
Discrete Applied Mathematics 103 (2000) 281–287

Note

Linear k-arboricities on trees

Gerard J. Changa; 1, Bor-Liang Chenb, Hung-Lin Fua,
Kuo-Ching Huangc; ∗;2

aDepartment of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan
bDepartment of Business Administration, National Taichung Institue of Commerce,

Taichung 404, Taiwan
cDepartment of Applied Mathematics, Providence University, Shalu 433, Taichung, Taiwan

Received 31 October 1997; revised 15 November 1999; accepted 22 November 1999

Abstract

For a �xed positive integer k, the linear k-arboricity lak(G) of a graph G is the minimum
number ‘ such that the edge set E(G) can be partitioned into ‘ disjoint sets and that each
induces a subgraph whose components are paths of lengths at most k. This paper studies linear
k-arboricity from an algorithmic point of view. In particular, we present a linear-time algo-
rithm to determine whether a tree T has lak(T)6m. ? 2000 Elsevier Science B.V. All rights
reserved.

Keywords: Linear forest; Linear k-forest; Linear arboricity; Linear k-arboricity; Tree; Leaf;
Penultimate vertex; Algorithm; NP-complete

1. Introduction

All graphs in this paper are simple, i.e., �nite, undirected, loopless, and without
multiple edges. A linear k-forest is a graph whose components are paths of length at
most k. A linear k-forest partition of G is a partition of the edge set E(G) into linear
k-forests. The linear k-arboricity of G, denoted by lak(G), is the minimum size of a
linear k-forest partition of G.

∗ Corresponding author.
E-mail addresses: gjchang@math.nctu.edu.tw (G.J. Chang), kchuang@simon.pu.edu.tw (K.-C. Huang).
1 Supported in part by the National Science Council under grant NSC86-2115-M009-002.
2 Supported in part by the National Science Council under grant NSC87-2115-M126-003.

0166-218X/00/$ - see front matter ? 2000 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(99)00247 -4

282 G.J. Chang et al. / Discrete Applied Mathematics 103 (2000) 281–287

The notion of linear k-arboricity was introduced by Habib and Peroche [19]. It
is a natural re�nement of the linear arboricity introduced by Harary [21], which is
the same as linear k-arboricity except that the paths have no length constraints. Sup-
pose �′(G) is the chromatic index of G and la(G) the linear arboricity. Let �(G)
denote the maximum degree of a vertex in G. The following proposition is easy to
verify.

Proposition 1. If H is a subgraph of graph G with n vertices and m edges; then
(1) lak(G)¿lak(H) for k¿1;
(2) la(G) = lan−1(G)6lan−2(G)6 · · ·6la2(G)6la1(G) = �′(G);
(3) lak(G)¿max{d�(G)=2e; dm=bkn=(k + 1)ce}.

On the other hand, Habib and Peroche [19] made the following conjecture:

Conjecture 2 (Habib and Peroche [19]). If G is a graph with n vertices and k¿2;
then

lak(G)6d�(G)n+ �=2bkn=(k + 1)ce where �= 1 when �(G)¡n− 1 and �= 0
when �(G) = n− 1:

This conjecture subsumes Akiyama’s conjecture [2] as follows.

Conjecture 3 (Akiyama [2]). la(G)6d(�(G) + 1)=2e.

Considerable work has been done for determining exact values and bounds for linear
k-arboricity, aimed at these conjectures (see the references at the end of this paper).
We study linear k-arboricity from an algorithmic point of view in this paper. Habib

and Peroche [20] showed the �rst result along this line. They gave an algorithm to prove
that if T is a tree with exactly one vertex of maximum degree 2m, then la2(T)6m.
Using this as the induction basis, they then gave a characterization for a tree T with
maximum degree 2m to have la2(T) = m. Chang [10] recently pointed out that this
characterization has a
aw. He then presented a linear-time algorithm for determining
whether a tree T satis�es la2(T)6m; and gave a new characterization for a tree T with
maximum degree 2m to have la2(T) =m. Holyer [22] proved that determining la1(G)
is NP-complete, Peroche [26] that determining la(G) is NP-complete, and Bermond et
al. [9] that determining whether la3(G) = 2 is NP-complete for cubic graphs of 4m
vertices. Bermond et al. [9] conjectured that it is NP-complete to determine lak(G) for
any �xed k.
The purpose of this paper is to give a linear-time algorithm for answering whether

a tree T satis�es lak(T)6m for a �xed k. This answers a question raised in [10].

2. Linear k-arboricities on trees

We recall the following result in [10].

G.J. Chang et al. / Discrete Applied Mathematics 103 (2000) 281–287 283

Theorem 4 (Chang [10]). If T is a tree with �(T) = 2m − 1; then lak(T) = m for
k¿2. If T is a tree with �(T) = 2m; then m6lak(T)6m+ 1 for k¿2.

So, it remains to determine whether lak(T) is m or m + 1 when �(T) = 2m. The
aim of this paper is to give a linear-time algorithm for determining if lak(T)6m for
a tree T .
A leaf is a vertex of degree one. A penultimate vertex is a vertex that is not a leaf

and all of whose neighbors are leaves, with the possible exception of one. Note that
a penultimate vertex of a connected graph is always adjacent to a non-leaf, unless the
graph is a star. It is well known that a non-trivial tree has at least two leaves, and a
tree with at least three vertices has at least one penultimate vertex.
To study linear k-arboricity on trees, we actually make the problem in a more

general setting as follows. Suppose G is a graph in which every edge e is associated
with a positive integer L(e)6k. The L-length of a path P is L(P) =

∑
e∈E(P) L(e).

A linear (k; L)-forest is a graph whose components are paths and L(P)6k for each
path P. The linear (k; L)-arboricity of G, denoted by lak;L(G), is the minimum number
of linear (k; L)-forests needed to partition the edge set E(G) of G. It is clear that
lak;L(G) = lak(G) when L(e) = 1 for all edges e in G.
Suppose s= (a1; a2; : : : ; ar) is a sequence of positive integers. An (m; k)-partition of

s is a “partition” of {1; 2; : : : ; r} into m disjoint (but possibly empty) sets I1; I2; : : : ; Im,
each of size at most two, with the property that

∑
j∈Ii aj6k for 16i6m. The value of

an (m; k)-partition {I1; I2; : : : ; Im} of s is min{
∑

j∈Ii aj : |Ii|61}. fm;k(s) is de�ned to be
the minimum value of an (m; k)-partition of s; fm;k(s)=∞ if s has no (m; k)-partition.
Note that for convenience, min ∅ = ∞, ∑j∈Ii aj = 0 when Ii is an empty set, and
fm;k(s) = 0 when r = 0¡m.
The following is the foundation of our algorithm for the linear (k; L)-arboricity on

trees.

Theorem 5. Suppose T is a tree in which x is a penultimate vertex adjacent to a
vertex y and r¿1 leaves x1; x2; : : : ; xr . Suppose T ′=T−{x1; x2; : : : ; xr}; and L′ is de�ned
by L′(e)=L(e) for all edges e ∈ E(T ′) except L′(yx)=L(yx)+fm;k(L(xx1); L(xx2); : : : ;
L(xxr)). Then; lak;L(T)6m if and only if lak;L′(T ′)6m.

Proof. (⇒) Suppose lak;L(T)6m. Choose a linear (k; L)-forest partition P={F1; F2; : : : ;
Fm} for T . Without loss of generality, we may assume that yx is in a path P1 that
is a component of F1. Let Ii = {j : xxj is in Fi and 16j6r} for 16i6m. Then,
|Ii|62 and

∑
j∈Ii L(xxj)6k for 16i6m. Also, |I1|61 as yx is in F1. Therefore,

fm;k(L(xx1); L(xx2); : : : ; L(xxr))6
∑

j∈I1 L(xxj) =
∑

xxj∈P1 L(xxj).
Delete all edges xx1; xx2; : : : ; xxr from the linear (k; L)-forest partition P to yield a

linear forest partition P′ for T ′. For any path P′ that is a component of a forest F ′

in P′, P′ is a subpath of some path P that is a component of a forest F in P. Then,
L′(P′) = L(P′)6L(P)6k, except when P′ contains the edge yx. For the exceptional

284 G.J. Chang et al. / Discrete Applied Mathematics 103 (2000) 281–287

case, P′⊆P1 and
L′(P′) = L′(P′ − yx) + L′(yx)

= L(P′ − yx) + L(yx) + fm;k(L(xx1); L(xx2); : : : ; L(xxr))

6 L(P′ − yx) + L(yx) +
∑
xxj∈P1

L(xxj)6L(P1)6k:

Therefore, P′ is a linear (k; L′)-forest partition for T ′ and then lak;L′(T ′)6m.
(⇐) On the other hand, suppose lak;L′(T ′)6m. Choose a linear (k; L′)-forest partition

P′= {F ′
1; F

′
2; : : : ; F

′
m} for T ′ such that yx is in a component P′

1 of F
′
1. Let {1; 2; : : : ; r}

be the disjoint union of sets I1; I2; : : : ; Im, each of size at most two and |I1|61, such
that

∑
j∈Ii L(xxj)6k for 16i6m and

∑
j∈I1 L(xxj) = fm;k(L(xx1); L(xx2); : : : ; L(xxr)).

For 16i6m, let Fi = F ′
i + Pi, where Pi is the (possibly empty) path forming by the

edge(s) xxj with j ∈ Ii. Then, each component of an Fi is a path P. In fact, each path
P is a component of some F ′

i′ with L(P) = L
′(P)6k, except when P is P′

1 + P1 or Pi
with 26i6m. Note that

L(P′
1 + P1) = L(P

′
1 − yx) + L(yx) +

∑
j∈I1

L(xxj)

= L(P′
1 − yx) + L(yx) + fm;k(L(xx1); L(xx2); : : : ; L(xxr))

= L′(P′
1 − yx) + L′(yx) = L′(P′

1)6k:

Also, L(Pi)=
∑

j∈Ii L(xxj)6k for 26i6m. Thus, {F1; F2; : : : ; Fm} is a linear (k; L)-forest
partition of T , which implies that lak;L(T)6m.

Based on Theorem 5, we have the following algorithm.

Algorithm L. Test whether lak;L(T)6m for a tree T .
Input. Positive integers k and m and a tree T in which every edge e is associated

with a positive integer L(e)6k.
Output. “Yes” if lak;L(T)6m and “no” otherwise.

Method.
while (T is not an edge) do
choose a penultimate vertex x adjacent to a vertex y
(which may be a leaf) and r¿1 leaves x1; x2; : : : ; xr;
L(yx)← L(yx) + fm;k(L(xx1); L(xx2); : : : ; L(xxr));
if L(yx)¿k then output “no” and stop;
T ← T − {x1; x2; : : : ; xr};
end while;
output “yes”.

To implement the algorithm, we need to �nd a penultimate vertex and to compute
fm;k(L(xx1); L(xx2); : : : ; L(xxr)) e�ciently.

G.J. Chang et al. / Discrete Applied Mathematics 103 (2000) 281–287 285

For �nding a penultimate vertex, we choose a vertex v∗ and order the vertices of T
into v1; v2; : : : ; vn such that

dT (v1; v∗)¿dT (v2; v∗)¿ · · ·¿dT (vn; v∗);
where dT (vi; v∗) is the distance from vi to v∗ in T . It is then clear that the �rst vertex
vi that is not a leaf is a penultimate vertex. This gives an easy way to choose a
penultimate vertex. The other operations in the algorithm are easily implemented.
To compute fm;k(L(xx1); L(xx2); : : : ; L(xxr)) e�ciently, we use the following lemma.

Lemma 6. Suppose s=(a1; a2; : : : ; ar) is a non-decreasing sequence of positive integers
less than or equal to k. Let r′ be the maximum index less than r such that ar′+ar6k;
and s′ be obtained from s by deleting r and r′ (if it exists).
(1) If r¿2m+ 1; then s has no (m; k)-partition. If r¿2m; then fm;k(s) =∞.
(2) s has an (m; k)-partition if and only if s′ has an (m−1; k)-partition. In this case;

fm;k(s) =
{
fm−1; k(s′) if r′ exists;
min{ar; fm−1; k(s′)} if r′does not exist:

Proof. (1) follows from de�nition easily.
(2) First consider the case in which r′ exists. Suppose I = {I1; I2; : : : ; Im} is an

(m; k)-partition of s. Let r ∈ Ii and r′ ∈ Ij. We may assume j= i, for otherwise reparti-
tioning Ii ∪ Ij into I ′i ={r; r′} and I ′j =(Ii ∪ Ij)− I ′i results in a new (m; k)-partition of s
whose value is no more than the value of I. In this case, {I1; : : : ; Ii−1; Ii+1; : : : ; Im} is an
(m−1; k)-partition of s′ with the same value as I. This also gives fm;k(s)¿fm−1; k(s′).
Conversely, suppose I′ is an (m − 1; k)-partition of s′. Then I′ ∪ {{r; r′}} is an
(m; k)-partition of s with the same value as I. This also gives fm;k(s)6fm−1; k(s′).
Next, consider the case in which r′ does not exist. Suppose I={I1; I2; : : : ; Im} is an

(m; k)-partition of s. Then Ii={r} for some i. In this case, I′={I1; : : : ; Ii−1, Ii+1; : : : ; Im}
is an (m−1; k)-partition of s′; and the value of I is the minimum of ar and the value of
I′. So, fm;k(s)¿min{ar; fm−1; k(s′)}. Conversely, suppose I′ is an (m−1; k)-partition
of s′. Then I′∪{{r}} is an (m; k)-partition of s with the value equals to the minimum
of ar and the value of I′. So, fm;k(s)6min{ar; fm−1; k(s′)}.

According to the above lemma, we have the following linear-time algorithm for
computing fm;k(a1; a2; : : : ; ar).

assume a16a26 · · ·6ar6k by a bucket sort if necessary;
let a0 ← 0 and store the sequence s← (a0; a1; a2; : : : ; ar) in
a doubly linked list in which the next element of ai
is next[ai] and the previous element of ai is prev[ai];

answer ←∞; ar′ ← a0;
while (r62m− 1 or (r = 2m and answer 6=∞)) do
if (r = 0) then {if m 6= 0 then answer ← 0; stop} ;
while (next[ar′] 6= ar and next[ar′] + ar6k) do ar′ ← next[ar′];

286 G.J. Chang et al. / Discrete Applied Mathematics 103 (2000) 281–287

if (ar′ = a0) then{answer ← min{answer; ar};
aoldr ← ar; ar ← prev[ar]; delete aoldr from s;
r ← r − 1; m← m− 1; }

else {aoldr ← ar; aoldr′ ← ar′ ;
if (next[ar′] = ar)
then {ar ← prev[ar′]; ar′ ← prev[ar]}
else {ar ← prev[ar]; ar′ ← prev[ar′]}
delete aoldr and aoldr′ from s;
r ← r − 2; m← m− 1; }

end while;

Note that the bucket sort costs O(r) time. During the above procedure, ar′ tra-
verses from the beginning to the end of the linked list, with the modi�cation that after
each iteration, ar′ may be back one or two steps. So, the total cost for computing
fm;k(a1; a2; : : : ; ar) is O(r).

Theorem 7. Algorithm L determines if lak(T)6m for a tree T in linear time.

3. For further reading

The following references are also of interest to the reader: [1,3–8,11–18,23–25,27–
29].

Acknowledgements

The authors thank the referee for many constructive suggestions. In particular, the
suggestions on Algorithm L make it clear that the algorithm is linear.

References

[1] H. Ait-Djafter, Linear arboricity for graphs with maximum degree six or seven and edge multiplicity
two, Ars. Combin. 20 (1985) 5–16.

[2] J. Akiyama, Three developing topics in graph theory, Doctoral Dissertation, University of Tokyo, 1980.
[3] J. Akiyama, A status on the linear arboricity, Lecture Notes in Computer Science, Vol. 108, Springer,

Berlin, 1981, 38–44.
[4] J. Akiyama, V. Chv�atal, A short proof of the linear arboricity for cubic graphs, Bull. Liber. Arts and

Sci., NMS 2 (1981) 1–3.
[5] J. Akiyama, G. Exoo, F. Harary, Covering and packing in graphs III, cyclic and acyclic invariants,

Math. Slovaca 30 (1980) 405–417.
[6] J. Akiyama, G. Exoo, F. Harary, Covering and packing in graphs IV, linear arboricity, Networks 11

(1981) 69–72.
[7] J. Akiyama, M. Kano, Path factors of a graph, Graph Theory and its Applications, Wiley, New York,

1984.
[8] N. Alon, The linear arboricity of graphs, Israel J. Math. 62 (1988) 311–325.

G.J. Chang et al. / Discrete Applied Mathematics 103 (2000) 281–287 287

[9] J.C. Bermond, J.L. Fouquet, M. Habib, B. Peroche, On linear k-arboricity, Discrete Math. 52 (1984)
123–132.

[10] G.J. Chang, Algorithmic aspects of linear k-arboricity, Taiwanese J. Math. 3 (1999) 73–81.
[11] C.Y. Chen, Y.P. Chen, G.J. Chang, The tree arboricity of a graph, submitted for publication.
[12] B.L. Chen, H.L. Fu, K.C. Huang, Decomposing graphs into forests of paths with size less than three,

Austr. J. Combin. 3 (1991) 55–73.
[13] B.L. Chen, K.C. Huang, On the linear k-arboricity of Kn and Kn;n, Manuscript, 1996.
[14] H. Enomoto, The linear arboricity of 5-regular graphs, Technical Report, Dept. of Information Sci.,

Univ. of Tokyo, 1981.
[15] H. Enomoto, B. Peroche, The linear arboricity of some regular graphs, J. Graph Theory 8 (1984)

309–324.
[16] H.L. Fu, K.C. Huang, The linear 2-arboricity of complete bipartite graphs, Ars. Combinatoria 38 (1994)

309–318.
[17] F. Guldan, The linear arboricity of 10-regular graphs, Math. Slovaca 36 (1986) 225–228.
[18] F. Guldan, Some results on linear arboricity, J. Graph Theory 10 (1986) 505–509.
[19] M. Habib, P. Peroche, Some problems about linear arboricity, Discrete Math. 41 (1982) 219–220.
[20] M. Habib, P. Peroche, La k-arboricit�e lin�eaire des arbres, Ann. Discrete Math. 17 (1983) 307–317.
[21] F. Harary, Covering and packing in graphs I, Ann. New York Acad. Sci. 175 (1970) 198–205.
[22] I. Holyer, The NP-completeness of edge colourings, SIAM J. Comput. 10 (1981) 718–720.
[23] K.C. Huang, Some results on linear k-arboricity, Manuscript, 1996.
[24] F. Jaeger, Etude de quelques invariants et probl�emes d’existence en th�eorie des graphes, Th�ese d’Etat,

IMAG Grenbole, 1976.
[25] A. Nakayama, B. Peroche, Linear arboricity of digraphs, Networks 17 (1987) 39–53.
[26] B. Peroche, Complexit�e de l’arboricit�e lin�aire d’un graphe, RAIRO 16 (1982).
[27] P. Tomasta, Note on linear arboricity, Math. Slovaca 32 (1982) 239–242.
[28] H.G. Yeh, G.J. Chang, The path-partition problem in bipartite distance-hereditary graphs, Taiwanese J.

Math. 2 (1998) 353–360.
[29] T.W. Yeh, Linear arboricities of complete r-partite graphs, Master Thesis, Dept. Applied Math., National

Chiao Tung Univ, Hsinchu, Taiwan, June 1997.

