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Abstract

For a �xed positive integer k, the linear k-arboricity lak(G) of a graph G is the minimum
number ‘ such that the edge set E(G) can be partitioned into ‘ disjoint sets and that each
induces a subgraph whose components are paths of lengths at most k. This paper studies linear
k-arboricity from an algorithmic point of view. In particular, we present a linear-time algo-
rithm to determine whether a tree T has lak(T )6m. ? 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

All graphs in this paper are simple, i.e., �nite, undirected, loopless, and without
multiple edges. A linear k-forest is a graph whose components are paths of length at
most k. A linear k-forest partition of G is a partition of the edge set E(G) into linear
k-forests. The linear k-arboricity of G, denoted by lak(G), is the minimum size of a
linear k-forest partition of G.
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The notion of linear k-arboricity was introduced by Habib and Peroche [19]. It
is a natural re�nement of the linear arboricity introduced by Harary [21], which is
the same as linear k-arboricity except that the paths have no length constraints. Sup-
pose �′(G) is the chromatic index of G and la(G) the linear arboricity. Let �(G)
denote the maximum degree of a vertex in G. The following proposition is easy to
verify.

Proposition 1. If H is a subgraph of graph G with n vertices and m edges; then
(1) lak(G)¿lak(H) for k¿1;
(2) la(G) = lan−1(G)6lan−2(G)6 · · ·6la2(G)6la1(G) = �′(G);
(3) lak(G)¿max{d�(G)=2e; dm=bkn=(k + 1)ce}.

On the other hand, Habib and Peroche [19] made the following conjecture:

Conjecture 2 (Habib and Peroche [19]). If G is a graph with n vertices and k¿2;
then

lak(G)6d�(G)n+ �=2bkn=(k + 1)ce where �= 1 when �(G)¡n− 1 and �= 0
when �(G) = n− 1:

This conjecture subsumes Akiyama’s conjecture [2] as follows.

Conjecture 3 (Akiyama [2]). la(G)6d(�(G) + 1)=2e.

Considerable work has been done for determining exact values and bounds for linear
k-arboricity, aimed at these conjectures (see the references at the end of this paper).
We study linear k-arboricity from an algorithmic point of view in this paper. Habib

and Peroche [20] showed the �rst result along this line. They gave an algorithm to prove
that if T is a tree with exactly one vertex of maximum degree 2m, then la2(T )6m.
Using this as the induction basis, they then gave a characterization for a tree T with
maximum degree 2m to have la2(T ) = m. Chang [10] recently pointed out that this
characterization has a 
aw. He then presented a linear-time algorithm for determining
whether a tree T satis�es la2(T )6m; and gave a new characterization for a tree T with
maximum degree 2m to have la2(T ) =m. Holyer [22] proved that determining la1(G)
is NP-complete, Peroche [26] that determining la(G) is NP-complete, and Bermond et
al. [9] that determining whether la3(G) = 2 is NP-complete for cubic graphs of 4m
vertices. Bermond et al. [9] conjectured that it is NP-complete to determine lak(G) for
any �xed k.
The purpose of this paper is to give a linear-time algorithm for answering whether

a tree T satis�es lak(T )6m for a �xed k. This answers a question raised in [10].

2. Linear k-arboricities on trees

We recall the following result in [10].



G.J. Chang et al. / Discrete Applied Mathematics 103 (2000) 281–287 283

Theorem 4 (Chang [10]). If T is a tree with �(T ) = 2m − 1; then lak(T ) = m for
k¿2. If T is a tree with �(T ) = 2m; then m6lak(T )6m+ 1 for k¿2.

So, it remains to determine whether lak(T ) is m or m + 1 when �(T ) = 2m. The
aim of this paper is to give a linear-time algorithm for determining if lak(T )6m for
a tree T .
A leaf is a vertex of degree one. A penultimate vertex is a vertex that is not a leaf

and all of whose neighbors are leaves, with the possible exception of one. Note that
a penultimate vertex of a connected graph is always adjacent to a non-leaf, unless the
graph is a star. It is well known that a non-trivial tree has at least two leaves, and a
tree with at least three vertices has at least one penultimate vertex.
To study linear k-arboricity on trees, we actually make the problem in a more

general setting as follows. Suppose G is a graph in which every edge e is associated
with a positive integer L(e)6k. The L-length of a path P is L(P) =

∑
e∈E(P) L(e).

A linear (k; L)-forest is a graph whose components are paths and L(P)6k for each
path P. The linear (k; L)-arboricity of G, denoted by lak;L(G), is the minimum number
of linear (k; L)-forests needed to partition the edge set E(G) of G. It is clear that
lak;L(G) = lak(G) when L(e) = 1 for all edges e in G.
Suppose s= (a1; a2; : : : ; ar) is a sequence of positive integers. An (m; k)-partition of

s is a “partition” of {1; 2; : : : ; r} into m disjoint (but possibly empty) sets I1; I2; : : : ; Im,
each of size at most two, with the property that

∑
j∈Ii aj6k for 16i6m. The value of

an (m; k)-partition {I1; I2; : : : ; Im} of s is min{
∑

j∈Ii aj : |Ii|61}. fm;k(s) is de�ned to be
the minimum value of an (m; k)-partition of s; fm;k(s)=∞ if s has no (m; k)-partition.
Note that for convenience, min ∅ = ∞, ∑j∈Ii aj = 0 when Ii is an empty set, and
fm;k(s) = 0 when r = 0¡m.
The following is the foundation of our algorithm for the linear (k; L)-arboricity on

trees.

Theorem 5. Suppose T is a tree in which x is a penultimate vertex adjacent to a
vertex y and r¿1 leaves x1; x2; : : : ; xr . Suppose T ′=T−{x1; x2; : : : ; xr}; and L′ is de�ned
by L′(e)=L(e) for all edges e ∈ E(T ′) except L′(yx)=L(yx)+fm;k(L(xx1); L(xx2); : : : ;
L(xxr)). Then; lak;L(T )6m if and only if lak;L′(T ′)6m.

Proof. (⇒) Suppose lak;L(T )6m. Choose a linear (k; L)-forest partition P={F1; F2; : : : ;
Fm} for T . Without loss of generality, we may assume that yx is in a path P1 that
is a component of F1. Let Ii = {j : xxj is in Fi and 16j6r} for 16i6m. Then,
|Ii|62 and

∑
j∈Ii L(xxj)6k for 16i6m. Also, |I1|61 as yx is in F1. Therefore,

fm;k(L(xx1); L(xx2); : : : ; L(xxr))6
∑

j∈I1 L(xxj) =
∑

xxj∈P1 L(xxj).
Delete all edges xx1; xx2; : : : ; xxr from the linear (k; L)-forest partition P to yield a

linear forest partition P′ for T ′. For any path P′ that is a component of a forest F ′

in P′, P′ is a subpath of some path P that is a component of a forest F in P. Then,
L′(P′) = L(P′)6L(P)6k, except when P′ contains the edge yx. For the exceptional
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case, P′⊆P1 and
L′(P′) = L′(P′ − yx) + L′(yx)

= L(P′ − yx) + L(yx) + fm;k(L(xx1); L(xx2); : : : ; L(xxr))

6 L(P′ − yx) + L(yx) +
∑
xxj∈P1

L(xxj)6L(P1)6k:

Therefore, P′ is a linear (k; L′)-forest partition for T ′ and then lak;L′(T ′)6m.
(⇐) On the other hand, suppose lak;L′(T ′)6m. Choose a linear (k; L′)-forest partition

P′= {F ′
1; F

′
2; : : : ; F

′
m} for T ′ such that yx is in a component P′

1 of F
′
1. Let {1; 2; : : : ; r}

be the disjoint union of sets I1; I2; : : : ; Im, each of size at most two and |I1|61, such
that

∑
j∈Ii L(xxj)6k for 16i6m and

∑
j∈I1 L(xxj) = fm;k(L(xx1); L(xx2); : : : ; L(xxr)).

For 16i6m, let Fi = F ′
i + Pi, where Pi is the (possibly empty) path forming by the

edge(s) xxj with j ∈ Ii. Then, each component of an Fi is a path P. In fact, each path
P is a component of some F ′

i′ with L(P) = L
′(P)6k, except when P is P′

1 + P1 or Pi
with 26i6m. Note that

L(P′
1 + P1) = L(P

′
1 − yx) + L(yx) +

∑
j∈I1

L(xxj)

= L(P′
1 − yx) + L(yx) + fm;k(L(xx1); L(xx2); : : : ; L(xxr))

= L′(P′
1 − yx) + L′(yx) = L′(P′

1)6k:

Also, L(Pi)=
∑

j∈Ii L(xxj)6k for 26i6m. Thus, {F1; F2; : : : ; Fm} is a linear (k; L)-forest
partition of T , which implies that lak;L(T )6m.

Based on Theorem 5, we have the following algorithm.

Algorithm L. Test whether lak;L(T )6m for a tree T .
Input. Positive integers k and m and a tree T in which every edge e is associated

with a positive integer L(e)6k.
Output. “Yes” if lak;L(T )6m and “no” otherwise.

Method.
while (T is not an edge) do
choose a penultimate vertex x adjacent to a vertex y
(which may be a leaf) and r¿1 leaves x1; x2; : : : ; xr;
L(yx)← L(yx) + fm;k(L(xx1); L(xx2); : : : ; L(xxr));
if L(yx)¿k then output “no” and stop;
T ← T − {x1; x2; : : : ; xr};
end while;
output “yes”.

To implement the algorithm, we need to �nd a penultimate vertex and to compute
fm;k(L(xx1); L(xx2); : : : ; L(xxr)) e�ciently.
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For �nding a penultimate vertex, we choose a vertex v∗ and order the vertices of T
into v1; v2; : : : ; vn such that

dT (v1; v∗)¿dT (v2; v∗)¿ · · ·¿dT (vn; v∗);
where dT (vi; v∗) is the distance from vi to v∗ in T . It is then clear that the �rst vertex
vi that is not a leaf is a penultimate vertex. This gives an easy way to choose a
penultimate vertex. The other operations in the algorithm are easily implemented.
To compute fm;k(L(xx1); L(xx2); : : : ; L(xxr)) e�ciently, we use the following lemma.

Lemma 6. Suppose s=(a1; a2; : : : ; ar) is a non-decreasing sequence of positive integers
less than or equal to k. Let r′ be the maximum index less than r such that ar′+ar6k;
and s′ be obtained from s by deleting r and r′ (if it exists).
(1) If r¿2m+ 1; then s has no (m; k)-partition. If r¿2m; then fm;k(s) =∞.
(2) s has an (m; k)-partition if and only if s′ has an (m−1; k)-partition. In this case;

fm;k(s) =
{
fm−1; k(s′) if r′ exists;
min{ar; fm−1; k(s′)} if r′does not exist:

Proof. (1) follows from de�nition easily.
(2) First consider the case in which r′ exists. Suppose I = {I1; I2; : : : ; Im} is an

(m; k)-partition of s. Let r ∈ Ii and r′ ∈ Ij. We may assume j= i, for otherwise reparti-
tioning Ii ∪ Ij into I ′i ={r; r′} and I ′j =(Ii ∪ Ij)− I ′i results in a new (m; k)-partition of s
whose value is no more than the value of I. In this case, {I1; : : : ; Ii−1; Ii+1; : : : ; Im} is an
(m−1; k)-partition of s′ with the same value as I. This also gives fm;k(s)¿fm−1; k(s′).
Conversely, suppose I′ is an (m − 1; k)-partition of s′. Then I′ ∪ {{r; r′}} is an
(m; k)-partition of s with the same value as I. This also gives fm;k(s)6fm−1; k(s′).
Next, consider the case in which r′ does not exist. Suppose I={I1; I2; : : : ; Im} is an

(m; k)-partition of s. Then Ii={r} for some i. In this case, I′={I1; : : : ; Ii−1, Ii+1; : : : ; Im}
is an (m−1; k)-partition of s′; and the value of I is the minimum of ar and the value of
I′. So, fm;k(s)¿min{ar; fm−1; k(s′)}. Conversely, suppose I′ is an (m−1; k)-partition
of s′. Then I′∪{{r}} is an (m; k)-partition of s with the value equals to the minimum
of ar and the value of I′. So, fm;k(s)6min{ar; fm−1; k(s′)}.

According to the above lemma, we have the following linear-time algorithm for
computing fm;k(a1; a2; : : : ; ar).

assume a16a26 · · ·6ar6k by a bucket sort if necessary;
let a0 ← 0 and store the sequence s← (a0; a1; a2; : : : ; ar) in
a doubly linked list in which the next element of ai
is next[ai] and the previous element of ai is prev[ai];

answer ←∞; ar′ ← a0;
while (r62m− 1 or (r = 2m and answer 6=∞)) do
if (r = 0) then {if m 6= 0 then answer ← 0; stop} ;
while (next[ar′ ] 6= ar and next[ar′ ] + ar6k) do ar′ ← next[ar′ ];
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if (ar′ = a0) then{answer ← min{answer; ar};
aoldr ← ar; ar ← prev[ar]; delete aoldr from s;
r ← r − 1; m← m− 1; }

else {aoldr ← ar; aoldr′ ← ar′ ;
if (next[ar′ ] = ar)
then {ar ← prev[ar′ ]; ar′ ← prev[ar]}
else {ar ← prev[ar]; ar′ ← prev[ar′ ]}
delete aoldr and aoldr′ from s;
r ← r − 2; m← m− 1; }

end while;

Note that the bucket sort costs O(r) time. During the above procedure, ar′ tra-
verses from the beginning to the end of the linked list, with the modi�cation that after
each iteration, ar′ may be back one or two steps. So, the total cost for computing
fm;k(a1; a2; : : : ; ar) is O(r).

Theorem 7. Algorithm L determines if lak(T )6m for a tree T in linear time.

3. For further reading

The following references are also of interest to the reader: [1,3–8,11–18,23–25,27–
29].
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