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Abstract—Plasma-induced damage in various 3-nm-thick gate
oxides (i.e., pure oxides and N2O-nitrided oxides) was investigated
by subjecting both nMOS and pMOS antenna devices to a photore-
sist ashing step after metal pad definition. Both charge-to-break-
down and gate leakage current measurements indicated that large
leakage current occurs at the wafer center as well as the wafer
edge for pMOS devices, while only at the wafer center for nMOS
devices. These interesting observations could be explained by the
strong polarity dependence of ultra-thin oxides in charge-to-break-
down measurements of nMOS devices. In addition, pMOS devices
were found to be more susceptible to charging damage, which can
be attributed to the intrinsic polarity dependence in tunneling cur-
rent between n- and p-MOSFET,s. More importantly, our exper-
imental results demonstrated that stress-induced leakage current
(SILC) caused by plasma damage can be significantly suppressed
in N2O-nitrided oxides, compared to pure oxides, especially for
pMOS devices. Finally, nitrided oxides were also found to be more
robust when subjected to high temperature stressing. Therefore,
nitrided oxides appear to be very promising for reducing plasma
charging damage in future ULSI technologies employing ultrathin
gate oxides.

Index Terms—Dielectric breakdown, leakage current, nitrogen,
plasma applications, semiconductor device reliability.

I. INTRODUCTION

ULTRATHIN gate oxides are indispensable for continued
scaling of advanced CMOS ULSI technologies into deep

sub-half-micron regime. The integrity and reliability of ultrathin
gate oxide are therefore of major concern for ULSI devices.
Concurrently, it is well known that plasma charging effects can
severely degrade the breakdown characteristics of thin gate
dielectric. A glow discharge can cause device degradation due
to charge imbalance on the wafer surface induced by plasma
nonuniformity, or by photons from high energy levels to low
energy states. When the voltage due to charge built-up is
sufficiently large, Fowler–Nordheim (FN) tunneling current
collected by the antenna structure is channeled through the thin
gate oxide, causing degradation in gate oxide integrity. Recently,
it has been reported in numerous studies that the incorporation
of nitrogen in the gate dielectric through NO-oxidation can
suppress process-induced damage [1]–[3]. Besides, nitrogen
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incorporation also increases the robustness to boron diffusion,
an important feature for pMOS devices [4]–[6]. Nitrided oxide
is thus highly regarded as a promising alternative gate dielectric
to replace thermal oxide in future ULSI technologies. In this
work, we investigated and compared the charging damage
characteristics of nMOS and pMOS devices. The effectiveness
of employing ultrathin nitrided oxide in suppressing plasma
damage was then studied. Our experimental results showed
that pMOS devices are more sensitive to plasma charging and
more susceptible to positive charging damage. More important,
N O-nitrided oxide was found to be very effective in suppressing
charging damage, especially for pMOS devices, as evidenced
by the lower gate leakage current after plasma damage as well
as after high temperature stressing.

II. EXPERIMENTAL

Dual-gate (i.e., n- and p -poly for n- and p-channel devices,
respectively) CMOS test transistors used in this study were fab-
ricated on 6-in wafers. After a conventional LOCOS isolation
processing, gate oxides were thermally grown at 850C in ei-
ther O /N or N O/N ambient for pure-Ocontrol samples and
nitrided-oxide samples, respectively. All samples have a final
oxide thickness of 3 nm. The oxide thickness was verified by
ellipsometry on the monitor wafer, and was also confirmed by
fitting the FN tunneling current [7] on the completed devices.
Metal antenna structures attached to the gates were used to study
the charging damage. After metal pattern definition, photore-
sist was stripped off in a down-stream plasma asher. The ashing
process temperature was 200C. Previously, we have demon-
strated that severe charging damage could occur at the wafer
center for nMOS devices, which is attributed to the nonuni-
form plasma generation caused by the gas injection mode of
the asher [8]–[10]. Charging damage was analyzed by antenna
devices and was further confirmed by the CHARM-2 monitor
wafers [11]. As shown in the inset of Fig. 1, CHARM-2 sensors
recorded highly negative and highly positive potential values at
the wafer center and wafer edge, respectively. The antenna area
ratio (AAR) was defined as the area ratio between the metal pad
and the active thin oxide region. Finally, a forming gas annealing
at 400 C was applied to all samples before testing.

III. RESULTS AND DISCUSSION

A. Plasma Charging Damage in nMOS and pMOS Devices

1) Indicators for Detecting Charging Damage in Ultrathin
Oxides: Fig. 1 shows the cumulative probability distributions
of the absolute threshold voltages for n- and p-channel
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Fig. 1. Cumulative probabilities of the absolute threshold voltage values
(jV j) for n- and p-channel devices with pure oxide as the gate dielectric
on both antenna and non-antenna structures. Deviation of all the devices is
within 20 mV. Inset shows wafer maps of negative and positive potential values
recorded by CHARM-2 sensors. Highly negative and highly positive potentials
are induced at the wafer center and the wafer edge, respectively.

devices withpureoxide as the gatedielectric for both antenna and
non-antenna (i.e., control) structures. First, it can be seen that the
threshold voltages are right on the target, i.e., both nMOS devices
with n -gate and pMOS devices with p-gate depict essentially
the same absolute value. It is worthy to note that pMOS
transistors in this study were carefully processed with a very low
thermal budget (i.e., 900C, 20 s in N ambient) to ensure that no
noticeable boron penetration effect was induced in these devices.
This is indeedconfirmedbytheminimal shift (i.e., lessthan20
mV) for pMOS transistors with pure oxide as the gate dielectric.
Thusthisstudyoffersauniqueopportunity tocomparetheplasma
charging damage in various oxides (i.e., pure oxide and nitrided
oxide) without implications due to boron penetration in pure
oxide. FromFig.1, it can be seen that shift is minimal forboth
antenna and nonantenna devices. However, one should not jump
to the conclusion that plasma charging damage in these antenna
devices is negligible. Rather, these results only indicate that
is no longer a sensitive charging damage detector for ultrathin
gate oxides as thin as 3 nm. Similar results were also observed in
subthreshold swing and transconductance characteristics (data
notshown).Thanks to the large toleranceof tunnelingcurrent, the
insensitivity of device parameters to charging damage could be
ascribed to insignificant surface state generation and bulk oxide
trapping after plasma charging, a property known to be intrinsic
to ultrathin oxides.

2) Charge-to-Breakdown Measurements:Since traditional
charging damage monitors are no longer sensitive for ultrathin
gate oxides, other indicators such as charge-to-breakdown

and gate leakage current have recently been
proposed as viable indicators for detecting antenna effect in ul-
trathin oxides [12]–[14]. Charge-to-breakdown measurements
measured at a stressing current density of 0.2 A/cmunder ac-

Fig. 2. Charge-to-breakdown values as a function of cell position-from-center
for (a) p-channel, and (b) n-channel devices with small (AAR= 500) and large
(AAR =15 K) antenna area ratios.

cumulation polarity were performed on both nMOS and pMOS
transistors with different AAR’s. As shown in Fig. 2(a) and
(b), severe charging damage was observed at the wafer center
as well as the wafer edge for pMOS antenna devices, whereas
charging damage occurs only at the wafer center for nMOS
devices. Similar results were also obtained when stressed under
inversion polarity (not shown). These interesting observations
could be explained by the strong polarity dependence of
ultrathin oxides in charge-to-breakdown characteristics
of MOS devices. As shown in Fig. 3, values of nMOS
devices under substrate injection polarity (i.e., A/cm
are much higher than those under the gate injection polarity.
While values of pMOS devices under both injection polar-
ities are almost at the same level. Therefore for pMOS devices,
charging damage was observed both at the wafer edge and the
wafer center, corresponding to the recorded highly positive
potential (at the wafer edge) and highly negative potential (at
the wafer center), respectively. While for nMOS devices, ap-
parently the superior oxide robustness under substrate injection
polarity (i.e., highly positive potential) protects the devices
from charging damage at the wafer edge. The strong polarity
dependence of was believed to be due to the weakness of
structure transition layer (STL) located in the SiO/Si interface
[15], [16]. The injected energetic electrons may release energy
at the STL interface and cause bond breaking, a precursor of
dielectric breakdown, under gate injection.
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Fig. 3. Cumulative failure of charge-to-breakdown tests for n- and p-channel
devices under both gate and substrate injection polarities with constant current
density of 1 A/cm :

It is interesting to note that the 50% value for pMOS de-
vices under substrate injection is slightly lower than that under
gateinjection,whichisinconsistentwithpreviousliteratures[17],
[18]. The cause for this phenomenon is probably related to the
gate area of the test devices and the stressing current level. In
addition, boron segregation at the grain boundary of polysilicon
gate is also known to degrade under substrate injection [18].

3) Gate Leakage Current Measurements:Since charge-to-
breakdown measurement is known to be tedious and time
consuming, gate leakage current measurement is used instead
as a fast method to study charging damage [12]. Gate leakage
current measured at a gate voltage V under inversion
polarity (i.e., 2 V for nMOS and V for pMOS) and with
a low drain bias (e.g., V) were performed on transistors
with different AAR’s. As shown in Figs. 4 and 5, large leakage
current is observed at the wafer center as well as the wafer edge
for pMOS devices [Figs. 4(a) and 5(a)], while charging damage
occurs only at the wafer center for nMOS devices [Figs. 4(b)
and 5(b)]. These results are consistent with measurements.
Moreover, pMOS devices are shown to be more vulnerable to
charging damage since the leakage current of pMOS antenna
devices are much larger than that of nMOS devices. This is also
consistent with literature reports that charging impacts are more
significant on pMOS than on nMOS devices [13], [19]–[21].
Although electron shading effect [22] is a well-known cause for
the plasma damage susceptibility of pMOS antenna devices, be-
cause the shaded electrons lead to positive stressing of the gate
dielectric, which corresponds to carrier accumulation of pMOS
devices [20], [21]. However, in this work, electron shading ef-
fect is ruled out, since our antenna devices are with low aspect
ratio and no dense-line antenna is used (i.e., area-intensive an-
tenna only). Instead, the intrinsic polarity dependence in tun-
neling current between n- and pMOS devices is believed to be
responsible for this discrepancy since pMOS devices show sub-
stantially lower tunneling current than nMOS counterparts in
both polarities (i.e., and as shown in Fig. 6. Note that

Fig. 4. Gate leakage current as a function of cell position-from-center for both
pure O and N O-nitrided oxides. Gate leakage currents were measured at a gate
voltageV = 2 V under inversion polarity for (a) nMOS, and (b) pMOS. Both
with a low drain bias(V = 0:1 V) performed on transistors with small (AAR
= 500) and large (AAR= 15 K) antenna area ratios.

Fig. 5. Gate leakage current as a function of antenna area ratio (AAR) for
both pure oxides and NO-nitrided oxides measured at the wafer center and the
wafer edge, respectively. Gate leakage currents were measured at a gate voltage
V = 2 V under inversion polarity for (a) nMOS, and (b) pMOS. A low drain
bias(V = 0:1 V) was applied.

the oxide voltage in Fig. 6 is extracted by taking polysil-
icon depletion (when biased in inversion) and flat-band voltage
(when biased in accumulation) into account. The discrepancy
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Fig. 6. Gate tunneling currents as a function of oxide voltage(V ) in n- and
p-channel transistors measured under both inversion (Inv.) and accumulation
(Acc.) polarities. Source/drain are grounded with the substrate during
measurement. Oxide voltages are extracted from gate voltages by considering
flat-band voltage (accumulation) and polysilicon depletion effect (inversion).

between n- and p-MOS devices in tunneling can be ascribed to
the fact that when biased in inversion, the number of conduction
band electrons available for tunneling is substantially lower in
pMOS (i.e., than in nMOS devices (i.e., [17]. Since
it is hypothesized that plasma charging acts more like a current
source [23], the corresponding voltage drop in pMOS devices
is thus larger than that in nMOS devices. Consequently, pMOS
devices are more vulnerable to charging damage. So despite the
fact that pMOS devices are reported to depict better TDDB char-
acteristics under normal operating condition [17], a situation re-
sembling constant-voltage stressing, pMOS devices are actually
more prone to plasma process-induced charging damage.

B. Improved Immunity to Charging Damage in Nitrided Oxides

1) Suppression of Gate Leakage Current due to Charging
Damage in Nitrided Oxides:Since charging damage has such
significant impacts on ultrathin oxide reliability, NO-nitrided
oxides, which were known to improve gate oxide reliability,
were explored in this study as a possible technique to alleviate
plasma charging damage. As shown in Figs. 4 and 5, charging
damage can indeed be substantially suppressed with NO-ni-
trided oxide. In contrast with pure oxide, leakage current of an-
tenna devices is significantly improved with nitrided oxide. In
fact, only slight increase in gate leakage current is observed on
antenna devices with nitrided oxide. The cumulative plot of gate
leakage currents shown in Fig. 7 further confirms that more than
two orders of magnitude in gate leakage reduction are achieved
on pMOS antenna devices with NO-nitrided gate dielectric.
These phenomena can be ascribed to the nitrogen incorporation
in the oxide. The formation of strong Si-N bonds in place of
strained Si-O bonds and weak Si-H bonds enhances the interface
hardness, resulting in improved gate oxide integrity [3]. Since
it has been speculated that trap creation mechanism responsible
for SILC is hydrogen-related, the incorporation of nitrogen by

Fig. 7. Cumulative probabilities of gate leakage current for p-channel devices
with pure (open symbol) and NO-nitrided oxides (close symbol), with small
(AAR = 500) and large (AAR= 15 K) antenna area ratios.

N O-nitridation is expected to terminate Si dangling bonds at
the SiO /Si interface as well as to reduce the stress/strain in
the structure transition layer (STL) [15], [24]. As a result, gate
leakage current after plasma charging can be reduced. Our re-
sults shown in Figs. 4, 5 and 7 indeed confirm that NO-ni-
trided oxide is extremely effective in improving the immunity
to plasma damage for ultrathin oxides.

2) Improved Temperature-Accelerated Oxide Degradation in
Nitrided Oxides: It is generally agreed that high temperature
degrades oxide reliability, and gate oxide is more susceptible to
charging damage at elevated temperature [10], [25], [26]. Since
in real plasma processing, the gate oxide is subjected to ele-
vated temperature, the superior SILC characteristics of NO-ni-
trided oxides were then further analyzed by high temperature
stressing. In this study, test devices including pure oxide and
nitrided oxide samples were subjected to a 0.1 Coulomb/cm
prestress at 180C before room-temperature gate leakage cur-
rent measurement. As shown in Fig. 8, dramatic reduction in
SILC caused by high temperature prestressing is observed on
N O-nitrided samples for both n- and p-channel devices, com-
pared to pure oxide counterparts. As the temperature-acceler-
ated oxide degradation is believed to be related to the diffusion
of hydrogen-related species caused by breaking strained Si-H
and Si-O bonds in the STL [25], [27], so SILC after high temper-
ature prestress and plasma-induced charging damage can thus be
improved in nitrided oxides where nitrogen incorporation serves
to repair the stressed/strain bonds.

IV. CONCLUSION

In summary, plasma damage on CMOS transistors with
various 3 nm-thick gate oxides was investigated. Our results
showed that pMOS antenna devices are more sensitive to
positive plasma charging, thus depicting large gate leakage
current both at the wafer center and the wafer edge. In contrast,
nMOS antenna devices depict large gate leakage current only
at the wafer center. These observations can be explained by
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Fig. 8. Cumulative probabilities of stress-induced leakage currents of
p-channel (top) and n-channel devices (bottom) for pure oxides (open symbol)
and N O-nitrided oxides (close symbol), after subjecting to a high temperature
prestress.

the excellent charge-to-breakdown characteristics for ultrathin
gate oxide under positive gate stressing for nMOS devices.
More importantly, our results also show that NO-nitrided
oxide depicts significant improvement to charging damage,
especially for pMOS devices. Three orders of magnitude in
gate leakage current reduction are observed on pMOS devices
with nitrided oxide. The nitrided oxide devices are also found
to be more robust when subjected to high temperature stressing.
All these results indicate that nitrided oxide is very promising
for reducing plasma damage in future ULSI technologies
employing ultrathin gate oxides.
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