independent
and, thus, may not function properly in a hysteresis system. In this sec-
tion, we repeat these instances by a formulation. An attempt is initially
made to properly define a rate-independent system in terms of digital
data processing. In doing so, all of the schemes, such as time delay
neural networks, recurrent networks, and some reinforcement learning
methods, are distinguished from hysteresis. In the next section, we pro-
pose the propulsive model to model the hysteresis behavior in neural
networks.

A. Rate-Independent Systems

Initially, we denote a systemT that transduces an input sequence
with valuesx[n] into an output sequence with valuesy[n] as the fol-
lowing form:

y[n] = Tfx[n]g: (2)

Then, a rate-independent system is defined as a system having the fol-
lowing two properties.

Property 1—Ineffective Insertion of Mean Values (IIMV):Consider
an input sequencex = f. . . ; x[k]; x[k + 1]; . . .g and two contiguous
input values in it, sayx[k] andx[k + 1]. We insert a mean valuexq =
p x[k] + (1� p)x[k + 1] with 0 � p � 1 betweenx[k] andx[k + 1].
In doing so, a new sequencew is obtained asw[i] = x[i] for i �
k; w[k + 1] = xq , andw[j] = x[j � 1] for j > k + 1. Thereafter,x
andw are sent to two systems, which are both duplicated from system
T . By assuming that the corresponding outputs are sequencesy andz,
we state that the systemT has ineffective insertion of mean values if
z[j] = y[j � 1] with j > k + 1 for any input sequencex and any
interpolating indexk. (In addition, it is always true thatz[i] = y[i] for
i � k in any system. The output in response toxq; z[k + 1], is not
important here.)

Property 2—Ineffective Removal of Mean Values (IRMV):For an
input sequencex, we select any three contiguous valuesx[k� 1]; x[k]
andx[k+1] under the conditionx[k] = px[k� 1] + (1� p)x[k+1]
wherep satisfies the condition that0 � p � 1. A new sequencew is
obtained after we omitx[k] such thatw[i] = x[i] for i < k andw[j] =
x[j +1] for j � k. By sendingx andw to two duplicate systems both
referring to systemT , let the corresponding output sequences bey and
z. We state that the systemT has ineffective removal of mean values if
z[j] = y[j +1] with j � k for any input sequencex and any omitting
of indexk. (Also, it is obvious thatz[i] = y[i] for i < k in any system.)

Definition 3—Rate-Independent System:A rate-independent
system contains both of the above IIMV and IRMV properties.

The inserted mean values could turn to be asubsequenceby iter-
atively applying the IIMV property on the same interpolating index.
Similarly, continuous removed mean values can form a subsequence
as the IRMV property is applied repeatedly. That is, insertion (or re-
moval) of an input subsequence is also ineffective for a rate-indepen-
dent system as long as this subsequence has no extreme value according
to the newly generated input sequence.



604 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 4, AUGUST 2000

B. Hysteresis Systems

Consider that a system is memoryless iff the outputy[n] at every
value ofn depends only on the inputx[n] on the same value ofn. That
is, y[n] = f(x[n]) for each value ofn, wheref( ) is one of any func-
tions. A memoryless system is surely a rate-independent system. More
specifically, a hysteresis system is defined herein as a rate-independent
system with a causal memory.

Definition 4—Hysteresis System:A hysteresis system is rate inde-
pendent, causal, and not memoryless.

Restated, a hysteresis system has rate-independent causal memory.
It is also referred to as “hysteretic memory.”

A necessary condition for a hysteresis system can be derived from
its causality and rate independence.

Lemma 5—Stayed Input Stayed Output (SINSOUT):For a rate-in-
dependent system, an unvaried input subsequence causes an output sub-
sequence that also remains unchanged.

Proof: By applying the IIMV property on interpolating indexk
with p = 0, the inserted mean value isxq = x[k + 1], which is also
viewed as the unvaried input value. Let us focus on the key I/O subse-
quences. The original I/O pair isfx[k]; x[k+1]g andfy[k]; y[k+1]g.
By rate independence, the inserted I/O pair isfw[k] = x[k]; w[k+1] =
xq = x[k + 1]; w[k + 2] = x[k + 1]g andfz[k] = y[k]; z[k + 1] =
Tfxqg; z[k + 2] = y[k + 1]g. Because of causality,Tfxqg with
xq = x[k+ 1] is only based on all the input valuesx[i] for i � k+ 1.
Therefore,Tfxqg = Tfx[k+ 1]g = y[k+1]. The unchanged output
valuez[k + 2] = y[k + 1] = z[k + 1] is shown here. The proof is
completed while we repeatedly apply the IIMV property as above.

C. Multilayer Feedforward Neural Networks versus Hysteresis

The preliminary neural network model is the multilayer feedforward
proceptron [52]. The activation of each node,xi, in this preliminary
model can be represented as

xi = �(neti) + Ii (3)

where

neti =
j<i

wijxj (4)

wij denotes the weight factor connecting nodej to nodei; �( ) is a
squashing function, andIi represents the bias of nodei. To show the
activation of this system in the form of a sequence, (3) and (4) can be
rewritten as

xi[n] = �(neti[n]) + Ii (5)

and

neti[n] =
j<i

wijxj [n]: (6)

According to the above equations, this is a memoryless system and
obviously not a hysteresis system by definition.

D. Convolution Neural Models versus Hysteresis

A time delay neural network (TDNN) is one of the so-called “convo-
lution models” [13]. The activation of the nodes in convolution models
is improved from (6). Herein, we let

neti[n] =
j<i

n

k=0

wij [n� k]xj [k]

=
j<i

n

k=0

wij [k]xj [n� k]: (7)

For a TDNN, the weight factorswij [k] are only valid in a bounded
range, referred to as “memory depth.” Ifk exceeds the memory depth,
the weight factor equals zero. For some advanced versions of convo-
lution models, e.g., the concentration-in-time net (CITN) [40] and the
gamma neural model [13], there is no limitation for memory depth. In
the following, we demonstrate that convolution models cannot be hys-
teresis systems.

The following discussion focuses on the first node, which operates
with memory mechanism as above. This event implies that other nodes
earlier than this node are all memoryless. Assume that the node is node
i, and its response on some inputx[nt] is concerned with

neti[nt] =
j<i

n

k=0

wij [nt � k]xj [k]: (8)

When the next inputx[nt + 1] is accepted

neti[nt + 1] =
j<i

n +1

k=0

wij [nt + 1� k]xj [k]

=
j<i

n

k=0

wij [nt � k + 1]xj [k]

+
j<i

wij [0]xj [nt + 1]: (9)

The above equations reveal thatneti[nt+1] does not equalneti[nt], al-
thoughxj [nt +1] = xj [nt] for all j < i. As the signal feeds forward,
the output of this network also performs the inequality. This perfor-
mance conflicts with the SINSOUT lemma and, therefore, convolution
models cannot establish hysteresis systems.

E. Recurrent Networks versus Hysteresis

In contrast to feedforward networks, a latter node in a recurrent net-
work may have backlinks connected to earlier ones [31]. Therefore, the
signal could feed back to join the computation in the next step, thereby
constructing the memory effect. The equation can be expressed as

neti[n] =
j<i

wijxj [n] +
j�i

wijxj [n� 1]: (10)

Among the unresolved issues surrounding, recurrent networks include
such questions as “Is it stable, and inner stable?” “Is it convergent?”
and “How fast does it converge?”

Next, whether or not it is rate independent is explored.
Consider the node that is initially linked by some latter nodes. As-

sume that it is nodei, and one of the latter nodes is nodej. Notably,
the network structure linked before nodei is feedforward and, thus,
memoryless. Assume that the previous input isxc, the current input is
xa; without loss of generality, we denote that the activation of nodej

on xc, andxa is not equal. Ifxa is input again, the feedforward part
sends the same signal to nodei, while nodej feedback to nodei differs
from that activated onxc inputs. The inequality occurs and the entire
network structure has the starting point to generate a different output.

Again, this performance conflicts with the SINSOUT lemma. We
can conclude that recurrent networks cannot construct hysteresis
systems.

F. Reinforcement Learning versus Hysteresis

Reinforcement learning is applied to discover how to yield the
highest reward, and is characteristic of a trial-and-error and delayed
reward. A well-trained mechanism is not discussed herein; in fact,
it is usually a memoryless controller. However, our primary concern
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is the learning algorithm itself, thus raising the following question:
Does it offer rate-independent information during learning? Learning
algorithms also impact the system response during the training stage.

Sutton proposed temporal difference learning,TD(�), in 1988 [39].
This incremental real-time algorithm adjusts the weights in a connec-
tionist network. The learning process follows the form

�wt = �(Pt+1 � Pt)

t

k=1

�
t�krwPk (11)

wherePt denotes the network’s output upon the input patternxt at time
t; w represents the vector of weights that parametrizes the network, and
rwPk is the gradient of network output with respect to weights. This
method provides a feasible means for supervised learning procedures
to solve temporal credit assignment problems. However, it is not rate
independent because it may not correspond to the principle of mean
value ineffectiveness.

Other reinforcement learning algorithms [50] are not rate indepen-
dent either. In fact, some of these algorithms, such asQ-learning [49],
function in a discrete finite world, not a numerical world in which hys-
teresis has been discussed herein so far. Frequency is what the learning
algorithms function to predict, thereby making time a major factor. The
learning process operates at every time step by the Markov process.
Hysteretic memory is unnecessary for these applications.

Nevertheless, we believe that learning depends, to varying extents,
on memory. Exactly what role hysteretic memory may operate in rein-
forcement learning is explored later on.

IV. HYSTERETICMEMORY VIA THE PROPULSIVENEURAL UNIT

The previous section has defined hysteresis system. According to
this definition, a system is observably not hysteresis if it is sensitive
about input speed. Conventional network strategies, either in refer-
ence to unselected and limited historic inputs or using fixed recurrent
links, are closely associated with data input rate. In sum, networks
based on computational nodes and links cannot purely function as a
hysteresis simulator. In the following, we present a propulsive neural
cell to assist hysteresis simulation. This neural cell is also trained by
backpropagation.

A. Using the Delta as the Input

As far as the SINSOUT lemma is concerned, we speculate that the
difference between two contiguous inputs may be the essence of the
hysteresis system. This difference is referred to herein as the “delta.”
A circumstance in which the network accepts the delta instead of the
real input and only action at nonzero delta input could avert the opposite
situation to the SINSOUT lemma.

Although consulting with the delta is preferred, directly using
the delta for computation is not an appropriate design. Obviously, a
delta-in-delta-outnetwork, which computes the movement of output
instead of the real response value, does not fully consist of the IIMV
property. Alternatively, some mechanisms may need to be designed in
a neural unit and the delta adopted as well to modify its state. Then,
allow the response to refer to the state of this mechanism. Restated,
hysteretic memory thus resides in the inner state of a neuron.

B. Propulsive Neural Unit

This study constructs hysteretic memory in a neural unit based on a
hypothesis involving the accumulation of the stimulus. Assume herein
that a neuron accepts delta signals and pushes them into asubmemory
pool. The process of push is named “propulsion” or “ propulsive
process.” By propulsion, if all the deltas are positive, combining all
of the deltas becomes a longer and deeper potency carrier. Otherwise,

Fig. 4. Propulsive neural models accessing delta inputs. (a) Current state of the
neural input, wherek is a variable indicating the number of record couples. (b)
Propulsion process skips a carried interval and does not stop until the increased
delta is exactly pushed. (c) Decreased delta performs the same algorithm while
empty intervals are skipped now. Variablek decreases in (b) and (c).

such a combination would be with some empty areas, and indicates a
weaker carrier.

For simplicity, this study implements the submemory as an axis,X,
which is occupied bycarried intervalsandempty intervals. Allow the
total length of carried intervals to equal the current input. The first car-
ried interval thus occurs for the first signal inputs (assuming it is pos-
itive). Initially, it starts from zero and ends on the value of the first
input because the first delta equals the first input. This carried interval
sequentially grows during the run of positive delta inputs. Before it
stops, it actually occupies a length of size equal to the first extreme
input value. Then, a negative delta inputs and uses its absolute value to
generate an empty interval also from zero. After the duration of neg-
ative delta inputs, the first carried interval turns from the right end of
the first empty interval. Thereafter, the second carried interval grows,
and so on. In doing so, any mean value inputs do not alter the state of
carried intervals and, thus, could not impact the responding outputs.
Regarding the neuron outputs, the response to the current input,u(t),
can be expressed by integrating a “reaction function,”D(x), on the
union of all carried intervals,At. It is positive and written as

f(t) =
A

D(x)dx j
A = fcarried intervalsgon u(t): (12)

Fig. 4 illustrates how this model works. Two sequences,M ’s and
m’s, are made to record the distribution of intervals. The extreme
rising signals are finally recorded by theM ’s, while the extreme
falling signals are recorded by them’s. Both M andm sequences
are in a monotonically descending order, appearing in couples
(Mi;mi)’s with Mi > mi except in the initial condition when
M1 = m1 = 0. Restated, these two sequences concern themselves
with M1 > m1 > M2 > m2 > M3 > . . .. Actually, thejth carried
interval is recorded by[mj ;Mj ], while the jth empty interval is
recorded by[Mj+1; mj ] or [0; mj ]. Therefore, by allowingk to be the
total number of record couples, the following equation is valid:

u(t) =

k

j=1

(Mj �mj): (13)

When an increasing signal arrives, the present recordMk is gener-
ally shifted from a lower position to a higher one. If the shift meets
a carried interval[mj ;Mj ];Mj replaces the current record. Restated,
this stage must be skipped, and proceed to its right end to continue the
propulsive process. The model continues to perform this process until
the increased delta is exactly pushed into the carried interval. While a
decreasing signal comes, we shiftmk in the same manner except that
the skipped stages are now[Mj+1; mj ]’s.
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Fig. 5. System established on a basic PNU organization. (a) We treat each PNU as the basic unit in the structure. (b) Picture zooms in on thepth PNU, which has
a sensible range[L ;H ]. (c) Each PNU functions similarly to a one-layered perceptron by selecting a step function as the reaction function.

Consider the following example of tracing a seriesf25; 15; 20; 18g.
The delta sequence is thusf25;�10;+5;�2g, and theM and
m’s arise as(M1; m1) = (25; 0) when the value 25 inputs,
(M1; m1) = (25;10) when the value 15 inputs. When the value 20 in-
puts, it turns out to be(M1;m1;M2;m2) = (25;10; 5; 0). Finally, it
is (M1; m1;M2; m2) = (25; 10; 5; 2) when the value 18 inputs. Now,
allowing a new signal to arrive as 24, a newM2 must occur by propul-
sion and the records list becomes(M1;m1;M2; m2) = (25; 10; 9; 0).

To summarize, this model allows us to give the response formula
again:

Input: u(t) =

k

j=1

(Mj �mj)

Output: f(t) =
A

D(x) dx; whereAt =

k

j=1

[mj ;Mj ]:

(14)

C. System Structure

A propulsive neural unit (PNU) is a neuron that accepts the delta and
operate propulsive process as designed above. In this section, PNUs are
used to construct a simple structure. Before doing so, two questions
must be addressed: “How can the PNUs be organized?” and “What is
chosen to be the reaction function,D(x)?”

Thesensible rangefor a PNU is initially provided. According to this
term, a neuron has its range to accept a signal. Too large or too small
a signal must be filtered into a value between a higher bound and a
lower one. A PNU operates like the plot in Fig. 2(c) when it accepts a
signal with value in the sensible range. An overflow signal makes the
submemory pool full, while a deficient signal makes it empty. These
two cases cause the PNU to respond to constant values. Cumulatively,
a PNU takes the filtered value, counts the delta and integrates the re-
sponse after propulsion. Now, (13) and (14) must be adjusted with an
offset of the lower bound.

As mentioned earlier, each PNU has its own sensible (working)
range and its own effective trajectory (of the shape like Fig. 2(c)
shown). Collecting some PNUs is an effective means of simulating
various types of hysteresis. Thus, as expected, a network can model
hysteresis behaviors if it contains some nodes built as PNUs with
distinct sensible ranges. For simplicity, the proposed system is basic
and only organized into several parallel PNUs. Fig. 5(a) reveals that

the input signal is simply sent to allL PNUs and the response to the
summation of their output is obtained as well. Fig. 5(b) displays the
pth PNU, whose sensible range is[Lp;Hp].

Regarding the decision of the reaction function, we select step func-
tions for convenience, although their parameters are numerous. A step
functionDp(x) is taken onto thepth PNU. The value of theith scale,
Dp;i, is an adaptable parameter. The collaborative inputrtp;i is calcu-
lated as the size of a conjunction of theith stage and the current carried
intervals, where the indext is responding to the inputut at timet; p
denotes that it belongs to thepth PNU andi represents that it should
be integrated in theith stage of the step functionDp(x). That is, the
effect corresponding to theith stage isDp;i�r

t
p;i. Therefore, each PNU

functions similarly to a one-layered perceptron. If there are a total of
n stages in each[Lp; Hp], the response value of inputut can be ex-
pressed as

f(ut) =

L

p=1

n

i=1

Dp;i � r
t
p;i: (15)

The series inputut must be diffused to each PNU, filtered into the
sensible range, changed into the delta value, through the propulsive
process and, finally, divided into each respective inputrtp;i. The total
operation design herein to construct hysteretic memory is termed the
propulsive model.

D. Learning Method

The operation phase and the learning phase are separately discussed
in the propulsive model. The operative phase of this model has been
presented above. Herein, an adaptive method is proposed to determine
the system parameters.

The learning phase of the PNU organization adopts the Widrow-Hoff
back propagation rule. This rule is based on an iterative gradient de-
scent algorithm designed to minimize the mse between the desired
target values and the actual response values.

Although (15) has demonstrated how to calculate the response value
with respect to the local inputut, a slight transformation must occur on
reaction function,Dp(x), to denote each step and complete the adap-
tation. Let us take

f(ut) =

L

p=1

n

i=1

D
t
p;i � r

t
p;i (16)
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Fig. 6. Training the PNU organization to follow the loops given by (20)
with �(�; �) = (4:5=25 ) � (3=25 )� � (1=25 )�. (a) Target diagram,
with 111 points on it. The continuous four figures use four PNUs. (b) Initial
trajectory versus target diagram. (c) After one epoch, the mse has the value
3:59 � 10 . (d) After two epochs,MSE = 2:18 � 10 . (e) After 1528
epochs,MSE = 2:82� 10 . The remaining figure uses six PNUs. (f) After
814 epochs,MSE = 1 � 10 .

and represent the target value asG(ut). The error is expressed as the
following equation:

E =
1

2

N

t=1

(G(ut)� f(ut))
2 (17)

whereN denotes that there are totalN patterns.
The adaptation rule is formulated as

Dt+1
p;i = Dt

p;i +�Dt
p;i: (18)

Thus, it is derived that

�Dt
p;i = ��

@E

@Dt
p;i

= �(G(ut)� f(ut)) �
f(ut)

@Dt
p;i

= �(G(ut)� f(ut)) �

L

q=1

n

j=1
rtq;j �D

t
q;j

@Dt
p;i

= �(G(ut)� f(ut)) � r
t
p;i (19)

where the positive value� is the learning rate.

Fig. 7. Training the PNU organization to follow the loops given by (20) in
a nonlinear form�(�;�) = (2=25 )� + (6=25 )� . (a) Target diagram,
with 111 points on it. The following figures are trained after 1000 epochs.
According to our results, the more PNUs used implies a better performance
that it converges. (b) Four PNUs used,MSE = 8:73 � 10 . (c) Six PNUs
used,MSE = 2:33� 10 . (d) Eight PNUs used,MSE = 1:93� 10 .

Equation (19) can be implemented as an iterative procedure to adapt
the system parameters.

E. Adaptation to Given Behavior

As generally known, trajectory traversal is the foundation of
system modeling. In this section, the PNU organizational ability is
demonstrated to learn some loops. Desired tracks are generated by the
Preisach model (see Section II). Initially, a system with four PNUs
is trained to follow these trajectory samples. These four PNUs are
bounded with distinct sensible ranges as[0; 25]; [5; 20]; [3; 13], and
[12; 22]. In addition, all stage lengths of their reaction functions,
which are step functions, are set to be one equally. To normalize the
response value in[0; 1], we merely assign average weight parameters
(1=4�(25�0)); (1=4�(20�5)); (1=4�(13�3)), and(1=4�(22�12))
to each stage of these four PNUs as the initial parameters. In doing so,
the adaptation can be clearly observed.

Equation (1) displays how the Preisach model functions. However,
an adjustment must be made such that whole positive trajectories can
be generated for the PNU organization to simulate. Regarding (1)

f(t) =
���

�(�; �)[
̂��u(t)]d� d�

we redefine the target diagram by having the bi-valued operator
̂��
return 0 instead of�1 while the descending paths are followed. Assume
that this redefined operator iŝ��� . The target diagram now follows the
equation

f(t) =
���

�(�; �)[�̂��u(t)]d� d�: (20)

Next, consider the alternating seriesf0; 25; 3; 21; 7; 18; 9; 16; 12g to
perform the target trajectories. All distances are set to “1” sequentially
between these extreme values. Therefore, there are cumulatively 111
points on the target sequences. In addition, allow the learning rate to
be 0.015. The learning rate is set quite small with respect to the good
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Fig. 8. Hysteresis embedded into a fuzzy membership function. We can
take a hysteresis-embedded input instead for alternatively considering several
membership functions during a memory-involved inference.

deal of set as weights in such a single layer. Later on, more experiments
are performed as well in an attempt to accelerate the learning process.

Under the page constraint, only two experiments performed
herein demonstrate the PNU organizational ability of adaptation.
Fig. 6 demonstrates the learning capability of the trajectory with
�(�; �) = (4:5=252) � (3=253)� � (1=253)� in (20). The adaptive
performance appears acceptable. This same figure indicates that
using more PNUs carried facilitates a better performance. While two
more PNUs are increased with sensible ranges of[17; 23]; [19; 22],
it converges faster and better, as indicated by Fig. 6(f). Fig. 7
reveals a similar observation when we trace nonlinear parameters,
�(�; �) = (2=254)�2+(6=254)�2. Fig. 7(b) is traced by the original
four PNUs, system in Fig. 7(c) is joined with additional two units with
sensible ranges of[17; 23]; [19; 22]. In addition, the system in Fig.
7(d) adopts two more units bounded in[7; 15]; [11; 16].

V. CONCLUSIONS

Four memory-related topics are frequently studied in engineering:
memory kernels in convolution neural models [13], recursive efforts
of recurrent networks [31], [52], delayed rewards in reinforcement
learning [50], and rate-independent memory effect such as hysteresis.
In this study, we closely examine the final one.

While focusing mainly on defining hysteretic memory, this study
discusses whether or not network computation can be applied to hys-
teresis modeling. Analysis results indicate that networks with purely
computational nodes and links cannot function as hysteresis simula-
tors. A propulsive neural model is also proposed to construct hysteretic
memory. The proposed model is based on a neural unit, the neuron. In
addition to propulsive operation, a single neuron functions similarly to
a one-layered proceptron. In addition, several propulsive neural units
with distinct sensible ranges are used to organize a simple system. Fi-
nally, a learning method based on backpropagation is designed so that
the system can automatically adapt its parameters.

Based on the results presented herein, the areas for future research
are made as follows.

A. Hysteretic Memory-Related Applications

Hysteresis, although it is a memory effect whose output must con-
sult with historic inputs, responds to the tendence in real time. A (local)
highest value cannot be input and expected to receive the co-relative
output after some time when the input value is decreasing. Restated,
hysteretic memory would not incur aftereffects and delayed reactions.

On the other hand, a mechanism that is used to model delayed reactions
may not adequately process hysteretic memory. In fact, the varied input
speed is actually a challenge for all of those mechanisms, while it does
not influence a hysteresis system owing to rate independence. There-
fore, developing a feasible means of combining hysteretic memory with
conventional time varying signal processors is of worthwhile interest.

Embedding hysteretic memory into a fuzzy membership descrip-
tion is another application. The fuzzy inference system must represent
the membership of each condition before a decision can be reached.
However, a static membership function may not function properly for
a memory-involved inference. Alternatively considering several mem-
bership functions is an effective means of resolving this problem. A
hysteresis embedded input can be developed instead, after we have de-
veloped a hysteresis model, as indicated by Fig. 8.

B. Improvement of System Performance

This study has presented a supervised learning method to adjust the
system parameters. A future work should focus on how to self-orga-
nize the system structure so that the system identification task is com-
pleted. The genetic algorithm (GA) is a viable means of generating the
structure.

Another point worth mentioning is that hysteresis does not only
occur in one feature in a one-dimensional model. Hysteretic memory
may appear in several coupled features with correlation. An interesting
topic would be how we can more fully elucidate propulsion across
these dimensions.

Particular attention should also be paid to the reaction function. This
function is closely related to how the neuron operates and is adapted.
We believe that the system performance could be markedly improved
if a new reaction could be designed to function well. By doing so, con-
struction of hysteretic memory would not be so complicated.

Notably, network approximation in other studies [3], [36] has func-
tioned as a cooperator with particular hysteresis models. They also per-
form well in the aspect of engineering. In contrast, this work deals with
hysteresis behavior in a unique manner. Results presented herein allow
us to construct hysteretic memory in neural networks. This is also a
novel means of imaging how a system generates hysteresis behaviors
since the system is always a black box itself.
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