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We manifest the characteristics of the low-frequency, quasilocalized instantaneous normal modes,
named as the instantaneous resonant mdtRsls), in simple dense fluids with short-ranged
repulsive interactions. The analyses include the potential energy profiles of the IRMs, and the local
geometric structures and the number of the interacting neighbors of the particles at which the centers
of the quasilocalization are located. We conclude that an IRM is created due to fluctuations in the
local density, and has a barely-isolated center, which slightly interacts with one or two nearest
neighbors, and the potential energy profile of an IRM is basically single-well with strong
anharmonicity. The differences in character between the IRMs and the high-frequency localized
instantaneous normal modes are also examined. Based on the barely isolated center picture, a
necessary criterion for the occurrence of the IRMs is proposed. While only the imaginary-frequency
IRMs are found in dense fluids with purely repulsive interactions satisfying the criterion, a tiny
attractive well in the pair potential allows the occurrence of the real-frequency IRMs. The physical
systems to detect the presence of the IRMs are discusse@000 American Institute of Physics.
[S0021-960600)50225-9

I. INTRODUCTION tions of the system at high temperatures can be visualized as
vibrational motions around an inherent structure in the short-
Resonant modes, low-frequency quasilocalized vibratime scales, and making transitions between the inherent
tional excitations, occur in various kinds of solids and havestructures through barrier crossings in the long-time scales.
been one of the most interesting subjects in solid-statdhus, the overall landscape is anharmonic in general, and the
physics® Properties of resonant modes in harmonic latticesdlynamics of a fluid at high temperatures should experience
with heavy mass or weakly coupled impurifies in anhar-  the anharmonicity of the landscapeSimilar in concept to
monic latticed* have been well studied analytically. In the the phonon modes in the crystalline solids, which give a
former case, the vibrational motion of a resonant mode igjood description of lattice dynamics, the instantaneous nor-
sharply localized to an impurity and its nearby particles, andnal modes(INMs), which describe well the fluid dynamics
the decay of the quasilocalized vibration from the impurity isin the short-time scal€$;'" are the harmonic analysis for the
generally not exponential, but is much more extensive irlocal curvatures of the landscape through such a way that the
space. In glassy systems, resonant modes have been obserildi¥l frequencies at a configuration are given by the square
by experiments and computer simulatién® and are pro- roots of the eigenvalues of the Hessian matrix, the matrix of
posed to be the physical origin of many anomalous thermasecond derivatives of the potential energy hypersurface with
properties, including the specific heat and the thermal conrespect to particle coordinates. Unlike the phonon density of
ductivity, of glasses at temperatures above 1 Fhe poten-  states(DOS) for a crystal, the configuration-averaged DOS
tial energy profiles of the resonant modes in glasses can kaf INMs for a fluid is composed of two lobes: one for the
described by the soft-potential mod&t? which occurs in  real frequencies and the other for the imaginary frequencies,
the single-well potentials with strong enough anharmonicitywhich are associated with the positive and the negative local
Materials in the fluid phases have many different dy-curvatures of the landscape, respectively. According to the
namic properties from those in the solid phases, for theipotential energy profile of an INM, which is the potential
constituents moving more rapidly and irregularly as com-energy hypersurface along the eigenvector direction of this
pared with the molecular motions in solids. Energy land-mode, an imaginary-frequency INM occurs at either the bar-
scape paradigms are usually used to describe qualitativelyer top of a double-wellDW) potential or the convex region
the dynamic behavior of fluidS. In the configuration space, of a shoulderSH) potential, which has only single well in
the potential energy hypersurface of a many-particle systerthe whole profile; the former case is mostly found in the
has been proposed to possess many local minima, which canigh-frequency end of the lobe and the latter case in the
respond to the inherent structures of the systéifhe mo-  low-frequency end®-2° Except for a very small amount of
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the small-frequency SH modes, the real-frequency INMsor two interacting neighbors. In Sec. lll, by studying the
arise from the single-wel{SW) potentials, which have al- density of states of IRMs in various thermodynamic states of
ways positive curvatures in the potential energy profile.the TLJ fluid and in fluids with different interaction ranges of
There is indication that for INMs in the high-frequency end pair potentials, we propose a necessary criterion for the oc-
of the real-frequency lobe the SW potential becomes moreurrence of IRMs in the simple dense fluids. Furthermore,
and more anharmonf®. For many fluid system¥-1821-24  choosing a pair interaction, which is still short-ranged but
the INMs in the high-frequency end of both lobes are local-has a tiny attractive well, and a proper thermodynamic state,
ized modes, defined as having participation ratios inverselyhich satisfies the necessary occurrence criterion for IRMs,
scaling with the system size. The localization of these highwe indeed find the real-frequency IRMs in this simple model
frequency INMs can be understood, since the anharmonicitfluid. Our conclusions are given in Sec. IV.
in the potential energy profiles of these INMs becomes domi-
nant. Il. QUASILOCALIZATION OF IRMS
Recently, in terms of the standard instantaneous normal ) ) . ) )
mode analysis and a newly defined quantity, the reduced [N computer simulation, a finite-range pair potential
participation ratio, Wu and Ma have presented the evidencB@sed on the LJ interaction is usually given by
for the existence of quasilocalized, low- frequency INMs in a U) 12/ 5\6 r
- - +A
r

model simple dense fluid, in which the pair interaction is  @(r)=4e€ — -/ tB 1)

merely the repulsive portion of the Lennard-Jongs))
potential?® This pair potential is named as the truncated LJWhereA andB are chosen so that both the potential and the
(TLJ) potential, and the fluid, the TLJ fluid. Since the TLJ force vanish at some cutoff;, and beyond the cutoff the
potential is purely repulsive, these low-frequency INMs arePotential is truncated. This potential is close to the original
found 0n|y in the imaginary-frequency lobe. Many Charac-LJ pOtentiaI as the value (DE is Iarge enough. The reflection
teristics of these INMs are quite similar as those of the resoP0Iint in the attractive part of the original LJ potential, which
nant modes in solids. In a large scale beyond the INM apiS at (26/7}°c~1.244r, is a critical value ofr.. Asrt, is
proximation, the potential energy profiles of theseless than this critical value, the potential given in Ei)
quasilocalized INMs are strongly anharmonic, single-wellP€comes purely repulsive; otherwise, the potential has an
potentials, with small variations near the bottom to cause thattractive well. The TLJ potential can be described by &g.
INM frequencies to be imaginary. At a fixed low frequency, by settingrc=2°0~1.122, the distance corresponding to
the more quasilocalized the INM is, the stronger the anharthe minimum of the original LJ potential, and By=0 and
monicity in its potential energy profile. One of the major B=e€. We have carried out a series of molecular dynamics
differences between these INMs and the resonant modes f{mulations for a system of 750 particles interacting via the
solids is that their lifetimes are extremely short. Therefore P&l polsgntlal given in Eq(1) with several cutoffs varying
these quasilocalized, low-frequency INMs are named as infom 2

o to 3.5, so that the pair-interaction range of the

stantaneous resonant mote@RMs). The short-ranged na- simulated fluids v_a_ries from _short-ra_nged _to long-ranged.
ture of the TLJ potential is essential for the occurrence off Ne reduced densitigs* =po® in our simulations are from
IRMs in the TLJ fluid; the IRMs are never present in the LJ0-7 t0 0.972 and the reduced temperaturés=kgT/e from
fluid at the same density and temperature. It is the interpla9'5 to 1.3. The details of tht_a simulations and the calculation
between the interaction range and the mean nearest- neightid the INM DOS are found in Refs. 22 and 25. ,
separation in the TLJ fluid that leads to the presence of N anN-particle system, the reduc_edaparltJupanon r?ftm
barely isolated particles, where the centers of these quasil« ©f €ach INMa is defined as the rati®y/Qy , whereRy
calized IRMs are located. is the number of particles involved in this INM, and is given

More recently, using the same technique of analysis, Wpr
and Tsay® have found by molecular dynamics simulation N -1
that the IRMs exist in the high-temperature Ga liquids and Ry= ( > Ief‘I“) 2
have frequencies very close to those of short- wavelength, =1
nonacoustic excitations observed by means of inelastic newvith " the component of the normalized INM eigenvector
tron scattering in a recent experiméhfTherefore, it will be  on atomj, andQy similar to Ry, given in Eq.(2), except that
interesting to further investigate the nature and characterizahe term of the largest eigenvector component is excluded
tion of the IRMs in simple dense fluids and the thermody-from the summation. Thus, the value %f is between 0 and
namic criterion on the fluids for their occurrence. To find thel. For an IRM, there is a quasilocalized center, in which a
conditions on a simple dense fluid in which the real-sharply peaked component on a particle is surrounded with a
frequency IRMs may exist is also one aim of this paper. small-amplitude background, so trgtwill be close to zero.

In this paper, the TLJ fluid is still our basic model fluid On the other hand, for an extended INM, in which the mag-
for studying the characteristics of IRMs. In Sec. Il, we shownitudes of all eigenvector components are comparable, both
the difference in characteristics between the quasilocalize®y, andQy, scale withN ands, is close to unity. Therefore,
IRMs and the high-frequency localized INMs, and presents, acts as a measure for the quasilocalization of IRMs in a
the evidence from the geometric analyses on the local strudhuid.
tures that the occurrence of an IRM in the TLJ fluid is indeed ~ For the TLJ fluid atp*=0.88 and T*=0.836, the

associated with a barely isolated center, which has only onBy(w) distribution?>?>which is the configuration average of



276 J. Chem. Phys., Vol. 113, No. 1, 1 July 2000

0.05

0.04 |

0.03 |

0.02 |

FIG. 1. The DOS of the imaginary-frequency INMs in a TLJ fluid*(
=0.88 andT™* =0.84) with the reduced participation ratios less thaadlid
line), 0.5(dashed ling and 0.1(dot-dashed ling respectively. As usual, the
imaginary-frequency lobe is plotted along the negative frequency axis.

Ry within a small frequency width, has a sharp dip in the
imaginary-frequency lobe at a region of frequency less than
5wy,2°> where wy=(e/mo?) ~¥? andm is the mass of each
particle. Near the depth, the value Bf,(w) depends o,

but does not scale witN. This implies that quite a portion of
INMs in this region are quasilocalized in space. No corre-
sponding dip is found in th&y(w) distribution of the LJ
fluid at the same density and temperature. By comparing the
INMs in these two fluids with pair interactions in different
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ranges, the small-imaginary-frequency INMs in this TLJ FIG. 2. The magnitudes of the eigenvector componefitas a function of

fluid can be roughly classified into three groups: the IRMs
for s less than 0.1, the interacting IRMs ferbetween 0.1
and 0.5, and the extended INMs for s larger than @&

the distance from the largest component particle for a low-frequency
quasilocalized IRM with imaginary frequency 1@d ands=6x10"2 (a),
and a high-frequency localized INM with imaginary frequency 12.9and
$=1.3x10 2 (b) in a TLJ fluid. The open circles and the crosses represent

qualitative results given later are insensitive to the exact valparticles withef"- ef greater and less than zero, respectively. In each plot, the

ues ofs for dividing these three groupsin Fig. 1, we show
the DOS of the imaginary-frequency INMs with the reduced

left-hand and right-hand vertical scales are ffefif and the radial distribu-
tion function,g(r), which is indicated by the dashed line. The dotted line
indicates the cutoff of the TLJ potential. In the inset of each part, the po-

participation ratios less than 1, 0.5, and 0.1, respectively, ifential energy profile of the corresponding INM is given by the solid line,

this TLJ fluid.

The magnitudes of", which are plotted as a function of
the distance from the largest eigenvector component particle,
and the potential energy profiles of three INMs from each
group, have been presented in Fig. 4 of Ref. 25. With th
classification given above, a small-frequency INM wigh
< 0.1 indeed has a quasilocalized center with the charactef;
istic we described above for an IRM. While the potential
energy profile of an IRM, in a local scale, may be a DW
potential with a very small barrier, or a SH potential with the
shoulder region very close to the minimum of the single

well, the profile is actually part of a single well with strong ter

anharmonicity, if it is examined in a global scale beyond the
scale for the INM approximation. We believe that it is this
strong anharmonicity that plays an important role in making
the INM gquasilocalized. With the same presentation for those
three INMs, we illustrate in Fig. 2 the difference in character
between a quasilocalized IRM and a high-frequency local-
ized INM. In the latter case, the decay of the eigenvector
components away from the particle with the largest compo-
nent is more like an exponential decgyFor an interacting
IRM, there are more quasilocalized centers, with some inter-

N

F‘a:z (rc_rjl)a

J#1

M=z

e, =2 |ef|0(re—ry),

J#1

1

N
Do=2 d(rj)O(re—rp),
J#1

and the profile calculated with the INM approximation by the dashed line.

actions between thefThe larger the value of, the more

Ghe magnitudes of the peaked components on those central
articles in an interacting IRM are reduced as compared with
hose of IRMs. On the other hand, for an extended INM, one
can hardly identify a localized center, although the magni-
tudes of the eigenvector components fluctuate from particle
to particle.
In order to manifest further the quasilocalization charac-
of an IRM, we define three quantities for each INiM

()

4

®)
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where the largest eigenvector component particle has bee 5

taken as the center, and indexed a€91r) is a Heaviside @)
step function. b .
-~ I\'\‘_r\"'~.,\\l\\’\,v“4 Vg l\~‘-~,"",
o : 1 for rjp<re, © e !
re—ri)=
¢ o forr>rg, 3
"
wherer;; is the distance between partigleand particle 1. €

We define the interacting neighbors of a particle in the TLJ
fluid as those particles having distances from the particle less

than the cutoff .. Thus,n, is the number of the interacting 1F

neighbor of particle 1e, is the magnitude sum of the eigen-

vector components on those interacting neighbors,d&nis 0 : ' . .

the total interaction between the particle 1 and its interacting ° o2 04 R 08 o8 !
neighbors.

We divide the imaginary-frequency INM DOS shown in 02 !

Fig. 1 into two sections at &y so that the IRMs and the
high-frequency localized INMs apparently fall in different
sections. In each section, we make a configuration averag:
forn,,e,, and¢, with respect to the INMs having reduced
participation ratios within a small width. After these aver-
ages, we obtain, respectively, (s), e-(s), and¢_(s) for
imaginary frequencies less tham§, andn-(s), e-(s), and
$-(s) for imaginary frequencies larger thanw. The re- 0.05
sults of these averaged functions are shown in Fig. 3. In the

TLJ fluid discussed above, the average number of interacting

O
s 01

neighbors is about 4.75. FiguréaB clearly shows that both b 0'2 0'4 0*6 0'8 |0

Nn_(s) andn-(s) are below this average value. However, ' e '

n-(s) does not vary much witk, butn_(s) decays with the , 5

decreasing o6 in general, and is less than two fex0.1. (c)

So, on average, the IRMs have two interacting neighbors at .

most. 08 | \\,.‘ ~ -4
The trend ofe_(s), shown in Fig. &), decays, in gen- NN M

eral, with the decreasing af however, the function has two I M "\/“""'\‘ 43

peaks as= 0.5 ands=0.465. These two peaks are not com- = H

pletely due to the statistical fluctuation in the configuration & 04 | ) . 4,

average, but resulted from some special INMs. According to Teall,

the definition of the reduced participation ratio, an INM with b

s=0.5 has two large eigenvector components with exactly 92| I

equal magnitudes; a little bias on the magnitudes of these

two large components will cause the valuesdb be a little o ! ' ' ' 0

less than half. We have found two kinds of INMs wish 0 02 04 06 08 1

=0.5 and their characters are shown in Fig. 4. The magni- s

tudes of the two large eigenvector components shown in FigfIG. 3. Three functions of the reduced participation ratebout the inter-

; acting neighbors of the particle with the largest eigenvector component of an
4(a).are exac_tly equal to 1./5’ and thz{%wo correqundlng imaginary-frequency INM in a TLJ fluid: The averaged number of the in-
_part'des’ having a separation Iess th . @, form a dimer teracting neighbota), the sum of the magnitudes of the eigenvector com-
isolated from the rest of the particles in the fluid. The INM ponents on those interacting neighbfsls and the total interaction between
on this isolated dimer is clearly proven to be optical-like. Inthe central particle and its interacting neighb@s The solid lines and the

; ; _ ashed are averaged for the INMs of imaginary frequencies below and
Flg'.4(b)’ .the separation betwe.en th(.é two large Componengbove Gu,, respectively. Note that ifb) and(c) the right-hand and left-
part'de.s is about hal_f. Qf the .S'm.UIat'on box. length. In thepang vertical scales are for the dashed and solid curves, respectively.
TLJ fluid, the probabilities of finding INMs witts near 0.5

are rather small. It is these small probabilities that make the

function ofe_(s) nears=0.5 split into two peaks. result analyzed from_(s) in the smalls region, we propose
From Figs. 8b) and 3c), both the functions oB_(S)  a barely isolated center picture for the local structure around
and ¢_(s) in the IRM region decrease with decreasisig the central particle of an IRM in the TLJ fluid, in which the
This fact indicates that the central particle of an IRM inter-local structure is constructed with the slight interactions be-
acts less and less with its interacting neighbors as the IRMween the central particle and only one or two of its nearest
becomes more and more quasilocalized. Combined with theeighbors. According to the differences in behavior of the
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FIG. 4. As in Fig. 2 for two imaginary-frequency INMs with=0.5 in a
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. 5. The geometric analyses of the fluid structures associated with the
imaginary-frequency INMs in the TLJ fluid, the DOS of which are shown in

TLJ fluid. The two equal-magnitude large components in each INM arerig “1: The distributions for the number of the interacting neighfagrand

indicated by larger symbols. Their frequencies ares4.() and 2.2, (b).
The separations of the two large-component particles in cas@s and(b)

the cell volume(b) of the particles with the largest eigenvector component
of each INM. In each part, the solid line is for the INMs with imaginary

are less than the cutoff of the TLJ potential, and about half of the simulationw<5w0 and s<0.1; the dot-dash line for the INMs with imaginagy
box, respectively. In the inset of each plot, the dotted points are fit for the<5w0 and s<0.5, and the dotted line for the INMs with imaginasy

potential energy profile with a quartic polynomial.

>5wy ands<0.5. In the inset of each part, the solid, the dotted, and the

dashed lines are for the total, the real-frequency, and the imaginary-
frequency INMs, respectively.

e-(s) and¢-(s) functions from those oé_(s) andd_(s),
respectively, the topology of the local structure around the[
center of an IRM is expected to be quite different from that
of a high-frequency localized INM, which has a central par-
ticle strongly interacting with its interacting neighbors.

Our picture of the local structure of an IRM can be veri-
fied through the geometrical analysis on the microstructurda)
of the TLJ fluid. We have carried out two different structural
analyses for the TLJ fluid gi* =0.88: the statistical distri-
butions for the number of the interacting neighbor and the
Voronoi-celf® volume of each particle in the fluid, in which (b)
the Voronoi cell of a particle is defined as the polyhedral
whose interior contains all points which are closer to the
particle than to any other particles. The average Voronoi
volume of each patrticle in a fluid can be obtained from the
inverse of the fluid density, which is about 1.136 in reduced(c)
units for this TLJ fluid. To characterize the local structure of
each INM, we focus on the number of interacting neighbors
and the Voronoi volume of the central particle in each INM,
which has the largest eigenvector component. This local
structure characterization of a normal mode is significant for
the localized or quasilocalized INMs, but not for the ex-

ended INMs. The statistical distributions of these two analy-
ses for various kinds of INMs are shown in Fig. 5 for com-
parison. The results can be summarized as the following
observations:

The average Voronoi volume of the imaginary-
frequency INMs is larger than that of the real-
frequency INMs, and the situation for the average num-
ber of the interacting neighbor is reversed.

For the imaginary-frequency INMs in the low-
frequency section ¢<5wg) and with s<0.5, the
Voronoi volumes of these INMs are almost above the
average, and the numbers of their interacting neighbors
are below the average value, 4.75, of this TLJ fluid.
Within the region of the same frequency as(ln, but
with s less than 0.1, which is the IRM region, the
Voronoi-volume distribution covers almost the same
range as that fos<0.5; however, the number distribu-
tion on the interacting neighbor shifts toward even
smaller value, and does not have significant values
above 3.
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FIG. 6. Temperature dependence of the DOS of the imaginary-frequenci#IG. 7. The DOS of imaginary-frequency INMs with the reduced participa-

INMs with reduced participation ratios less than (tHe thicker lineg 0.5 tion ratios less than either 0.5 or Q(ib the inset for several dense fluids

(the thinner lines and 1(in the inse}, respectively, for the TLJ fluids at  with the value of the ratia./d varied from 0.87(solid curves forp*

pa®=0.88. The reduced temperature of the TLJ fluid is varied from 0.5=0.88,r.=2"%s), to 0.90(dot-dash curves fop* =0.972,r.=2"%), to

(dot-dash curvgsto 0.84(solid curves, to 1.3(dashed curves 0.96 [dashed curves fop* =0.88, r = (26/7)"%], to 2.70 (dotted curves
for p* =0.88,r.=3.50). For all curves,T*=0.84.

Thus, the results of these geometrical analyses are consistent
with our picture of the local structure of the IRMs given 47mp\~1B
above. In addition to this verification, our results also indi- dZZ(T) (7)
cate that the local structures of the high-frequency localized
INMs are more compact than those of the IRMs, with moreHow this competition determines the occurrence of IRMs in
interacting neighbors and smaller Voronoi volumes. dense fluids can be understood from the following argument.
Consider first fluids with finite short-range interactions, like
the TLJ fluid. Asd>r ., the barely isolated centers are easily
generated due to the local density fluctuation. In the other
Although we have presented the characteristics of thdéimit, asd<r, the fluid becomes packed, and each particle
IRMs in the TLJ fluids, the criterion for the occurrence of is not so easily detachable from its neighbors due to the local
IRMs in dense fluids is still an open question. In order to finddensity fluctuation, even though the interaction range is
the answer to this question, we have carried out two series ahort. Thus, in some thermodynamic states with the ratio
simulations: one for checking the density and temperature./d above some critical value, the barely isolated centers
dependence of the IRMs in the TLJ fluid, the other for ex-can not be generated so that the IRM DOS is expected to
amining the effect of the shape of pair potential on the ocvanish. On the other hand, consider the case, like the second
currence of IRMs by tuning the cutoff in E¢l) for systems  series of our simulations, in which the densities of the fluids
at constant density and temperature. For these two series afe fixed, as are the values @fbut the interaction range.
simulations, we take the thermodynamic stgi&€£0.88 and can be changed. As long as the fixed density is high enough,
T*=0.84) of the TLJ fluid discussed in the last section as &he structures of these systems should be similar, since the
reference one. structure of a fluid is primarily determined by the short-range
For the TLJ fluid atp* =0.88 and three different tem- repulsive force. We expect that the IRM DOS of these
peratures, the DOS of the imaginary-frequency INMs vgith constant-density fluids should decrease by increasing the in-
less than 0.1, 0.5, and 1, respectively, are shown in Fig. 6. Aeraction range of the pair potential, and disappear as the
the small imaginary frequency region, the temperature deratior./d is above a critical value.
pendence of the DOS withless than 0.1 follows that of the In order to test our argument, we have calculated the
total DOS (with s less than 1 and the ratios of these two imaginary-frequency INM DOS witls less than 0.5, which
DOS are insensitive to temperature. Thus far, we concludecludes both the IRMs and the interacting IRMs, for sys-
that the occurrence of IRMs in the equilibrium TLJ fluids is tems with several different values of the ratig/d, and the
independent of temperatufa. results are illustrated in Fig. 7. In the TLJ fluids at a constant
Based on the barely isolated center picture on the localemperature, as the value pf/d increases from 0.87p(
structures of IRMs given in the last section, the possibility=0.88) to 0.9 p* =0.972), the low-frequency peak of the
for the IRMs occurring in a simple dense fluid essentiallyINM DOS with s<0.5 shrinks dramatically and its position
depends on two factors in competition: the density of theshifts to a higher frequency. Quantitatively, for imaginary
fluid and the interaction range of the pair potential. That isfrequencies less thand, the area under this DOS curve at
the occurrence of the IRMs is actually determined by a com#./d=0.9 is estimated to be one third of that gt/d
petition in length between., the cutoff of the pair potential, =0.87. Next, consider the fluids in our second series of
andd, the mean nearest-neighbor separation, which dependsmulations. The densities of these fluids are fixetl
on densityp through the definition =0.88, and the value af,/d is 0.96 forr .= (26/7)"°o, and

Ill. CRITERION FOR THE OCCURRENCE OF IRMS
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0.06 IV. CONCLUDING REMARKS

In this paper, we have presented the general characteris-
tics of IRMs, which are the low-frequency, quasilocalized
INMs, in the dense fluids with short- ranged pair interac-
tions. For the TLJ fluid, in which the short-ranged pair inter-
action is purely repulsive, the IRMs are only found in the
imaginary-frequency lobe, which is associated with the nega-
tive local curvatures of the potential energy landscape.
Through examining the potential energy profiles of these
IRMs, the potential energy hypersurface along the IRM ei-
genvector directions, we found that in a large scale beyond
. R the INM approximation the IRMs basically occur in strongly
-20 0 20 40 60 anharmonic, single-well potentials with small variations near

/o the bottom of these wells producing the negative local cur-
FIG. 8. The INM DOS of a system of particles interacting via the pair Vatures. Combined with the geometric analysis on the struc-
potential given in Eq(1) with r.=1.320. The thermodynamic state of the ture of the fluid, the quasilocalization of the IRMs is found to
T e et S e e empece v 5w ConEred al he barely solted partces i the fud, which
< less than 0.1 are given in the inset. ’ v; sllghtl_y interact ywth one or two of their neighbors. We also
examined the differences in character between the IRMs and
the high-frequency localized INMs in the TLJ fluid through
2.7 forr.=3.50. We have checked the radial distribution comparing the interacting neighbors of the largest eigenvec-
functions,g(r), of these two systems, and no significant dif- tor component particles of these two kinds of INMs, and the
ferences are found. This result agrees with the theory ointeractions between this particle and its interacting neigh-
Chandle, Weeks, and Anders&hand indicates that the bors. Our results indicate that the characteristics of these two
static structures of these constant-density fluids are basicalkinds of localization are quite different. The more quasilo-
similar, which is a consequence of the same repulsive shortalized an IRM is, the less are the interactions between the
range interactions. As the valuerpf/d increases to 0.96, the central particle and its nearest neighbors. On the contrary, a
INM DOS with s<0.5 reduces further and there is no bumphigh-frequency localized INM has a central particle strongly
in the low-frequency section. However, by further increasingcoupled with its neighbors, with stronger interactions for
the value ofr./d, the DOS withs<0.5 does not change at more localization.
all. The occurrence of the IRMs in a simple dense fluid is

According to the above analyses, we conclude that theensitive to the ratio af./d, wherer is the pair interaction
DOS of the IRMs in a dense fluid is sensitive to the ratiorange andd the mean nearest-neighbor separation of the
r./d, and propose that the ratio less than a critical valudluid. The necessary criterion for the IRM occurrence is sim-
about 0.95 be the necessary criterion for the occurrence gily that the value of ./d of the dense fluid is lower than a
the IRMs. The exact value of this critical ratio needs to becritical value, which is found to be about 0.95. In a dense
further determined, but, does not affect our qualitative confluid with r./d less than this critical value, the IRMs are
clusion. So far, the IRMs in the dense fluids with short-generated due to the local density fluctuation. The picture is
ranged repulsive pair interactions are only found to be in theonsistent with that of the soft vibrational modes in metallic
imaginary-frequency lobe. Practically, the real-frequencyglasses due to the fluctuation of the density and the force
IRMs, even in some model fluids, are more interesting. Ouconstants?®
proposed necessary occurrence criterion serves as a guideline According to the necessary occurrence criterion for the
for finding the fluids having the real-frequency IRMs. IRMs, some consequences have been given, and some sug-

We suggest two conditions for a dense fluid to have thegestions are proposed. Choosing a proper model fluid, in
real-frequency IRMs(1) a short-range pair interaction with a which the pair interaction is still short-ranged but has a tiny
attractive well, and(2) the density of the system satisfied attractive well, and the density of the fluid is fulfilled with
with the necessary IRM occurrence criterion. In order to satthe necessary occurrence criterion for the IRMs, we have
isfy these two conditions, we consider a system of particlesound the real-frequency IRMs in this model fluid. This re-
interacting via the pair potential given in E¢l) with r,  sult makes the IRMs in dense fluids more significant. It will
=1.320 and choose the reduced density of the system to bbe interesting to further study the characteristics of these
0.7. For this chosen model fluid, the pair potential is stillreal-frequency IRMs and how they are related to the physical
short-ranged, but has an attractive well with a depth abouguantities of a fluid.
0.02¢ atr=1.1%. The value ofr./d of this model fluid is The next question one may ask is what real physical
about 0.945, and the calculated INM DOS of this fluid atsystems may be good candidates to detect the presence of the
T*=1.0 are shown in Fig. 8. We found that, in addition to IRMs. As mentioned in Sec. |, the IRMs have been found in
the imaginary-frequency IRMs, the DOS of the IRMs ex-the high-temperature Ga liquids, which have a peculiar pair
tends into the low-frequency part of the real-frequency lobepotential?® The short-range nature of the pair interaction is
Therefore, this result justifies the two conditions for the oc-essential for the occurrence of the IRMs. Recently, there
curring of the real- frequency IRMs. have been many studi&s®® on the role of the interaction
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range in the phase behavior in the colloidal physics. Colloi+F. H. Stillinger and T. A. Weber, Scien@25, 983(1984; R. A. LaVio-

dal dispersior® are the physical systems in which the inter-
action range between colloids is controllable, from short-

lette and F. H. Stillinger, J. Chem. Phy@8, 4079(1985; F. H. Stillinger,
Science267, 1935(1995.

15p. Jund and R. Jullien, Phys. Rev. L&8 2210(1999.

ranged to long-ranged, and from purely repulsive to that WitheR. M. Stratt, Acc. Chem. Re28, 201 (1995, and references therein.

a deeply attractive wefl” Many realistic examples and ref-

T, Keyes, J. Phys. Chen01, 2921(1997.

erences can be found in the related literature in colloidal®s. D. Bembenek and B. B. Laird, J. Chem. Ph@4, 5199(1996.

science® the details are beyond the scope of this paper
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