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Fuzzy neural network approaches for robotic gait synthesis are pre-
sented in this paper. The suggested scheme uses a fuzzy modeling
neural network controller with the BTT algorithm in the gait synthesis
of a walking robot. The uncertainty of the network size in the con-
ventional neural network learning scheme has been overcome by the
use of fuzzy modeling network. The fuzzy controller can generate con- Constructing Hysteretic Memory in Neural Networks
trol sequences and drive the biped along a desired pattern of a walking
gait. The desired pattern is used only as a reference trajectory. The pro- Jyh-Da Wei and Chuen-Tsai Sun
posed learning scheme trains the controller to follow this given pat-
tern as closely as possible. Different pruning algorithms, membership

functions, and network structures are investigated. Simulation result

éAbstract—Hysteresis is a unigue type of dynamic, which contains an im-
rtant property, rate-independent memoryn addition to other memory-
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demons”ate t_hat the desired goals—crogsmg overa SPeC'f'C Cleara?@ﬁbed studies such as time delay neural networks, recurrent networks, and
having a desired step length, and walking at a certain speed—wasiaforcement learning, rate-independent memory deserves further atten-
achieved. tion owing to its potential applications. In this work, we attempt to define
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hysteretic memory (rate-independent memory) and examine whether or

not it could be modeled in neural networks. Our analysis results demon-
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neural network (TDNN) [25], [51]. A TDNN uses delay kernels with
weight factors to ensure short-term memory. Therefore, the above in-
puts cause a TDNN to alter its output even with the same input values,
i.e., unless the memory depth is full. According to an earlier investiga-
tion on recurrent networks [14], [30], [53], [54], the response cannot
remain on the same value either, because the feedback requires some
iteration to converge (if at all possible). From another aspect, delayed
rewards in reinforcement learning (RL) may be considered as a case

Fig. 1. Typical branches of hysteresis. The outcome of hysteresis is not oRﬂ/memory- Herein, we focus primarily on delayed rewards in RL by

based on the current input value, but is also related to the previous history. €Mploying methods such as temporal difference learfitig(p)] [39]
andQ-learning [49]. The notion applied D () is credit assignment

up (1) u5(?) toward temporal patterns, whife-learning is based on Markov chains.
These two concepts are both related to the time factor and, thus, differ
from hysteresis.

Consider another example, one involving the concept of rate
independence mentioned earlier. Assume not only that the sequence
{1.2,5,30,8,9,12,...} is the input, but also that the extreme value
30 is not attributed to noise. According to our results, the value
30 impacts the hysteresis system for an extended period. Notably,
presenting the value 30 changes the path in effect diagrgm [
diagram in Fig. 2(c)]. Such an influence can be eliminated only after
Jaw the coming input is less than a certain scale, e.g., 880 in some
cases. Our results further indicate that for the same input sent into

/J7 some memory-related schemes (other than the hysteresis system): a)

A time plays an important role and b) a certain long time or a sufficiently
L/’?’ long sequence of common inputs can neglect a circumstance in which

| P the value 30 occurred. In summing up these two examples, hysteresis
is characterized by rate-independent memory (also referred to as
(c) ¢ ° bt “hysteretic memoty. Regardless of how slow or fast the input values
u appear, only the previous extreme values determine the response, even

Fig. 2. Hysteresis as a rate-independent memory effect (RIME), where (a) Afﬂ‘e Inputs remain fgr along time F’r merely flash at once. This prop-
(b) plot the two different inputs, which have the same successive extreme inp@&Y makes hysteresis markedly different from other memory-related
These input plots result in the sanfieu effect diagram of hysteresis. studies, thereby meriting its thorough investigation.

The rest of this paper is organized as follows. Section Il reviews
steresis related literature, indicating its prominence in diverse fields.
teresis simulators. his section also briefly introduces the Preisach model, which is the

Hysteresis is a memory effect, with its literal meaning implying t(gno_st instructive e_md important model in study of hygteresis. _Section Il
“lag behind.” Fig. 1 depicts the typical shape of a hysteresis diagraﬂﬁf!”es the rate-independent memory by formulatlon. Se.ctlon \ d.e-
This figure indicates the characteristic behavior of a hysteresis systé‘?lr,'bes the structure of our approach to modeling hysteresis and derives
a lag in evocation, and perseverance in recovery. When the input vafBackpropagation procedure to train this model. Concluding remarks
alternates between increasing and decreasing, the response curve yt&reas for future research are finally made in Section V.
not continue to follow the original path; instead, it draws a new effect
delayed curve. In other words, the outcome of a hysteretic mechanism Il. HYSTERESISRELATED LITERATURE
is not only based on the current input value, but is also related to the . .
previous history. Therefore, hysteresis behavior can be easily disuAh- Review of Related Studies
guished from conventional static mathematical functions. The term hysteresis originates from ancient Greek and is first

Hysteresis also heavily concentrates on an important propatéy, used while describing ferromagnetism [see Visintin ([47], p. 9)]. In
independencesenerally speaking, in the discussion of hysteresis nofact, many useful models have emerged from this domain [17]-[19].
linearity, only the previous extreme input values determine the hy&nother cradle for early hysteresis models to develop is plasticity.
teresis branches. The speed of input variations is not an influentidter Tresca introduced the maximum shear stress yield criterion in
factor. Fig. 2 illustrates this property. Fig. 2(a) and (b) plot two dif1864, successive investigations increasingly emphasized this criterion
ferentinputsy; (¢) andu-(t), whose successive extreme values are tH23], [47]. In addition to these two areas, many studies subsequently
same. These inputs initially rise tofall to ¢, and are then followed by followed. According to these studies, hysteresis can also be found in
values such as, s, t. Let the output of the hysteresis systemfld@). various fields, including microelectronics (ferroelectricity [15], [27]),
Fig. 2(c) summarizes the results in the safae diagram. This prop- thermodynamics (thermostat [6], [8], thermal relaxation [9]), and in
erty is known as rate independence. Restated, hysteresis is considsoade recently developed materials (the shape memory effects [1], [2],
as the rate-independent memory effect (RIME) [47]. [28]) and mechanics [5], [44].

As an extreme example of rate independence, we track the outpuBesides physical engineering, this phenomenon also occurs in
in response to input sequengk 2,5, 8,8, 8, 8,8,9,12,...}.Imagine cognitive engineering. Hysteresis can be observed in spatiotemporal
that the input sequence is adopted in a hysteresis system. The resppattern recognition (nonstationary noise clearing [21], [42]), time
is varied with 1, 2, 5, 8 sequentially input, and remains on the samarying signal processing (phase transitions [4]), and cybernetics
measure during the run of unchanged 8’s. To emphasize the differefoentrol of plants [29], [41]). Moreover, it is becoming increasingly
from other memory-related schemes, we first consider the time delayportant in the fields of psychology (long-term memory and painful

hysteresis embedded if neural networks could be constructed as
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an increasing input(t), the rising curve is followed, causing the re-

i I sponsef(u) to rise withu. If the input is decreased, then the falling
18 @ curve is traced.
(b) oo The Hystery model [42] is an instance of local memory models. Both

the upper and lower branches of a hysteresis loop in this model are
described by hyperbolic tangent functions.
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o foeee e 7 — Ill. DEFINITION OF HYSTERESISSYSTEM
2 2

— In the previous section, we introduced rate-independent memory and
© T briefly mentioned that hysteresis is frequently observed in many fields.
Cor However, other memory related mechanisms are not rate-independent
B g and, thus, may not function properly in a hysteresis system. In this sec-
a b c { } tion, we repeat these instances by a formulation. An attempt is initially
il made to properly define a rate-independent system in terms of digital
(@) data processing. In doing so, all of the schemes, such as time delay
(d neural networks, recurrent networks, and some reinforcement learning

methods, are distinguished from hysteresis. In the next section, we pro-

] o ] ) ] _ pose the propulsive model to model the hysteresis behavior in neural
Fig. 3. Preliminary hysteresis operators in the Preisach model. The Pre'sﬁ@?works.

model of hysteresis is based on the combinatiofy.of operators.

A. Rate-Independent Systems

i 38 d ics [10], [11], [45], [48]. Th till .
experience [38]) an economics [10], [11], [45]. [ ] ere are st Initially, we denote a syster that transduces an input sequence
some unresolved questions in all of the above fields, and rate-inde-

pendent memory can be a hint. Why is the wage rigidity [7], [Zzlvgtvr;nva:(z?;‘f'["] into an output sequence with valug| as the fol-
considered in the Keynesian model? Does the stock market rise 9 )

and become different after the indices have risen higher than some

level [16]? These are related, to certain extents, to rate-independent yln] = T{x[n]}. )
memory. As generally known, reversing a situation (or even forgetting

it) after it occurs is extremely difficult. Such a situation can persist fofhen, a rate-independent system is defined as a system having the fol-
a long time, ultimately reducing the influence, not because time h@ying two properties.

passed but because another new scene (extreme value) occurs. Property 1—Ineffective Insertion of Mean Values (IIM\onsider
an input sequence = {...,z[k], z[k + 1], ...} and two contiguous
input values in it, say:[k] andz[k + 1]. We insert a mean value, =
palk] + (1 —p)afk + 1] with 0 < p < 1 betweens[k] andx[k + 1].

As mentioned above, the study of hysteresis begins with ferromdg-doing so, a new sequenee is obtained asv[i] = =z[i] fori <
netism. Pertinent literature regarding ferromagnetic hysteresis, whichv[k + 1] = x4, andw[j] = z[j — 1] for j > k + 1. Thereafterg
can be found in [35], indicates that Lord Rayleigh [34] proposed ttendw are sent to two systems, which are both duplicated from system
first model in 1887, and the most important model, the Preisach modEl, By assuming that the corresponding outputs are sequeranes:,
was proposed in 1935 [24], [33]. we state that the systef has ineffective insertion of mean values if

The Preisach model has received extensive attention [37], [43], [44]] = y[j — 1] with j > %k + 1 for any input sequence and any
since it was published in 1935. This model contains the notion thiaterpolating index:. (In addition, it is always true thafi] = y[:] for
a complicated system can be constructed as a superposition of sinx & in any system. The output in responseutp z[k + 1], is not
plest operators (Fig. 3). The operatars is the unit of the Preisach important here.)
model. Footnotea: and3 denote the operating limitation of each op- Property 2—Ineffective Removal of Mean Values (IRMWar an
erator. Each operator works with the current input valugnd results input sequence, we select any three contiguous valugs — 1], z[k]
in bi-valued hysteresis (returnrsl or 1) owing to that the ascendingandxz[k + 1] under the condition:[k] = pz[k — 1] + (1 — p)a[k + 1]
paths and the descending paths are switched. While combining opavherep satisfies the condition thaét < p < 1. A new sequence is
tors, such a$., 3, Ya24,,» €LC., @n entire system can be expressed mptained after we omit[k] such thatv[i] = «[¢] fori < k andw[j] =
the following equation: x[j + 1] for j > k. By sendingr andw to two duplicate systems both

referring to systernT’, let the corresponding output sequenceg hed
- z. We state that the systefhhas ineffective removal of mean values if
ft) = // (e, B)[Fapu(t)] dads (1) z[j] = y[j + 1] with j > k for any input sequence and any omitting
azf of indexk. (Also, it is obvious that[i] = y[i] fori < k in any system.)
Definition 3—Rate-Independent Systeds: rate-independent
whereu(a, 3) is the weight to each — 5 operatorye . system contains both of the above IIMV and IRMV properties.

The Preisach model is known as a kind of “nonlocal memory hys- The inserted mean values could turn to bsudsequencby iter-
teresis model” [26] since it responds to the outputs while thoroughditively applying the IIMV property on the same interpolating index.
considering the previous inputs. Another kind of hysteresis model$milarly, continuous removed mean values can form a subsequence
called “local memory hysteresis model.” These models generate thasrthe IRMV property is applied repeatedly. That is, insertion (or re-
next output by consulting the local memory they have produced in theoval) of an input subsequence is also ineffective for a rate-indepen-
current state. In this case, at most two curves pass through each pdérit system as long as this subsequence has no extreme value according
in the input-output (I/O) matching diagram, say, the diagram. For to the newly generated input sequence.

B. Mathematical Models
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B. Hysteresis Systems For a TDNN, the weight factors;;[k] are only valid in a bounded
range, referred to as “memory depth.’klexceeds the memory depth,
the weight factor equals zero. For some advanced versions of convo-
is, y[n] = f(x[n]) for each value ofi, wheref( ) is one of any func- lution models, e.g., the concentrgtion-i.n-t.img net (CITN) [40] and the
tions. A memoryless system is surely a rate-independent system. M@RgMa neural model [13], there is no limitation for memory depth. In
specifically, a hysteresis system is defined herein as a rate-indepena}%?nfouowmg' we demonstrate that convolution models cannot be hys-

system with a causal memory. tererslls fs;l/lsterns. di ion f he fi d hich
Definition 4—Hysteresis SystenA hysteresis system is rate inde- -L e following ';‘CU_SS'On ocuses Or?_t N |rst_ nol_e,Vﬁ Ic kc])perates
pendent, causal, and not memoryless. with memory mechanism as above. This event implies that other nodes

Restated, a hysteresis system has rate-independent causal merfigHj€r than this node are all memoryless. Assume that the node is node
Itis also referred to asysteretic memory i, and its response on some inpijit;] is concerned with

A necessary condition for a hysteresis system can be derived from

Consider that a system is memoryless iff the outpluf at every
value ofn depends only on the inpufn] on the same value of. That

¢

its causality and rate independence. neti[ni] = Z Zwii[n,t — K, [K]. (8)
Lemma 5—Stayed Input Stayed Output (SINSOUFOr a rate-in- i<i k=0
dependent system, an unvaried input subsequence causes an output sub-
sequence that also remains unchanged. When the next input[n. + 1] is accepted
Proof: By applying the IIMV property on interpolating index
with p = 0, the inserted mean valueis = =[k + 1], which is also nitl
viewed as the unvaried input value. Let us focus on the key I/O subse- neti[ng +1] = Z Z wij[ne + 1 — kla;[k]
quences. The original I/O pair {&:[k], [k + 1]} and{y[k], y[k +1]}. J<i k=0
By rate independence, the inserted I/O pafrigk] = z[k]. w[k+1] = B S o
2y = alk + 1, wlk + 2] = ak + 1]} and{=[k] = y[k], <[k + 1] = =2 2wl =k + L[4
T{xy},2[k + 2] = y[k + 1]}. Because of causalityf{x,} with Jsih=o
2, = x[k + 1] is only based on all the input value§] fori < k + 1. + ) wij[0]a[ne + 1]. )
ThereforeT{x,} = T{z[k + 1]} = y[k + 1]. The unchanged output J<i

valuez[k + 2] = y[k + 1] = z[k + 1] is shown here. The proof is i

completed while we repeatedly apply the IIMV property as abdze. | e @bove equationsreveal that; [, +1] does notequalet; [n(], al-
thoughz;[n, + 1] = z,[n,] for all j < i. As the signal feeds forward,

C. Multilayer Feedforward Neural Networks versus Hysteresis ~ the output of this network also performs the inequality. This perfor-

ance conflicts with the SINSOUT lemma and, therefore, convolution

The preliminary neural network model is the multilayer feedforwara:odels cannot establish hysteresis systems.

proceptron [52]. The activation of each node, in this preliminary

model can be represented as E. Recurrent Networks versus Hysteresis

v = o(net;) + I A3) In contrast to feedforward networks, a latter node in a recurrent net-
‘ work may have backlinks connected to earlier ones [31]. Therefore, the

where signal could feed back to join the computation in the next step, thereby
constructing the memory effect. The equation can be expressed as
net; = Zwl']‘il)j 4)
j<i net;[n] = Z w;jxi[n] + Z'wi]ar][n -1]. (10)

. . , . . j<t j=>t
w;; denotes the weight factor connecting ngd® nodei. s () is a ’ !

squashing function, anfl represents the bias of nodeTo show the - Among the unresolved issues surrounding, recurrent networks include
activation of this system in the form of a sequence, (3) and (4) can §gch questions as “Is it stable, and inner stable?” “Is it convergent?”

rewritten as and “How fast does it converge?”
Next, whether or not it is rate independent is explored.
zi[n] = o(neti[n]) + I; (®) Consider the node that is initially linked by some latter nodes. As-
and sume that it is nodé, and one of the latter nodes is nogleNotably,
neti[n] = Zuwfv,’ [n]. (6) the network structure linked befor(_a noc’z_lés fe(_edforward an_d, thqs,
= memoryless. Assume that the previous inputdsthe current input is

x4; Without loss of generality, we denote that the activation of npde
According to the above equations, this is a memoryless system amdz., andz. is not equal. Ifz, is input again, the feedforward part

obviously not a hysteresis system by definition. sends the same signal to nadevhile nodej feedback to nodediffers
from that activated on. inputs. The inequality occurs and the entire
D. Convolution Neural Models versus Hysteresis network structure has the starting point to generate a different output.

Atime delay neural network (TDNN) is one of the so-called “convo- Again, this performance conflicts with the SINSOUT lemma. We _
lution models” [13]. The activation of the nodes in convolution model@@n conclude that recurrent networks cannot construct hysteresis

is improved from (6). Herein, we let systems.
n F. Reinforcement Learning versus Hysteresis
netifn] = ;;w”[" ~ Ka;{k] Reinforcement learning is applied to discover how to yield the
e highest reward, and is characteristic of a trial-and-error and delayed
- ZZ”’"J[HIJ’ [n — k. (7) reward. A well-trained mechanism is not discussed herein; in fact,

j<i k=0 it is usually a memoryless controller. However, our primary concern
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is the learning algorithm itself, thus raising the following question
Does it offer rate-independent information during learning? Learnin ‘ Deop - leul 0
algorithms also impact the system response during the training stag Z(Mi -m;)=u(t) ) g 1
Sutton proposed temporal difference learnif (), in 1988 [39]. P : J : ‘ [
This incremental real-time algorithm adjusts the weights in a conneP™

Ay ey
tionist network. The learning process follows the form | } ' 1
t @ . ‘ NS laul
X m, M — o
Awy = (P — Py) Z)\‘—kv,upk (11) kY 1 M
k=1
o ‘J [
whereP; denotes the network’s output upon the input patierat time mM,  m M

t, w represents the vector of weights that parametrizes the network, and

V., P is the gradient of network output with respect to weights. Thigig' 4. Propulsive neural models accessing delta inputs. (a) Current state of the
i neural input, wheré is a variable indicating the number of record couples. (b)

method provides a feasible means for supervised learning procedysgsision process skips a carried interval and does not stop until the increased
to solve temporal credit assignment problems. However, it is not rafgita is exactly pushed. (c) Decreased delta performs the same algorithm while
independent because it may not correspond to the principle of meampty intervals are skipped now. Varialilelecreases in (b) and (c).
value ineffectiveness.
Other reinforcement learning algorithms [50] are not rate indepeguch a combination would be with some empty areas, and indicates a
dent either. In fact, some of these algorithms, sucf@dsarning [49], weaker carrier.
function in a discrete finite world, not a numerical world in which hys- For simplicity, this study implements the submemory as an &xjs,
teresis has been discussed herein so far. Frequency is what the lear@ifigh is occupied byarried intervalsandempty intervalsAllow the
algorithms function to predict, thereby making time a major factor. Thetal length of carried intervals to equal the current input. The first car-
learning process operates at every time step by the Markov procegsd interval thus occurs for the first signal inputs (assuming it is pos-
Hysteretic memory is unnecessary for these applications. itive). Initially, it starts from zero and ends on the value of the first
Nevertheless, we believe that learning depends, to varying extemigut because the first delta equals the first input. This carried interval
on memory. Exactly what role hysteretic memory may operate in reigequentially grows during the run of positive delta inputs. Before it

forcement learning is explored later on. stops, it actually occupies a length of size equal to the first extreme
input value. Then, a negative delta inputs and uses its absolute value to
IV. HYSTERETICMEMORY VIA THE PROPULSIVENEURAL UNIT generate an empty interval also from zero. After the duration of neg-

The previous section has defined hysteresis system. Accordingtattgle delta inputs, the first carried interval turns from the right end of

this definition, a system is observably not hysteresis if it is sensitivge first empty interval. Thereafter, the second carried interval grows,

about input speed. Conventional network strategies, either in refgp_d_so on. In doing so, any mean valu_e inputs do not alter_ the state of
ca}rrled intervals and, thus, could not impact the responding outputs.

ence to unselected and limited historic inputs or using fixed recurreEe arding the neuron outputs, the response to the current iy
links, are closely associated with data input rate. In sum, networ $9 9 puts, P R,

based on computational nodes and links cannot purely function a8y be express_ed _by mtegratlng_ a re_a_ctlon funct_|dh(;c), on the

h . . . union of all carried intervalsdz. It is positive and written as
ysteresis simulator. In the following, we present a propulsive neural

cell to assist hysteresis simulation. This neural cell is also trained by -

backpropagation. f(t) = D(L) d |At = U{carricd intervals}on wu(t). (12)

Ay

A. Using the Delta as the Input Fig. 4 illustrates how this model works. Two sequendei&s and

As far as the SINSOUT lemma is concerned, we speculate that thés, are made to record the distribution of intervals. The extreme
difference between two contiguous inputs may be the essence of tising signals are finally recorded by th¥’s, while the extreme
hysteresis system. This difference is referred to herein astiiga”  falling signals are recorded by the’s. Both M andm sequences
A circumstance in which the network accepts the delta instead of thee in a monotonically descending order, appearing in couples
real input and only action at nonzero delta input could avert the opposite:, m;)’s with M; > m; except in the initial condition when
situation to the SINSOUT lemma. M, = m;y; = 0. Restated, these two sequences concern themselves

Although consulting with the delta is preferred, directly usingvith A, > m, > M> > ma > Mz > .. .. Actually, thejth carried
the delta for computation is not an appropriate design. Obviouslyjrderval is recorded bym;, M;], while the jth empty interval is
delta-in-delta-ounetwork, which computes the movement of outputecorded by 1, m;] or [0, m;]. Therefore, by allowing: to be the
instead of the real response value, does not fully consist of the lIMdtal number of record couples, the following equation is valid:
property. Alternatively, some mechanisms may need to be designed in
a neural unit and the delta adopted as well to modify its state. Then,
allow the response to refer to the state of this mechanism. Restated, uft) = Z(Mf = my)- (13)
hysteretic memory thus resides in the inner state of a neuron. =t

k

When an increasing signal arrives, the present reddrds gener-
ally shifted from a lower position to a higher one. If the shift meets
This study constructs hysteretic memory in a neural unit based oa &arried intervalm ;, M;], M; replaces the current record. Restated,
hypothesis involving the accumulation of the stimulus. Assume herehis stage must be skipped, and proceed to its right end to continue the
that a neuron accepts delta signals and pushes them suioraemory propulsive process. The model continues to perform this process until
pool. The process of push is nameg@répulsiorf or “propulsive the increased delta is exactly pushed into the carried interval. While a
process’ By propulsion, if all the deltas are positive, combining alldecreasing signal comes, we shift. in the same manner except that
of the deltas becomes a longer and deeper potency carrier. Otherwtise skipped stages are ngd; 1, m;]’s.

B. Propulsive Neural Unit
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Fig. 5. System established on a basic PNU organization. (a) We treat each PNU as the basic unit in the structure. (b) Picture zoopthiRNW tehich has
a sensible rangd. ,, H,]. (c) Each PNU functions similarly to a one-layered perceptron by selecting a step function as the reaction function.

Consider the following example of tracing a sef@s, 15, 20, 18}.  the input signal is simply sent to all PNUs and the response to the
The delta sequence is thu®5,—10,+5, -2}, and the M and summation of their output is obtained as well. Fig. 5(b) displays the
m’s arise as(Mi,mi) = (25,0) when the value 25 inputs, pth PNU, whose sensible range[isp, Hp].
(M, m1) = (25,10) when the value 15 inputs. When the value 20 in- Regarding the decision of the reaction function, we select step func-
puts, it turns out to béMy, m1, M2, m2) = (25,10,5,0). Finally, it  tions for convenience, although their parameters are numerous. A step
is (M1, m1, M2, m2) = (25,10, 5,2) when the value 18 inputs. Now, function D, (z) is taken onto theth PNU. The value of théth scale,
allowing a new signal to arrive as 24, a néd must occur by propul- D, ;, is an adaptable parameter. The collaborative imfuytis calcu-
sion and the records list becomed, m1, M>, m2) = (25,10,9,0). lated as the size of a conjunction of thi stage and the current carried

To summarize, this model allows us to give the response formuktervals, where the indekis responding to the input; at timet, p

again: denotes that it belongs to thth PNU andi represents that it should
be integrated in théth stage of the step functial, (x). That is, the
k effect corresponding to thiéh stage isD,ir}, ;. Therefore, each PNU
Input:u(t) = Z(MJ —my) functions similarly to a one-layered perceptron. If there are a total of
7=l n stages in eachL,, H,], the response value of input can be ex-
) : k pressed as
Output: f(t) = D(x)dx, whered; = U [m;, M;].
At 7=1 L n
(14) fluy) = Z Z Dy ;- 7;, (15)

p=1:=1

The series input; must be diffused to each PNU, filtered into the
sensible range, changed into the delta value, through the propulsive

A propulsive neural unit (PNU) is a neuron that accepts the delta apabcess and, finally, divided into each respective ingut The total
operate propulsive process as designed above. In this section, PNUspsration design herein to construct hysteretic memory is termed the
used to construct a simple structure. Before doing so, two questigepulsive model
must be addressed: “How can the PNUs be organized?” and “What is
chosen to be the reaction functiab{x)?”

Thesensible rangéor a PNU is initially provided. According to this
term, a neuron has its range to accept a signal. Too large or too smaifhe operation phase and the learning phase are separately discussed
a signal must be filtered into a value between a higher bound anéhahe propulsive model. The operative phase of this model has been
lower one. A PNU operates like the plot in Fig. 2(c) when it acceptsmesented above. Herein, an adaptive method is proposed to determine
signal with value in the sensible range. An overflow signal makes tlige system parameters.
submemory pool full, while a deficient signal makes it empty. These The learning phase of the PNU organization adopts the Widrow-Hoff
two cases cause the PNU to respond to constant values. Cumulativieick propagation rule. This rule is based on an iterative gradient de-
a PNU takes the filtered value, counts the delta and integrates thedeent algorithm designed to minimize the mse between the desired
sponse after propulsion. Now, (13) and (14) must be adjusted with @iiget values and the actual response values.
offset of the lower bound. Although (15) has demonstrated how to calculate the response value

As mentioned earlier, each PNU has its own sensible (workingjith respect to the local input;, a slight transformation must occur on
range and its own effective trajectory (of the shape like Fig. 2(eaction functionD, (=), to denote each step and complete the adap-
shown). Collecting some PNUs is an effective means of simulatingtion. Let us take
various types of hysteresis. Thus, as expected, a network can model
hysteresis behaviors if it contains some nodes built as PNUs with I
distinct sensible ranges. For simplicity, the proposed system is basic flus) = ZZD;Z b (16)
and only organized into several parallel PNUs. Fig. 5(a) reveals that p=1i=1

C. System Structure

D. Learning Method
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12 ——— T Fig. 7. Training the PNU organization to follow the loops given by (20) in
12 a nonlinear formy (o, 3) = (2/25%)a? + (6/25%)32. (a) Target diagram,
n . //""_7 ] with 111 points on it. The following figures are trained after 1000 epochs.
— £, 08— — According to our results, the more PNUs used implies a better performance
_ T - that it converges. (b) Four PNUs usédSE = 8.73 x 10~%. (c) Six PNUs
i 5L | used MSE = 2.33 x 10—*. (d) Eight PNUs usedyISE = 1.93 x 10—*,
0 g L] Equation (19) can be implemented as an iterative procedure to adapt
e 5 W15 W 35 the gystem parameters.
0 lij W 20

E. Adaptation to Given Behavior

€ . . .
( ) (f) As generally known, trajectory traversal is the foundation of
Fig. 6. Training the PNU organization to follow the loops given by (20§ystem modeling. In this section, the '_DNU organizational ability is
with p1(a, 8) = (4.5/252) — (3/25%)a — (1/25%)3. (a) Target diagram, demonstrated to learn some loops. Desired tracks are generated by the
with 111 points on it. The continuous four figures use four PNUs. (b) InitigPreisach model (see Section II). Initially, a system with four PNUs
trajectory versus target diagram. (c) After one epoch, the mse has the valuqrained to follow these trajectory samples. These four PNUs are
3.59 x 10—3. (d) After two epochsMSE = 2.18 x 10—2. (e) After 1528 b ded with distinct ibl as251. 5. 201, 13. 13 d
epochsMSE = 2.82 x 10~*. The remaining figure uses six PNUs. (f) After Oun' ed wi _'$ inct sensible ranges [8s25], [_')’ I [_ -13], an_
814 epochsMSE = 1 x 10—, [12,22]. In addition, all stage lengths of their reaction functions,
which are step functions, are set to be one equally. To normalize the
esponse value if0), 1], we merely assign average weight parameters
1/4-(25=0)),(1/4-(20=5)),(1/4-(13=3)),and(1/4-(22—-12))
to each stage of these four PNUs as the initial parameters. In doing so,
1 & ‘ the adaptation can be clearly observed.
E= 3 Z(G(Ut) — f(ue))? 17) Equation (1) displays how the Preisach model functions. However,
t=1 an adjustment must be made such that whole positive trajectories can
be generated for the PNU organization to simulate. Regarding (1)

and represent the target value@gu, ). The error is expressed as the'
following equation: (

whereN denotes that there are totdl patterns.
The adaptation rule is formulated as - p
0= [[  wenlosuo]dads
DIY' =D} .+ AD; ;. (18) azf
we redefine the target diagram by having the bi-valued opefater

Thus, itis derived that return O instead of 1 while the descending paths are followed. Assume

. OF that this redefined operatoris, ;. The target diagram now follows the
ADyi = =ngpi equation
P,
_ g , flue) , f i )
=n(G(us) — fuy)) - - HOE (e, B)[Fapu(t) doads. (20)
aDP-,i a>f
ZL Zn 7_t . Dt ) . .
= (G(us) — fluy)) - a=1 £=1 "9 "79J Next, consider the alternating serig$, 25, 3,21,7,18,9,16,12} to
aDé,i perform the target trajectories. All distances are set to “1” sequentially
= n(G(ue) = flus)) 7)., (19) between these extreme values. Therefore, there are cumulatively 111

points on the target sequences. In addition, allow the learning rate to
where the positive valug is the learning rate. be 0.015. The learning rate is set quite small with respect to the good
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)] On the other hand, a mechanism that is used to model delayed reactions

may not adequately process hysteretic memory. In fact, the varied input
speed is actually a challenge for all of those mechanisms, while it does
not influence a hysteresis system owing to rate independence. There-
fore, developing a feasible means of combining hysteretic memory with
conventional time varying signal processors is of worthwhile interest.

Embedding hysteretic memory into a fuzzy membership descrip-
tion is another application. The fuzzy inference system must represent
the membership of each condition before a decision can be reached.
However, a static membership function may not function properly for
a memory-involved inference. Alternatively considering several mem-
bership functions is an effective means of resolving this problem. A
hysteresis embedded input can be developed instead, after we have de-
veloped a hysteresis model, as indicated by Fig. 8.

9] @

X ;‘w R —— ) X
B. Improvement of System Performance
Fig. 8. Hysteresis embedded into a fuzzy membership function. We can ) ) )
take a hysteresis-embedded input instead for alternatively considering severaihis study has presented a supervised learning method to adjust the
membership functions during a memory-involved inference. system parameters. A future work should focus on how to self-orga-
nize the system structure so that the system identification task is com-
deal of set as weights in such a single layer. Later on, more experimeﬁ s:[ed' The genetic algorithm (GA) is a viable means of generating the

: : ructure.
are performed as well in an attempt to accelerate the learning process,

Under the page constraint, only two experiments performedAnOther point worth mentioning is that hysteresis does not only

. o . ._occur in one feature in a one-dimensional model. Hysteretic memory
herein demonstrate the PNU organizational ability of adaptation. . . ; . .

. . I . _may appear in several coupled features with correlation. An interesting
Fig. 6 demonstrates the learning capability of the trajectory with

(e, ) = (4.5/25%) — (3/25%)a — (1/25%)3 in (20). The adaptive ozlcev(\;?r:fnlsaiinhsow we can more fully elucidate propulsion across
performance appears acceptable. This same figure indicates m?f rticular att nt.' n should also b id to the reaction function. Thi
using more PNUs carried facilitates a better performance. While t\%)n:; icular attention should aiso be paid to the reaction function. This

more PNUs are increased with sensible rangefl ©f23], [19, 22], blolh IS ctlr(])steg relat?d N hO;N the neuron I(()jpsrates Iimgl 1S adapte(;.
it converges faster and better, as indicated by Fig. 6(f). Fig. . ¢ betieve that the system periormance could be markedly improve

- . . if anew r ion | ign function well. B in n-
reveals a similar observation when we trace nonlinear parameterg ew reaction could be designed to funciion well. By doing so, co

o, B3) = (2/25%)a* +(6/25%) 5. Fig. 7(b) is traced by the original str'i\chttlotr)ll of hytsterEtlc memorytyvoqld nt?]t betsc()j_comgllcggedﬁ func-
four PNUs, system in Fig. 7(c) is joined with additional two units Witq. noda Y. ne worr ?[:pr%'mit'.onlmrﬁ ?rrs u '?ns [d]’l[ TL as Iunc ;
sensible ranges dfi7, 23], [19, 22]. In addition, the system in Fig. loned as a cooperatorwith particular nysteresis modets. They aiso per-
. - form well in the aspect of engineering. In contrast, this work deals with
7(d) adopts two more units bounded[im 15], [11, 16]. ) T . .
hysteresis behavior in a unique manner. Results presented herein allow
us to construct hysteretic memory in neural networks. This is also a
novel means of imaging how a system generates hysteresis behaviors

Four memory-related topics are frequently studied in engineerirgjnce the system is always a black box itself.
memory kernels in convolution neural models [13], recursive efforts
of recurrent networks [31], [52], delayed rewards in reinforcement
learning [50], and rate-independent memory effect such as hysteresis.
In this study, we closely examine the final one. [1] K. Bhattacharya, R. D. James, and P. J. Swart, “Relaxation in

While focusing mainly on defining hysteretic memory, this study shape-memory alloys. i. Mechanical modeA¢ta. Mater, vol. 45, pp.
discusses whether or not network computation can be applied to hys: 4547_“}560' Nov. 1997. . .

. . . S . [2] —, “Relaxation in shape-memory alloys. ii. Thermo-mechanical
teresis modeling. Analysis results indicate that networks with purely " 46| and proposed experimentagta. Mater, vol. 45, pp. 45614568,
computational nodes and links cannot function as hysteresis simula-  Nov. 1997.
tors. A propulsive neural model is also proposed to construct hysteretid3] S. Bobbio, G. Miano, C. Serpico, and C. Visone, “Models of magnetic
memory. The proposed model is based on a neural unit, the neuron. In  hysteresis based on play and stop hysteroiis£E Trans. Magn.vol.
addition to propulsive operation, qgingle neuron functiqns similarly tp 4] &?’Bﬁgkgfelj\ﬁiznf’rhygm, |19|\j)zller J.F. Rodriguez, and C. VeRfiase
a one-layered proceptron. In addition, several propulsive neural units ~ Transitions and Hysteresis New York: Springer-Verlag, 1993.
with distinct sensible ranges are used to organize a simple system. Fi5] J. Cacko, “Simulation experiments in investigation of fatigue degrada-
nally, a learning method based on backpropagation is designed so that tion effects of dynamic processes,”#ur. Simulation Multiconf. 1995
the system can automatically adapt its parameters. 1995, pp. 92-96.

V. CONCLUSIONS

REFERENCES

) H. B. Callen, Thermodynamics and an Introduction to Thermo-
Based on the results presented herein, the areas for future researéﬂ y
are made as follows. [7]

A. Hysteretic Memory-Related Applications (8]

Hysteresis, although it is a memory effect whose output must con-
sult with historic inputs, responds to the tendence in real time. A (local) B
highest value cannot be input and expected to receive the co-relative
output after some time when the input value is decreasing. Restated o]
hysteretic memory would not incur aftereffects and delayed reactions.

statics New York: Wiley, 1985.

C. M. |. Campbell and K. S. Kamlani, “The reasons for wage rigidity:
Evidence from a survey of firms@. J. Econ, pp. 759-789, Aug. 1997.

S. Can, M. S. Richards, and R. A. Pease, “A 3 v thermostat circuit,”
in Proc. 1996 BIPOLAR/BICMOS Circuits Technol. Meetih§96, pp.
105-108.

C. R. Chang and I. Klik, “Thermal relaxation in magnetic materials,”
Proc. Natl. Sci. Counc. Rep. China A, Phys. Sci. Ergl. 20, pp.
249-264, May 1996.

B. J. Chapman, “Long-term unemployment: The dimensions of the
problem,”Aust. Econ. Review (1993 Second Quartep). 22—-25, 1993.



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART B: CYBERNETICS, VOL. 30, NO. 4, AUGUST 2000

(11]

(12]

[13]

[14]
[15]
[16]
(17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

(25]

(26]
[27]
(28]

[29]

(30]

[31]
[32]
(33]
(34]
(35]

(36]

(37]

(38]
(39]

[40]

S. E. Christophe, “Hysteresis and the value of the U.S. multinational[41]
corporation,”J. Bus, pp. 435-462, July 1997.

J. M. Cruz-Hernandez and V. Hayward, “On the linear compensation of
hysteresis,” irProc. 36th IEEE Conf. Decision Contwol. 2, 1997, pp.  [42]
1956-1957.

B. de Vries and J. C. Principe, “The Gamma model—A new neural
model for temporal processing¥eural Networksvol. 5, pp. 565-576,
1992.

F. fur Informatik, “Long short-term memoryReural Comput.vol. 9,

pp. 1735-1780, Nov. 1997.

F. P. Gnadinger, “Ferroelectrics for nonvolatile RAMEEEE Spectrum
Mag. pp. 30—33, July 1989.

C. W. J. Granger and Z. Ding, “Varieties of long memory models,”
Econometricspp. 61-77, July 1996.

D. C. Jiles, “Frequency dependence of hysteresis curves in conductin
magnetic materialsJ. Appl. Phys.vol. 76, pp. 5849-5855, Nov. 1994.
——, “Modeling the effects of eddy current losses on frequency depen147]
dent hysteresis in electrically conducting medii5EE Trans. Magn.
vol. 30, pp. 4326—-4328, Nov. 1994.

D. C. Jiles and D. L. Atherton, “Theory of ferromagnetic hysteresis (in-
vited),” J. Appl. Phys.vol. 55, pp. 2115-2120, Mar. 1984.

K. Jin'no and T. Saito, “Analysis and synthesis of continuous-time hys-[49]
teretic neural networks Electron. Commun. Jpppt. 3, vol. 76, no. 4,

1993. (50]
J. F. Jggensen, K. Carneiro, and L. L. Madsen, “Hysteresis correction
of scanning tunneling microscope images,¥ac. Sci. Technol. Bvol.

12, pp. 1702-1704, May/June 1994. [51]
M. Kandil, “Sticky wage or sticky price? Analysis of the cyclical be-
havior of the real wage,Southern Econ. Jpp. 440-459, Oct. 1996.

C. Koiter, “General theorems for elastic-plastic solids,”Rrogress

in Solid Mechanicsl. N. Sneddon and R. Hill, Eds, Amsterdam, The
Netherlands: North-Holland, 1960, vol. |, pp. 165-221.

M. Krasnoselskii and A. Pokrovski§ystems with Hysteresigloscow,
Russia: Nauka, 1983.

D.T. Lin, J. E. Dayhoff, and P. A. Ligomenides, “Trajectory production
with the adaptive time-delay neural networki&ural Networksvol. 8,

no. 3, pp. 447-461, 1995.

I. D. Mayergoyz, Mathematical Models of HysteresisNew York:
Springer-Verlag, 1991.

J. Millman and A. GrabelMicroelectronics 2nd ed. New York: Mc-
Graw-Hill, 1987.

Y. Mualem, Theory of Universal Hysteretical Properties of Unsaturated
Porous Media, Water Resour. Res. Public., 1979.

I. Nagy and Z. Suto, “Repetitive and chaotic processes in current con-
trolled induction motor,” inISIE'96. Proc. IEEE Int. Symp. Ind. Elec-
tron., vol. 2, 1996, pp. 946-951.

D. Obradovic, “On-line training of recurrent neural networks with con-
tinuous topology adaptation|EEE Trans. Neural Networksol. 7, pp.
222-228, Jan. 1996.

O. Omidvar and D. L. ElliottNeural Systems for Control New York:
Academic, 1997.

V. Petridis and A. Kehagias, “A recurrent network implementation of
time series classificationNeural Comput.pp. 357-372, Feb. 1996.

F. Preisach, “Uber die magnetische nachwirkurigy, Physik vol. 94,

pp. 277-302, 1935.

L. Rayleigh, “On the behavior of iron and steel under the operation of
feeble magnetic forcesPhilos. Mag, vol. 1887, pp. 225-248, 1887.

G. Rieder, “Elastic obstacles for bloch walls,”Models of Hysteresjs

A. Visintin, Ed. Harlow, London, U.K.: Longman, 1993, pp. 143-157.
C. Serpico and C. Visone, “Magnetic hysteresis modeling via feed-for-
ward neural networksfEEE Trans. Magn.vol. 34, no. 3, pp. 623—-628,
May 1998.

R. C. Smith, “Hysteresis modeling in magnetostrictive materials via
Preisach operators,” Inst. Comput. Applicat. Sci. Eng., Tech. Rep.
TR-97-23, May 1997.

N. L. Stein, P. A. Ornstein, B. Tversky, and C. Brainekéikmory for
Everyday and Emotional Eventsawrence Erlbaum Associates, 1997.

R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,"Mach. Learn, pp. 9-44, 1988.

D. W. Tank and J. J. Hopfield, “Concentrating information in time:
Analog neural networks with applications to speech recognition
problems,”|IEEE Trans. Acoust., Speech, Signal Processutd. 37,

pp. 328-339, Mar. 1989.

[43]
[44]

[45]

5

(48]

[52]
(53]
[54]
[55]

[56]

609

G. Tao and P. V. Kokotovic, “Adaptive control of plants with unknown
hysteresis,"IEEE Trans. Automat. Contrvol. 40, pp. 200-212, Feb.
1995.

M. D. Tom and M. F. Tenorio, “A neural computation model with
short-term memory,”IEEE Trans. Neural Networksvol. 6, pp.
387-397, Mar. 1995.

E. D. Toore and F. Vajda, “Parameter identification of the complete-
moving hysteresis model using major loop dat&EE Trans. Magn.

vol. 30, pp. 4987-5000, Nov. 1994.

C. Truesdell and W. NollThe Nonlinear Field Theories of Mechanics. In
Encyclopedia of Physicsieidelberg, Germany: Springer-Verlag, 1965,
vol. 111/3.

M. Uribe, “Hysteresis in a simple model of currency substitutiah,”
Monetary Econ.pp. 185-202, Sept. 1997.

F. Vajda and E. D. Torre, “Remanence loop asymmetry and moving-type
Preisach models,l[EEE Trans. Magn.vol. 30, pp. 3658-3660, Nov.
1994.

A. Visintin, Differential Models of Hysteresis New York: Springer-
Verlag, 1994.

S. Wadhwa, R. Caprihan, and S. Kumar, “Performance of a hysteresis
based control strategy for a flexible machine operating under a periodic
status monitoring policy,Comput. Ind. Eng.pp. 557-574, July 1997.

C. J. Watkins and P. Dayan, “Technical nafelearning,”Mach. Learn,

vol. 8, pp. 9-44, May 1992.

P. J. Werbos, “A menu of designs for reinforcement learning over time,”
in Neural Networks for Controlw. T. Miller, R. S. Sutton, and P. J.
Werbos, Eds. Cambridge, MA: MIT Press, 1990, ch. 3.

——, “Backpropagation through time: What it does and how to do it,”
Proc. IEEE vol. 78, pp. 1550-1560, Oct. 1990.

——, The Roots of BackpropagationNew York: Wiley-Interscience,
1994.

R. J. Williams, “Adaptive state representation and estimation using re-
current connectionist networks,” iNeural Networks for ControlW.

T. Miller, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT
Press, 1990, ch. 4.

L. Wu and J. Moody, “A smoothing regularizer for feedforward and re-
current neural networks,Neural Comput.vol. 8, pp. 461-489, Apr.
1996.

H. Yanai and Y. Sawada, “Associative memory network composed of
neurons with hysteretic propertf\eural Networksvol. 3, pp. 223-228,
1990.

M. A. Zohdy, M. Karam, and H. S. A. A. Zohdy, “A recurrent dynamic
neural network for noisy signal representatioNgurocomputingvol.

17, pp. 77-97, Oct. 1997.




