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In this paper, we present three construction schemes
for fault-tolerant Hamiltonian graphs. We show that
applying these construction schemes on fault-tolerant
Hamiltonian graphs generates graphs preserving the
original Hamiltonicity property. We apply these con-
struction schemes to generate some known fam-
ilies of optimal 1-Hamiltonian graphs in the lit-
erature and the Hamiltonicity properties of these
graphs are the direct consequence of the construc-
tion schemes. In addition, we can use these construc-
tion schemes to propose new family of optimal 1-
Hamiltonian graphs. © 2000 John Wiley & Sons, Inc.
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1. INTRODUCTION

The topology of an interconnection network for par-
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allel and distributed systems can always be represented
by a graph. Let G = (V, E) be an undirected graph. A cy-
cle in G that traverses every vertex exactly once is called
a Hamiltonian cycle. A graph G is called a Hamiltonian
graph or said to be Hamiltonian if it contains a Hamil-
tonian cycle. In this paper, we study Hamiltonian graphs
which correspond to the token ring topology.

Fault tolerance is an important issue in the design of
an interconnection network. When faults occur in a net-
work, it corresponds to removing edges and/or vertices
from the graph. Let V′ ⊆ V and E′ ⊆ E. We use G − V′
to denote the subgraph of G induced by V − V′, and
G − E′, the subgraph obtained by removing E′ from G.
Faults can be in the combination of vertices and edges.
Let F ⊆ V ∪ E. We use G − F to denote the subgraph
induced by V−F and deleting the edges in F from the in-
duced subgraph. If G−V′ is Hamiltonian for any V′ ⊆ V
and |V′| = k, then G is called a k-vertex-Hamiltonian
graph. If G − E′ is Hamiltonian for any E′ ⊆ E and
|E′| = k, then G is called a k-edge-Hamiltonian graph.
If G − F is Hamiltonian for any F ⊆ V ∪ E and |F| = k,
then G is called a k-Hamiltonian graph. In this paper,
we are, in particular, interested in k = 1 and an arbitrary
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vertex or edge fault, that is, a 1-Hamiltonian graph. For
convenience, we write G − f instead of G − {f}, where
{f} ⊂ V ∪ E.

A k-Hamiltonian graph is said to be optimal if it con-
tains the least number of edges among all k-Hamiltonian
graphs having the same number of vertices. Mukhopad-
hyaya and Sinha [4], Harary and Hayes [1,2], Wang et
al. [5], Hung et al. [3], and Wang et al. [6] proposed dif-
ferent families of optimal 1-Hamiltonian graphs. These
optimal 1-Hamiltonian graphs are all trivalent except the
ones proposed in [1,2,4] with an odd number of vertices
which have exactly one vertex of degree 4 and the re-
maining vertices of degree 3.

In this paper, we propose two operations on graphs
called 3-join and cycle extension. In addition, a variation
of 3-join, called (3,4)-join, is also presented. Using these
operations on particular graphs, the resultant graphs have
nice properties. In particular, applying these operations
on trivalent 1-Hamiltonian graphs can yield other triva-
lent 1-Hamiltonian graphs. Furthermore, by recursively
applying these operations on specific simple primitive
graphs, we can obtain the optimal 1-Hamiltonian graphs
proposed in [1–6]. Our constructed graphs can be easily
shown to be optimal 1-Hamiltonian using the properties
of these operations.

This paper is organized as follows: In Section 2, we
introduce the 3-join operation and its variation (3,4)-join
and their properties. In addition, we show that optimal 1-
Hamiltonian graphs in [1–5] can be constructed by recur-
sively applying 3-joins and (3,4)-joins on specific prim-
itive graphs. In Section 3, the cycle extension operation
is presented. We also study its properties and show that
the graphs proposed in [6] can be obtained by recur-
sively applying cycle extensions. In addition, we apply
this operation on the Petersen graph (which is 1-vertex-
Hamiltonian) to generate a new family of 1-Hamiltonian
graphs. Final remarks appear in Section 4.

2. 3-JOIN

In this section, we introduce two operations, called 3-
join and (3,4)-join, performed on two different graphs. A
3-join is an operation applied on two vertices of degree 3
in two graphs, while a (3,4)-join is applied on a vertex of
degree 3 in one graph and a vertex of degree 4 in another
graph. We will show that performing these two opera-
tions on two 1-Hamiltonian graphs produces new fam-
ilies of 1-Hamiltonian graphs. Furthermore, those fam-
ilies of 1-Hamiltonian graphs proposed in [1–5] can be
easily generated by applying the two operations on spe-
cific graphs and K4. In the following discussion, we use
3-join and (3,4)-join to mean the graphs and the opera-
tions interchangeably.

2.1. Definitions and Properties

Let G1 and G2 be two graphs. We assume that V(G1)∩
V(G2) = � throughout the section. Let x be a vertex of
a graph. We use N(x) to denote an ordered set which
consists of all of the neighbors of x, that is, N(x) is an
ordering of all of the neighbors of x. Henceforth, we use
N(x) as an ordered set. The 3-join, as illustrated in Figure
1, is defined as follows:

Definition 1. Let x be a vertex of degree 3 in G1 and y
be a vertex of degree 3 in G2. Let N(x) = {x1, x2, x3} and
N(y) = {y1, y2, y3}. The 3-join of G1 and G2 at x and y
is a graph K given by

V(K) = (V(G1) − {x}) ∪ (V(G2) − {y}) and

E(K) = (E(G1) − {(x, xi)|1 ≤ i ≤ 3})

∪ (E(G2) − {(y, yi)|1 ≤ i ≤ 3})

∪ {(xi, yi)|1 ≤ i ≤ 3}.

Note that different N(x) and N(y) generate different
3-joins of G1 and G2 at x and y. For example, as illus-
trated in Figure 1, given N(y) = {y1, y2, y3}, the 3-join
of G1 and G2 at x and y with N(x) = {x1, x2, x3} is differ-
ent from the one with N(x) = {x2, x1, x3}. On the other
hand, each 3-join of G1 and G2 at x and y is uniquely
determined by N(x) and N(y).

Throughout this subsection, we use x to represent a
vertex of degree 3 in graph G1, and y, a vertex of degree
3 in graph G2. A graph K is said to be a 3-join of G1 and
G2 if K is a 3-join of G1 and G2 at x and y with some N(x)
and some N(y). Clearly, 3-joins of two trivalent graphs
G1 and G2 are still trivalent. In this paper, we write a
path P from x to y as 〈x, x1, x2, . . . , xk, y〉 or 〈x → P → y〉.
Theorem 1. Let G1 and G2 be two graphs and K be a
3-join of G1 and G2. If both G1 and G2 are 1-Hamiltonian
graphs, then K is a 1-Hamiltonian graph.

Proof. Let K be a 3-join of G1 and G2 at x and y
with N(x) = {x1, x2, x3} and N(y) = {y1, y2, y3}. Let f be
any fault, vertex or edge, of K.

Consider f ≠ (xi, yi) for all 1 ≤ i ≤ 3. Without loss
of generality, we may assume that f ∈ (V(G1) − {x}) ∪
(E(G1) − {(x, xi)|1 ≤ i ≤ 3}). Since G1 is 1-Hamiltonian,
it follows that there is a Hamiltonian cycle H1 in G1 − f
given by 〈x, xi → P → xj, x〉, where i, j ∈ {1, 2, 3} with
i ≠ j and P denotes a path in G1. Let k be the unique

FIG. 1. Examples of 3-joins of two trivalent graphs.
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element in {1, 2, 3} − {i, j}. Since G2 is 1-Hamiltonian,
there is a Hamiltonian cycle H2 in G2 − (y, yk) which
can be written as 〈y, yi → Q → yj, y〉. Hence, 〈xi → P →
xj, yj → Q → yi, xi〉 forms a Hamiltonian cycle of K − f.

Consider f = (xi, yi) for some i. Without loss of gen-
erality, we may assume that f = (x1, y1). Let H1 be a
Hamiltonian cycle of G1 − (x, x1) which can be written
as 〈x, x2 → P → x3, x〉. Let H2 be a Hamiltonian cycle of
G2 − (y, y1) which can be written as 〈y, y2 → Q → y3, y〉.
Then, 〈x2 → P → x3, y3 → Q → y2, x2〉 forms a Hamilto-
nian cycle of K − f. Hence, the theorem is proved.

Using a similar proof technique in Theorem 1, we can
show the following corollaries:

Corollary 1. Let G1 and G2 be two graphs and K be
a 3-join of G1 and G2. If both G1 and G2 are 1-edge-
Hamiltonian, then K is also 1-edge-Hamiltonian.

We consider a special 3-join on G1 and G2, where G2

is K4, as described below:

Definition 2. Let G be a graph with a vertex v of degree
3. A 3-vertex expansion on v is a graph obtained from G
by performing a 3-join at v and any vertex of K4.

In other words, a 3-vertex expansion on v of degree
3 is a graph obtained from G by replacing the vertex
v with a K3 and connecting the three vertices of K3 to
the three neighbors of v, one by one. Note that 3-vertex
expansions on v are unique up to isomorphism.

Corollary 2. Let G be a trivalent 1-edge-Hamiltonian
graph and V′(G) = {v ∈ V(G)|G−v is not Hamiltonian}.
Let G∗ denote the graph obtained from G by performing
a sequence of 3-vertex expansions on every vertex v ∈
V′(G). Then, G∗ is 1-Hamiltonian.

One may ask whether the converse of Theorem 1
holds. To answer this question, we consider the graph
M shown in Figure 2(a) which is constructed by a se-
quence of 3-vertex expansions on K3,3. To be specific,
let {ai, bi|1 ≤ i ≤ 3} be the vertex set of K3,3 and
{(ai, bj)|1 ≤ i, j ≤ 3} be the edge set of K3,3. The con-
struction of M is given as follows:

1. Perform 3-vertex expansions on vertices a1, a2, and
a3, that is, replace each ai with a K3 given by vertex
set {ai,m|1 ≤ m ≤ 3}.

2. Perform 3-vertex expansions on vertices b1 and b3,
that is, replace each bi for i = 1, 3 with a K3 given
by vertex set {bi,m|1 ≤ m ≤ 3}.

Since K3,3 and K4 are 1-edge-Hamiltonian, it follows
from Corollary 1 that M is also 1-edge-Hamiltonian.
Note that M−b2 is not Hamiltonian. It follows that M is
not 1-Hamiltonian. Furthermore, it can be easily verified
that V′(M) = {b2}. By performing a 3-vertex expansion
on b2 of M, we obtain a new graph M∗ as shown in Fig-

FIG. 2. A counterexample for the converse of Theorem 1.

ure 2(b). In other words, M∗ is a 3-join of M and K4.
Note that M∗ is 1-Hamiltonian following from Corol-
lary 2, whereas M is not. This provides a counterexam-
ple for the converse of Theorem 1. Moreover, note that a
3-join operation on a 1-Hamiltonian graph and a non-1-
Hamiltonian graph may generate a 1-Hamiltonian graph.

2.2. Families of 1-Hamiltonian 3-Join Graphs

In this subsection, we show that known trivalent 1-
Hamiltonian graphs proposed in [3–5] and those with
even vertices proposed in [1,2] can be generated by a
sequence of 3-joins on some specific graphs and K4.

Harary and Hayes [1,2] proposed a family of 1-
Hamiltonian graphs, denoted by H(k) for k ≥ 4, where

V(H(k)) = {0, 1, 2, . . . , k − 1}, and

E(H(k)) =




{(i, i + 1)|0 ≤ i ≤ k − 2}
∪{(0, k/2), (0, k − 1)}
∪{(i, k − i)|1 ≤ i ≤ k/2 − 1}

for k even,

{(0, 1), (0, 2), (0, k − 1), (0, k − 2)}
∪{(i, i + 2)|1 ≤ i ≤ k − 3}
∪{(i, i + 1)|1 ≤ i ≤ k − 2 and i odd}

for k odd.

Examples of H(4), H(5), H(8), and H(9) are shown in
Figure 3.

Note that H(4) is, indeed, a complete graph K4 which
is the smallest 1-Hamiltonian graph. Furthermore, H(k)
for all k ≥ 4 and even are trivalent. The following the-
orem can be easily verified:

Theorem 2. Let k ≥ 6 be an even integer. Given that
H(4) = K4, H(k) can be obtained by a 3-vertex expan-
sion at the vertex 0 [or (k − 2)/2] in H(k − 2) and then
relabeling vertices. Furthermore, H(k) is 1-Hamiltonian.
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FIG. 3. The graphs H(k).

H(k) for k odd will be discussed in Section 2.3.
Mukhopadhyaya and Sinha [4] proposed a family of

1-Hamiltonian graphs, denoted by M(k). Let k ≥ 4 be an
integer and t be a nonnegative integer. To define M(k),
we first introduce B(i, t), as illustrated in Figure 4, which
is defined as follows:

V(B(i, t)) = {xr
i,j|1 ≤ j ≤ t} ∪ {xl

i,j|1 ≤ j ≤ t} ∪ {yi, zi},

and

E(B(i, t)) = {(xl
i,j, x

l
i,j−1)|1 < j ≤ t}

∪ {(xr
i,j, x

r
i,j+1)|1 ≤ j ≤ t − 1}

∪ {(xl
i,j, x

r
i,j)|1 ≤ j ≤ t}

∪ {(xl
i,1, yi), (yi, zi), (yi, x

r
i,1)}.

It can be easily verified that B(i, t), for t ≥ 2, is
isomorphic to the graph obtained from performing a 3-
vertex expansion on the vertex yi of B(i, t−1). The graph
M(k) for k even is constructed as follows. (For conve-
nience, when t = 0, we write yi = xl

i,0 = xr
i,0.)

1. If k = 6t + 4, then M(k) is constructed from three
B(i, t) for all 0 ≤ i ≤ 2 by identifying z1, z2,
and z3 into a single vertex z and adding the edges
(xl

0,t, x
r
1,t), (x

l
1,t, x

r
2,t), and (xl

2,t, x
r
0,t).

2. If k = 6t + 6, then M(k) is constructed from
B(0, t + 1), B(1, t), and B(2, t) by identifying z1, z2,
and z3 into a single vertex z and adding the edges
(xl

0,t+1, xr
1,t), (x

l
1,t, x

r
2,t), and (xl

2,t, x
r
0,t+1).

3. If k = 6t + 8, then M(k) is constructed from
B(0, t + 1), B(1, t + 1), and B(2, t) by identifying z1, z2,
and z3 into a single vertex z and adding the edges
(xl

0,t+1, xr
1,t+1), (xl

1,t+1, xr
2,t), and (xl

2,t, x
r
0,t+1).

Note that M(4) is, indeed, a complete graph K4. The
graph M(k) for k ≥ 5 and odd is constructed as follows:

FIG. 4. The graphs B(i, t).

1. If k = 8t +5, M(k) is constructed from four B(i, t) for
all 0 ≤ i ≤ 3 by identifying all zi into a single vertex
z and adding the edges (xl

0,t, x
r
1,t), (x

l
1,t, x

r
2,t), (x

l
2,t, x

r
3,t),

and (xl
3,t, x

r
0,t).

2. If k = 8t + 7, M(k) is constructed from B(0, t +
1) and B(i, t) for i = 1, 2, 3 by identifying all
zi into a single vertex z and adding the edges
(xl

0,t+1, xr
1,t), (x

l
1,t, x

r
2,t), (x

l
2,t, x

r
3,t), and (xl

3,t, x
r
0,t+1).

3. If k = 8t + 9, M(k) is constructed from B(i, t + 1)
for i = 0, 1 and B(j, t) for j = 2, 3 by identifying
all zi into a single vertex z and adding the edges
(xl

0,t+1, xr
1,t+1), (xl

1,t+1, xr
2,t), (x

l
2,t, x

r
3,t), and (xl

3,t, x
r
0,t+1).

4. If k = 8t + 11, M(k) is constructed from
B(i, t + 1) for i = 0, 1, 2 and B(3, t) by iden-
tifying all zi into a single vertex z and adding
the edges (xl

0,t+1, xr
1,t+1), (xl

1,t+1, xr
2,t+1), (xl

2,t+1, xr
3,t), and

(xl
3,t, x

r
0,t+1).

The graphs M(4), M(5), M(18), and M(25) are shown
in Figure 5. The following theorem can be easily verified:

Theorem 3. Let k and t be nonnegative integers. Let
M(4) and M(5) be given as in Figure 5.

(i) M(k) for k ≥ 6 and even can be obtained by a 3-vertex
expansion of M(k − 2) at the vertex y0 if k = 6t + 6,
at y1 if k = 6t + 8, and at y2 if y = 6t + 10.

(ii) M(k) for k ≥ 7 and odd can be obtained by a 3-vertex
expansion of M(k − 2) at the vertex y0 if k = 8t + 7,
at y1 if k = 8t + 9, at y2 if k = 8t + 11, and at y3 if
y = 8t + 13.

(iii) M(k) is 1-Hamiltonian for all k ≥ 4.

Wang et al. [5] presented a new family of 1-
Hamiltonian graphs W(k), as illustrated in Figure 6,
which is constructed from B(i, k) for 0 ≤ i ≤ 2k by join-
ing all zi with a cycle 〈z0, z1, . . . , z2k, z0〉 and adding edges
(xl

2k,k, xr
0,k) and (xl

i,k, xr
i+1,k) for all 0 ≤ i ≤ 2k−1. Let D(k)

denote the graph obtained from B(i, 0) for 0 ≤ i ≤ 2k
by joining all zi and yi with cycles 〈z0, z1, . . . , z2k, z0〉 and
〈y0, y1, . . . , y2k, y0〉, respectively. It can be easily verified
that D(k) is 1-Hamiltonian. The following theorem can
also be easily verified:

Theorem 4. Let k ≥ 1 be an integer.

(i) W(k) can be generated by performing k 3-vertex ex-
pansions at yi in D(k) for 0 ≤ i ≤ 2k.

(ii) W(k) is 1-Hamiltonian.

Hung et al. [3] proposed a family of 1-Hamiltonian
graphs, called a Christmas tree, denoted by CT(k). In
their construction, they, indeed, employed 3-vertex ex-

FIG. 5. The graphs M(k).
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FIG. 6. The graph W(2).

pansions. Let r be an arbitrary vertex in K4. The graphs
CT(k) are defined as follows: CT(1) = K4; for k ≥
2, CT(k) is recursively constructed by performing a 3-
vertex expansion in CT(k − 1) on every vertex which is
at the distance of k − 1 from the vertex r. We illustrate
an example of CT(3) in Figure 7. By this construction,
CT(k) is obviously 1-Hamiltonian.

2.3. (3,4)-Join

To construct the graphs H(k) proposed in [1,2] for k
odd, we introduce a variation of 3-join, called (3,4)-join,
which is performed at a vertex of degree 3 in one graph
and a vertex of degree 4 in another graph.

Definition 3. Let x be a vertex of degree 3 in G1 and
y be a vertex of degree 4 in G2. Let N(x) = {x1, x2, x3}
and N(y) = {y1, y2, y3, y4}. The (3,4)-join of G1 and G2

is defined as the graph K such that

V(K) = (V(G1) − {x}) ∪ (V(G2) − {y}) and

E(K) = (E(G1) − {(x, xi)|1 ≤ i ≤ 3})

∪ (E(G2) − {(y, yi)|1 ≤ i ≤ 4})

∪ {(xi, yi)|1 ≤ i ≤ 3} ∪ {(x3, y4)}.

FIG. 7. The Christmas tree CT(3).

We call a graph K a (3,4)-join of G1 and G2 if K is a
(3,4)-join at some vertex x of degree 3 in G1 and some
vertex y of degree 4 in G2 with some specific N(x) and
N(y). Similar to the 3-join operation, each (3,4)-join of
G1 and G2 is uniquely defined by N(x) and N(y).

Since we are interested in 1-Hamiltonian graphs, we
restrict our discussion on (3,4)-join to particular graphs,
where (i) G1 and G2 are 1-Hamiltonian, (ii) G1 has one
vertex x of degree 3, and (iii) G2 has one vertex y of
degree 4. Note that not all N(x) and N(y) can induce 1-
Hamiltonian graphs by using (3,4)-join on G1 and G2.
For example, Figure 8(a) and (b) illustrates two (3,4)-
joins of G1 = K4 and G2 = H(5) with different N(x)
and N(y). Given N(x) = {x1, x2, x3} in G1, N(y) of G2

in Figure 8(a) and (b) are given by {y1, y2, y3, y4} and
{y1, y3, y2, y4}, respectively. It can be observed that the
graph in Figure 8(a) is 1-Hamiltonian, but the one in Fig-
ure 8(b) is not 1-Hamiltonian since it is not Hamiltonian
when deleting the vertex x3 from the graph. The ordering
of N(x) and N(y) plays an important role in determining
the 1-Hamiltonicity of the resulting (3,4)-join.

It is interesting to find sufficient conditions of
N(x), N(y), G1, and G2 for the resulting (3,4)-join to
have a Hamiltonian property. For example, let N(x) =
{x1, x2, x3} and N(y) = {y1, y2, y3, y4}. If G1 and G2 have
a Hamiltonian cycle containing the edges (x, xi), (x, xj)
and (y, yi), (y, yj), respectively, with i, j ∈ {1, 2, 3} and
i ≠ j, then the resulting (3,4)-join is also Hamiltonian.
In the following theorem, we give a sufficient condition
of N(x), N(y), G1, and G2 for the resulting (3,4)-join to
be 1-Hamiltonian.

Theorem 5. Let G1 and G2 be two 1-Hamiltonian
graphs, where G1 has a vertex x of degree 3 with
N(x) = {x1, x2, x3} and G2 has a vertex y of degree 4
with N(y) = {y1, y2, y3, y4}. Let f1 ∈ V(G1) ∪ E(G1) and
f2 ∈ V(G2) ∪ E(G2) with f1 ≠ x and f2 ≠ y. Suppose
that G1, G2, N(x), and N(y) satisfy the following condi-
tions:

FIG. 8. Examples of (3,4)-joins of graphs K4 and H(5), where the
graph in (a) is 1-Hamiltonian and the one in (b) is not.

NETWORKS–2000 237



(A1) For every Hamiltonian cycle in G1 − f1 without con-
taining an edge (x, xi) with i ∈ {1, 2}, there is a
Hamiltonian cycle in G2 − (y, yi) containing the edge
(y, y3−i);

(A2) For every Hamiltonian cycle in G1 − f1 without con-
taining the edge (x, x3), there is a Hamiltonian cycle
in G2 containing the edges (y, y1) and (y, y2);

(A3) For every Hamiltonian cycle in G2 −f2 containing the
edges (y, y3) and (y, y4) with f2 /∈ {y1, y2}, there is a
Hamiltonian path in G2 − f2 from y1 to y2 containing
(y, y3) and (y, y4);

(A4) There is a Hamiltonian cycle of G2 − yi containing
the edge (y, y3−i) for i ∈ {1, 2}.

Let K be the (3,4)-join of G1 and G2 at x and y with the
given N(x) and N(y). Then, K is a 1-Hamiltonian graph.

Proof. Let f be any fault, vertex or edge of K. We
distinguish the following cases of f:

Case 1. f ∈ (V(G1)−{x})∪(E(G1)−{(x, xi)|1 ≤ i ≤ 3}).

Since G1 is 1-Hamiltonian and x is of degree 3, there
is a Hamiltonian cycle H1 in G1 − f without containing
an edge (x, xi), where i ∈ {1, 2, 3}.

Consider i ∈ {1, 2}. Then, H1 can be written as
H1 = 〈x, x3 → P1 → x3−i, x〉, where P1 is a path in G1.
By (A1), there is a Hamiltonian cycle H2 in G2 − (y, yi)
containing the edge (y, y3−i) which can be written as
H2 = 〈y, y3−i → P2 → yj, y〉, where j ∈ {3, 4} and P2 is a
path in G2. Then, 〈x3−i, y3−i → P2 → yj, x3 → P1 → x3−i〉
is a Hamiltonian of K − f.

Consider i = 3. Then, H1 can be written as H1 =
〈x, x2 → P1 → x1, x〉, where P1 is a path in G1. By (A2),
there is a Hamiltonian cycle H2 in G2 containing the
edges (y, y1) and (y, y2) which can be written as H2 =
〈y, y1 → P2 → y2, y〉, where P2 is a path in G2. Thus,
〈x1, y1 → P2 → y2, x2 → P1 → x1〉 is a Hamiltonian cycle
of K − f.

Case 2. f ∈ (V(G2)−{y})∪(E(G2)−{(y, yi)|1 ≤ i ≤ 4}).

Consider f /∈ {y1, y2}. Let H2 be a Hamiltonian cycle
in G2 − f. We first assume that H2 contains both (y, y3)
and (y, y4). By (A3), there is a Hamiltonian path P2 in
G2 − f from y1 to y2 containing (y, y3) and (y, y4). Since
G1 is 1-Hamiltonian, there is a Hamiltonian cycle H1 of
G1 − x3 which can be written as 〈x, x2 → P1 → x1, x〉,
where P1 is a path of G1 − x3. Let P3 denote the path
obtained from P2 by replacing the edges (y, y3) and (y, y4)
with (x3, y3) and (x3, y4). Then, 〈y1 → P3 → y2, x2 →
P1 → x1, y1〉 is a Hamiltonian cycle of K − f. Assume
that H2 contains at most one of (y, y3) and (y, y4). Since
y is of degree 4, H2 contains at least one of (y, y1) and
(y, y2). If H2 contains both (y, y1) and (y, y2), then let H1

be a Hamiltonian cycle of G1 − (x, x3). If H2 contains
(y, yi) for i = 1 or 2, then let H1 be a Hamiltonian cycle

of G1 − (x, x3−i). Using similar arguments in Case 1, we
can find a Hamiltonian cycle in K − f.

Consider f ∈ {y1, y2}. By (A4), there is a Hamiltonian
cycle in G2 − yi containing the edge (y, y3−i), where i ∈
{1, 2}. In other words, this Hamiltonian cycle contains
either (y, y3) or (y, y4). Similar to the above-mentioned
case, we can find a Hamiltonian cycle in K − f.

Case 3. f ∈ {(xi, yi)|1 ≤ i ≤ 3} ∪ {(x3, y4)}.

Consider f = (x1, y1) or (x2, y2). Let H1 be a Hamil-
tonian cycle of G1 − (x, xi) with i ∈ {1, 2} which can be
written as H1 = 〈x, x3−i → P1 → x3, x〉, where P1 is a
path in G1. By (A1), there is a Hamiltonian cycle H2 of
G2−(y, yi) containing the edge (y, y3−i) which is given by
H2 = 〈y, yj → P2 → y3−i, y〉, where j ∈ {3, 4} and P2 is
a path in G2. Then, 〈x3, yj → P2 → y3−i, x3−i → P1 → x3〉
is a Hamiltonian cycle of K − f.

Consider f = (x3, y3) or (x3, y4). Let H1 be a Hamil-
tonian cycle of G1 − (x, x3) which can be written as
H1 = 〈x, x2 → P1 → x1, x〉, where P1 is a path in G1.
By (A2), there is a Hamiltonian cycle H2 in G2 con-
taining the edges (y, y1) and (y, y2) which is given by
H2 = 〈y, y1 → P2 → y2, y〉, where P2 is a path in G2.
Then, 〈x1, y1 → P2 → y2, x2 → P1 → x1〉 is a Hamilto-
nian cycle of K − f.

Hence, this theorem follows.

However, it is, in general, difficult to verify whether
G1 and G2 satisfy the conditions (A1), (A2), (A3), and
(A4). Nonetheless, some specific graphs can be easily
verified to satisfy these conditions. An example is shown
in the proof of the following theorem which states the
construction of H(k) for k ≥ 5 and odd as proposed in
[1,2]:

Theorem 6. Let {x, x1, x2, x3} be the vertex set of K4.
Let H(5) be given as shown in Figure 3. Then, H(k) for
k ≥ 7 and odd can be obtained by a (3,4)-join at the
vertex x in K4 and the vertex 0 in H(k−2). Furthermore,
H(k) is 1-Hamiltonian.

Proof. Although the ordering of N(x) in K4 can be
arbitrary, we arbitrarily define N(x) = {x1, x2, x3}. Let
N(0) in H(5) be given by N(0) = {1, 2, 3, 4}. By per-
forming a (3,4)-join on K4 and H(5) at the vertices x and
0, we obtain a graph which is isomorphic to H(7) by re-
labeling x3 with 0, x1 with 1, x2 with 2, and i with i + 2
for 1 ≤ i ≤ 4.

Suppose that H(l) is a (3,4)-join on K4 and H(l−2) for
l ≥ 7. Let N(0) in H(l) be given by N(0) = {1, 2, l−2, l−
1}. Similarly, by performing a (3,4)-join on the vertex x
in K4 and the vertex 0 in H(l), we obtain a graph which
is isomorphic to H(l + 2) by relabeling x3 with 0, x1

with 1, x2 with 2, and i with i + 2 for all 1 ≤ i ≤
l − 1. Hence, H(k) can be obtained from K4 and H(k −
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2) by performing a (3,4)-join on the vertex x and the
vertex 0.

It can be verified that H(5) is 1-Hamiltonian. To prove
that H(k) for k ≥ 7 is 1-Hamiltonian, we need to show
that (A1), (A2), (A3), and (A4) are satisfied. To this end,
let f1 ∈ {x1, x2, x3} ∪ E(K4), f2 ∈ (V(H(k)) − {0}) ∪
E(H(k)), and N(0) = {1, 2, k − 2, k − 1} in H(k). To show
that conditions (A1) and (A2) are satisfied, we need to
construct a Hamiltonian cycle in H(k)− (0, 1) containing
the edge (0, 2), a Hamiltonian cycle in H(k) − (0, 2) con-
taining the edge (0, 1), and a Hamiltonian cycle in H(k)
containing the two edges (0, 1) and (0, 2).

The desired Hamiltonian cycle in H(k) − (0, 1) can be
constructed as follows:

〈1, 3, 4, 6, 5, 7, 8, . . . , k − 3, k − 1, k − 2, 0, 2, 1〉
if (k − 1)/2 is odd,

〈1, 3, 4, 6, 5, 7, 8, . . . , k − 4, k − 2, k − 1, 0, 2, 1〉
if (k − 1)/2 is even.

Also, the desired Hamiltonian cycle in H(k) − (0, 2) can
be constructed as follows:

〈1, 2, 4, 3, 5, 6, . . . , k − 4, k − 2, k − 1, 0, 1〉
if (k − 1)/2 is odd,

〈1, 2, 4, 3, 5, 6, . . . , k − 3, k − 1, k − 2, 0, 1〉
if (k − 1)/2 is even.

Furthermore, we can construct a Hamiltonian cycle in
H(k) as follows:

〈0, 1, 3, . . . , k − 2, k − 1, k − 3, . . . , 2, 0〉,
which contains the two edges (0, 1) and (0, 2). Therefore,
(A1) and (A2) are satisfied.

Let H be any Hamiltonian cycle in H(k) − f2 for
f2 ∈ (V(H(k))−{0, 1, 2})∪E(H(k)) containing the edges
(0, k − 2) and (0, k − 1). Since the vertices 1 and 2 are
of degree 3, H contains 〈3, 1, 2, 4〉 as a subpath. Then,
H − (1, 2) is the desired Hamiltonian path in H(k) − f2

containing the edges (0, k − 2) and (0, k − 1). It follows
that (A3) is satisfied.

To satisfy (A4), we construct a Hamiltonian cycle of
H(k) − 1 containing (0, 2) as follows:

〈3, 5, 6, 8, 7, . . . , k − 2, k − 1, 0, 2, 4, 3〉
if (k − 1)/2 is odd,

〈3, 5, 6, 8, 7, . . . , k − 3, k − 1, k − 2, 0, 2, 4, 3〉
if (k − 1)/2 is even,

and the desired Hamiltonian cycle of H(k)−2 containing
(0, 1) is

〈4, 6, 5, 7, 8, . . . , k − 3, k − 1, k − 2, 0, 1, 3, 4〉
if (k − 1)/2 is odd,

〈4, 6, 5, 7, 8, . . . , k − 4, k − 2, k − 1, 0, 1, 3, 4〉
if (k − 1)/2 is even.

It follows that (A4) is satisfied.

Therefore, H(k) is 1-Hamiltonian following from re-
cursively applying Theorem 5.

Theorem 6 states that H(k) for k ≥ 7 and odd pro-
posed by Harary and Hayes [1,2] can be obtained from
a (3,4)-join of K4 and H(k − 2).

3. CYCLE EXTENSION

Let G be a graph and C = 〈x0, x1, . . . , xk−1, x0〉 be a
cycle of G, where k ≥ 3 is an arbitrary integer. We
introduce an operation called cycle extension which in-
cludes two aspects: First, augment G by replacing each
edge in C with a path of odd length and, second, add a
new cycle to the augmented graph in a specific manner.
To be specific, we define cycle extension as follows:

Definition 4. The cycle extension of G around C is a
graph denoted by ExtC(G) and given as follows:

V(ExtC(G)) =
⋃

0≤i≤k−1

{pi,j, qi,j|∀1 ≤ j ≤ li} ∪ V(G),

and

E(ExtC(G)) = (E(G) − E(C))

∪
⋃

0≤i≤k−1

{(pi,j, qi,j)|∀1 ≤ j ≤ li}

∪
⋃

0≤i≤k−1

[{(xi, pi,1), (pi,li , xi+1)}

∪ {(pi,j, pi,j+1)|∀1 ≤ j ≤ li − 1}]

∪
⋃

0≤i≤k−1

[{(qi,j, qi,j+1)|∀1 ≤ j ≤ li − 1}

∪ {(qi,li , qi+1,1)}],

where li is even for all i.

We call the cycle induced by the vertices ∪0≤i≤k−1

{qi,j|∀1 ≤ j ≤ li} the extended cycle of C, denoted
by OC. An example of ExtC(G) is illustrated in Figure
9, where C is represented by darkened edges, and OC,
by dashed edges. Throughout this section, we adopt the
following notion:

FIG. 9. An example of ExtC(G).
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• C = 〈x0, x1, . . . , xk−1, x0〉,
• li: an even integer which is the number of vertices in

ExtC(G) added between xi and xi+1,
• pi,j: a vertex in ExtC(G) added between xi and xi+1,

and
• qi,j: the vertex in ExtC(G) that is adjacent to pi,j.

Many known families of 1-Hamiltonian graphs are
trivalent graphs. It can be easily verified that if G is a
trivalent graph then ExtC(G) is also a trivalent graph.
Since we are interested in constructing 1-Hamiltonian
graphs, we focus our discussion of cycle extensions on
trivalent graphs only. Henceforth, we suppose that G is
trivalent in the following discussion of cycle extensions.

In the following discussion, we use zi to denote the
unique neighbor of xi that is not in C. The addition and
subtraction involved in the subscript or index of a vertex
in a cycle is taken modulo k, where k denotes the length
of the cycle or k is clear from context without ambigu-
ity. For example, (xi, xi+1) for i = k − 1 in C is simply
(xk−1, x0), and (qi−1,li−1 , qi,1) in OC for i = 0 is simply
(qk−1,lk−1 , q0,1).

Let H be a cycle of G. We use H∗
C to denote the cycle

in ExtC(G) obtained from H by replacing all (xj, xj+1)
in E(H) ∩ E(C) with 〈xj, pj,1, pj,2, . . . , pj,lj , xj+1〉. We
use ΩH to denote the cycle obtained from OC by replac-
ing every 〈qi,1, qi,2, qi,3, . . . , qi,li 〉 with 〈qi,1, pi,1, pi,2, qi,2,
qi,3, pi,3, . . . , pi,li , qi,li 〉 if 〈pi,1, pi,2, . . . , pi,li 〉 is not a sub-
path in H∗

C . In what follows, we introduce six operations
M1(H, e, j), M2(H, e), and Mi(H, x) for 3 ≤ i ≤ 6 that
augment the cycle H of G to a cycle of ExtC(G) with re-
spect to some edge e = (xi, xi+1) or vertex x = xi or x =
xi+1 in C and a specific j. We use M1(H, e, j), M2(H, e),
and Mi(H, x) to mean the operation and the correspond-
ing cycle interchangeably.

For ease of exposition, we define

Ωqi = 〈qi,1, pi,1, pi,2, qi,2, qi,3, pi,3, . . . , pi,li , qi,li 〉 and

Ωpi = 〈pi,1, qi,1, qi,2, pi,2, pi,3, qi,3 · · · , qi,li , pi,li 〉,
which will be used in the definitions of operations
M2, M3, M4, M5, and M6. To be specific, the six oper-
ations are defined as follows:

Operation MMM1. Given a cycle H of G which contains
the edge e, we define an operation M1(H, e, j) to con-

FIG. 10. Illustration for operation M1.

FIG. 11. Illustration for operation M2.

struct a cycle in ExtC(G) − {(pi,j, pi,j+1), (qi,j, qi,j+1)} for
some 1 ≤ j ≤ li − 1.

Let Q be the path ΩH − (qi,j, qi,j+1) and P be the path
H∗

C − (pi,j, pi,j+1). We define

M1(H, e, j) = 〈pi,j → P → pi,j+1, qi,j+1 → Q → qi,j, pi,j〉,
as illustrated in Figure 10.

Operation MMM2. Given that zi and zi+1 are adjacent in
G and given a Hamiltonian cycle H of G contain-
ing 〈xi−1, xi, xi+1, xi+2〉 as a subpath, we define an op-
eration M2(H, e) to construct a Hamiltonian cycle of
ExtC(G) − {(qi−1,li−1 , qi,1), (qi,li , qi+1,1)}.

Let yi be the unique neighbor of zi different from xi

and zi+1, and yi+1 be the unique neighbor of zi+1 differ-
ent from xi+1 and zi. Since G is trivalent and H con-
tains 〈xi−1, xi, xi+1, xi+2〉 as a subpath, 〈yi, zi, zi+1, yi+1〉
is a subpath of H in G. Moreover, ΩH contains
〈qi−1,li−1 , qi,1, . . . , qi,li , qi+1,1〉 as a subpath and H∗

C contains
〈pi−1,li−1 , xi, pi,1, pi,2, . . . , pi,li , xi+1, pi+1,1〉 as a subpath.
Hence, we can obtain a path P from H∗

C by replacing
〈pi−1,li−1 , xi, pi,1, pi,2, . . . , pi,li , xi+1, pi+1,1〉 with 〈xi, pi,1 →
Ωpi → pi,li , xi+1〉 and replacing (zi, zi+1) with (zi, xi) and
(zi+1, xi+1). Deleting 〈qi−1,li−1 , qi,1, . . . , qi,li , qi+1,1〉 from
ΩH yields a path Q. Then, we define

M2(H, e)

= 〈pi−1,li−1 , qi−1,li−1 → Q → qi+1,1, pi+1,1 → P → pi−1,li−1 〉,
as illustrated in Figure 11.

FIG. 12. Illustration for operations M3 and M4.
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Operations MMM3 and MMM4. Given a Hamiltonian cycle H
of G − xi+1, we define an operation M3(H, xi+1) to con-
struct a Hamiltonian cycle of ExtC(G) − pi,j with j odd
and an operation M4(H, xi+1) to construct a Hamiltonian
cycle of ExtC(G) − qi,j with j even.

Since xi+1 is not in H, H contains 〈xi−1, xi, zi〉 and
〈xi+3, xi+2, zi+2〉 as subpaths. See Figure 12(a) for an il-
lustration. Moreover, 〈qi,1 → Ωqi → qi,li , qi+1,1 → Ωqi+1 →
qi+1,li+1 〉 is a subpath of ΩH. Let Q = ΩH − 〈qi,1 → Ωqi →
qi,li , qi+1,1 → Ωqi+1 → qi+1,li+1 , qi+2,1〉, which is a path
from qi+2,1 to qi,1. Let P = H∗

C − (xi+2, pi+2,1), which
is a path from xi+2 to pi+2,1. Then, we define

M3(H, e) = 〈pi+2,1, qi+2,1 → Q → qi,1, pi,1, pi,2, qi,2, . . . ,

pi,j−1, qi,j−1, qi,j, qi,j+1, pi,j+1, pi,j+2,

qi,j+2, . . . , qi,li , pi,li , xi+1, pi+1,1 → Ωpi+1 →
pi+1,li+1 , xi+2 → P → pi+2,1〉,

M4(H, e) = 〈pi+2,1, qi+2,1 → Q → qi,1, pi,1, pi,2, qi,2, . . . ,

qi,j−1, pi,j−1, pi,j, pi,j+1, qi,j+1, qi,j+2,

pi,j+2, . . . , pi,li , xi+1, pi+1,1 → Ωpi+1 →
pi+1,li+1 , xi+2 → P → pi+2,1〉,

as illustrated in Figure 12(b) and (c).

Operations MMM5 and MMM6. Given a Hamiltonian cycle H
of G − xi, as illustrated in Figure 13(a), we define an
operation M5(H, xi) to construct a Hamiltonian cycle of
ExtC(G) − pi,j with j even and an operation M6(H, xi) to
construct a Hamiltonian cycle of ExtC(G) − qi,j with j
odd.

Let Q = ΩH − 〈qi−2,li−2 , qi−1,1 → Ωqi−1 → qi−1,li−1 ,
qi,1 → Ωqi → qi,li 〉, which is a path from qi,li to qi−2,li−2 .
Let P = H∗

C −(xi−1, pi−2,li−2 ), which is a path from pi−2,li−2

to xi−1. We define

M5(H, x) = 〈xi−1, pi−1,1 → Ωpi−1 → pi−1,li−1 , xi, pi,1, qi,1,

qi,2, pi,2, pi,3, . . . , pi,j−1, qi,j−1, qi,j, qi,j+1,

pi,j+1, pi,j+2, qi,j+2, . . . , qi,li → Q → qi−2,li−2 ,

pi−2,li−2 → P → xi−1〉,
M6(H, x) = 〈xi−1, pi−1,1 → Ωpi−1 → pi−1,li−1 , xi, pi,1,

qi,1, qi,2, pi,2, pi,3, . . . , qi,j−1, pi,j−1, pi,j, pi,j+1,

qi,j+1, qi,j+2, pi,j+2, . . . , qi,li → Q → qi−2,li−2 ,

pi−2,li−2 → P → xi−1〉,

as illustrated in Figure 13(b) and (c).
These six operations are used in the proofs of the

following lemmas and theorems:

Lemma 1. Let G be a trivalent 1-vertex-Hamiltonian
graph and C = 〈x0, x1, . . . , xk−1, x0〉 be a cycle of G. Then,
ExtC(G) is trivalent 1-vertex-Hamiltonian.

Proof. Consider f ∈ V(G) − V(C). Since G is triva-
lent 1-vertex-Hamiltonian, there is a Hamiltonian cycle

H of G − f such that at least an edge in C, say (xi, xi+1),
is in H. Therefore, M1(H, (xi, xi+1), j), 1 ≤ j ≤ li − 1,
forms a Hamiltonian cycle of ExtC(G) − f.

Consider f = xi for 0 ≤ i ≤ k−1. Since G is trivalent
and k ≥ 3, two vertices xi−1 and xi+1 in C have degree 2
in G−f. It follows that we can always find a Hamiltonian
cycle H of G − f such that H contains an edge in C, say
(xj, xj+1), for j ≠ i−1, i. On the other hand, ΩH contains
the subpath 〈qi−2,li−2 , qi−1,1 → Ωqi−1 → qi−1,li−1 , qi,1 →
Ωqi → qi,li , qi+1,1〉 which does not contain the vertex
xi. Therefore, M1(H, (xj, xj+1), j′), 1 ≤ j′ ≤ lj − 1, is
a Hamiltonian cycle of ExtC(G) − f.

Consider f ∈ {pi,j, pi,j′ , qi,j, qi,j′ } for some 1 ≤
j, j′ ≤ li with j odd and j′ even. Since G is 1-vertex-
Hamiltonian, there are Hamiltonian cycles H1 and H2 of
G − xi+1 and G − xi, respectively. It follows that the
operations M3(H1, xi+1), M4(H1, xi+1), M5(H2, xi), and
M6(H2, xi) can be applied and they are, indeed, Hamilto-
nian cycles of ExtC(G) − pi,j, ExtC(G) − qi,j′ , ExtC(G) −
pi,j′ , and ExtC(G) − qi,j, respectively. Hence, the lemma
follows.

Lemma 2. Let G be a trivalent 1-edge-Hamiltonian
graph and C = 〈x0, x1, . . . , xk−1, x0〉 be a cycle of G. If
f ∈ E(ExtC(G))−∪0≤i≤k−1{(qi,li , qi+1,1)}, then ExtC(G)−
f is Hamiltonian.

Proof. Consider that f is an edge in E(G) − E(C).
Since G is trivalent 1-edge-Hamiltonian, there is a
Hamiltonian cycle H of G − f such that H contains at
least an edge in C, say (xi, xi+1), with 0 ≤ i ≤ k − 1. It
follows that M1(H, (xi, xi+1), j) with 1 ≤ j ≤ li−1 can be
applied and yields a Hamiltonian cycle of ExtC(G) − f.

Consider f = (xi, pi,1) or (pi,li , xi+1) for some 0 ≤
i ≤ k − 1. Since G is 1-edge-Hamiltonian, there is
a Hamiltonian cycle H of G − (xi, xi+1). It follows
from the trivalence of G that H contains (xi−1, xi) and
(xi+1, xi+2). Furthermore, ΩH contains 〈qi−1,li−1 , qi,1 →
Ωqi → qi,li , qi+1,1〉 as a subpath. On the other hand, both
subpaths 〈xi−1, xi, zi〉 and 〈zi+1, xi+1, xi+2〉 are in H. Then,
we can apply the operation M1 on (xi−1, xi) and j for

FIG. 13. Illustration for Operations M5 and M6.
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1 ≤ j ≤ li−1 −1. It follows that M1(H, (xi−1, xi), j) forms
a Hamiltonian cycle of ExtC(G) − {(xi, pi,1), (pi,li , xi+1)}.

Consider f = (pi,j, pi,j+1) or (qi,j, qi,j+1) for some
0 ≤ i ≤ k − 1 and some 1 ≤ j ≤ li − 1. Let
H be a Hamiltonian cycle of G − (xi−1, xi). It fol-
lows that (xi, xi+1) is in H. Therefore, M1(H, (xi, xi+1), j)
with 1 ≤ j ≤ li − 1 forms a Hamiltonian cycle of
ExtC(G) − {(pi,j, pi,j+1), (qi,j, qi,j+1)}.

Consider f = (pi,j, qi,j) for some 0 ≤ i ≤ k −
1 and some 1 ≤ j ≤ li. Let H be a Hamil-
tonian cycle of G − (xi−1, xi). It follows that both
(xi, xi+1) and (xi−2, xi−1) are in H. Moreover, H∗

C con-
tains 〈xi, pi,1, pi,2, . . . , pi,li , xi+1〉 as a subpath and ΩH

contains 〈qi−1,li−1 , qi,1, qi,2, . . . , qi,li , qi+1,1〉 as a subpath.
Hence, M1(H, (xi−2, xi−1), j′) for 1 ≤ j′ ≤ li−2 − 1 forms
a Hamiltonian cycle of ExtC(G) − (pi,j, qi,j). The lemma
is proved.

One may ask whether ExtC(G) is 1-Hamiltonian if
G is trivalent 1-Hamiltonian. The answer is no and
it can be verified by a counterexample shown in Fig-
ure 14. The graphs shown in Figure 14, proposed by
Wang et al. [6], are called eye networks and denoted
by Eye(n) for n ≥ 1. The graph Eye(1) shown in Fig-
ure 14 is a trivalent 1-Hamiltonian graph. Let O1 be
the cycle indicated by darken edges in Eye(1) as shown
in Figure 14. Note that Eye(2) = ExtO1 (Eye(1)). Al-
though Eye(1) is trivalent 1-Hamiltonian, Eye(2) is not
1-Hamiltonian since we cannot find a Hamiltonian cy-
cle in Eye(2) − ((2, 0), (2, 3)), Eye(2) − ((2, 6), (2, 9)), and
Eye(2) − ((2, 12), (2, 15)).

Although that G is trivalent 1-Hamiltonian does not
imply that ExtC(G) is 1-Hamiltonian, we are interested
in finding a sufficient condition on cycle C for ExtC(G) to
be 1-Hamiltonian. To this end, we define the recoverable
set R(C) of cycle C as follows:

R(C) = {(xi, xi+1)|〈xi−1, xi, xi+1, xi+2〉 is a subpath of

some Hamiltonian cycle of G and (zi, zi+1)

is an edge in G for 0 ≤ i ≤ k − 1}.

FIG. 14. Eye networks.

FIG. 15. The cycle 〈x0, x1, x2, x3, x0〉 is recoverable with respect to
the graph G.

The definition of R(C), indeed, arises from the given
condition for the operation M2 to be applicable. A cycle
C of G is said to be recoverable with respect to G if
no two edges of E(C) − R(C) are adjacent. For example,
the cycle C = 〈x0, x1, x2, x3, x0〉 shown in Figure 15 is
recoverable with respect to G since {(x0, x1), (x2, x3)} is
the recoverable set of C.

Theorem 7. Let G be a trivalent 1-Hamiltonian graph
and C = 〈x0, x1, . . . , xk−1, x0〉 be recoverable with respect
to G. Then, ExtC(G) is trivalent 1-Hamiltonian.

Proof. It follows from Lemma 1 that ExtC(G) is
a 1-vertex-Hamiltonian graph. Furthermore, it follows
from Lemma 2 that ExtC(G) − f is Hamiltonian for
f ∈ E(ExtC(G)) − ∪0≤i≤k−1{(qi,li , qi+1,1)}. Now, it suf-
fices to show that ExtC(G) − f is Hamiltonian for f ∈
∪0≤i≤k−1{(qi,li , qi+1,1)}. Equivalently, we will construct a
Hamiltonian cycle in ExtC(G) without using (qi,li , qi+1,1)
for 0 ≤ i ≤ k − 1.

Since C is recoverable with respect to G, it follows
that R(C) ≠ � and we have either (xi, xi+1) ∈ R(C)
or (xi, xi+1) /∈ R(C). For (xj, xj+1) ∈ R(C), we use
Hj to denote a Hamiltonian cycle of G such that Hj

contains 〈xj−1, xj, xj+1, xj+2〉 as a subpath. First, con-
sider (xi, xi+1) ∈ R(C). Then, the operation M2 can
be applied and M2(Hi, (xi, xi+1)) is a Hamiltonian cy-
cle of ExtC(G) − {(qi−1,li−1 , qi,1), (qi,li , qi+1,1)}. Next, con-
sider (xi, xi+1) /∈ R(C). Since any two edges in E(C) −
R(C) are not adjacent, it follows that (xi+1, xi+2) is
in R(C). Then, M2(Hi+1, (xi+1, xi+2)) forms a Hamilto-
nian cycle of ExtC(G)−{(qi,li , qi+1,1), (qi+1,li+1 , qi+2,1)} for
(xi+1, xi+2) ∈ R(C). Therefore, when G is 1-Hamiltonian
and C is recoverable with respect to G, ExtC(G) is 1-
edge-Hamiltonian. Thus, the theorem follows.

Although it is, in general, hard to verify whether a
cycle C is recoverable with respect to G, we show that OC

is recoverable with respect to ExtC(G) in the following
lemma:

Lemma 3. Let G be a trivalent graph and C =
〈x0, x1, . . . , xk−1, x0〉 be a cycle of G. If G − (xi, xi+1) is
Hamiltonian for every 0 ≤ i ≤ k − 1, then OC is recov-
erable with respect to ExtC(G).
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Proof. It suffices to show that R(OC) is a collection
of (qi,j, qi,j+1) for all 0 ≤ i ≤ k − 1 and 1 ≤ j ≤ li − 1
since each pi,j is adjacent to pi,j+1 in ExtC(G) but pi,li is
not adjacent to pi+1,1.

Let H be a Hamiltonian cycle of G − (xi−1, xi).
Since G is trivalent, both (xi−2, xi−1) and (xi, xi+1) are
in H. It follows that ΩH contains 〈qi−3,li−3 , qi−2,1,
qi−2,2, . . . , qi−2,li−2 , qi−1,1〉 and 〈qi−1,li−1 , qi,1, qi,2, . . . , qi,li ,
qi+1,1〉 as subpaths. Consequently, the Hamiltonian cycle
M1(H, (xi−2, xi−1), j′), 1 ≤ j′ ≤ li−2 − 1, of ExtC(G) con-
tains 〈qi−1,li−1 , qi,1, qi,2, . . . , qi,li , qi+1,1〉 as a subpath and,
furthermore, (qi,j, qi,j+1) satisfies the definition of recov-
erable set R(OC). Since (xi−1, xi) is an arbitrary edge and
(qi,li , qi+1,1) and (qi′,li′ , qi′+1,1) are not adjacent for i ≠
i′, R(OC) is a collection of (qi,j, qi,j+1) for all 0 ≤ i ≤ k−1
and 1 ≤ j ≤ li −1 and, moreover, OC is recoverable with
respect to ExtC(G). Hence, the lemma is proved.

The cycle extension operation can be recursively per-
formed: Let Ext0

C(G) = G, O0
C = C, Ext1

C(G) = ExtC(G),
and O1

C = OC. Then, Extn
C(G) for n ≥ 2 can be recur-

sively defined by setting Extn
C(G) = ExtOn−1

C
(Extn−1

C (G))
and On

C being the extended cycle of On−1
C in Extn

C(G).
Now, consider, in particular, Ext2

C(G), which is the cy-
cle extension of ExtC(G) around OC. Given 0 ≤ i ≤ k−1
and 1 ≤ j ≤ li − 1, let li,j and Li denote the number of
vertices added between qi,j and qi,j+1 and between qi,li

and qi+1,1, respectively. These vertices are denoted by
rm

i,j, where 1 ≤ m ≤ li,j or 1 ≤ m ≤ Li. The vertex in
O2

C which is adjacent to rm
i,j is denoted by sm

i,j. Note that
li,j and Li are even. For ease of exposition, let L∗ = li,j

for 1 ≤ j ≤ li − 1 and L∗ = Li for j = li. To be specific,
the graph Ext2

C(G) is given as follows (see Figure 16):

V(Ext2
C(G)) = V(ExtC(G)) ∪

⋃
0≤i≤k−1

⋃
1≤j≤li

{rm
i,j, s

m
i,j|1 ≤ m ≤ L∗} and

E(Ext2
C(G)) = (E(ExtC(G)) − E(OC)) ∪

⋃
0≤i≤k−1

⋃
1≤j≤li

({(rm
i,j, r

m+1
i,j ), (sm

i,j, s
m+1
i,j )|1 ≤ m ≤ L∗ − 1}

∪
⋃

0≤i≤k−1

⋃
1≤j≤li

{(rm
i,j, s

m
i,j)|1 ≤ m ≤ L∗}

∪
⋃

0≤i≤k−1

{(qi,li , r
1
i,li

), (rLi

i,li
, qi+1,1), (sLi

i,li
, s1

i+1,1)}

∪
⋃

0≤i≤k−1

⋃
1≤j≤li−1

{(qi,j, r
1
i,j), (r

li,j
i,j , qi,j+1),

(s
li,j

i,j , s1
i,j+1)}.

Using the similar proof technique in Lemma 3, we
can show the following corollary:

Corollary 3. Let G be a trivalent graph and C =
〈x0, x1, . . . , xk−1, x0〉 be a cycle of G. If G − (xi, xi+1) is
Hamiltonian for all 0 ≤ i ≤ k − 1, then O2

C is recover-
able with respect to Ext2

C(G).

Lemma 4. Let G be a trivalent 1-Hamiltonian graph
and C = 〈x0, x1, x2, . . . , xk−1, x0〉 be a cycle of G. Then,
Ext2

C(G) is trivalent 1-Hamiltonian.

Proof. It follows from Lemma 1 that Ext2
C(G) is 1-

vertex-Hamiltonian. It suffices to show that Ext2
C(G) is

1-edge-Hamiltonian. We divide the edge set of Ext2
C(G)

into four sets:

E1 = E(G) − E(C),

E2 =
⋃

0≤i≤k−1

{(qi,li , r
1
i,li

), (rLi

i,li , qi+1,1), (sLi

i,li , s
1
i+1,1)}

∪
⋃

0≤i≤k−1

⋃
1≤j≤li−1

{(s
li,j

i,j , s1
i,j+1)}

E3 =
⋃

0≤i≤k−1

{(xi, pi,1), (pi,li , xi+1)}

∪
⋃

0≤i≤k−1

⋃
1≤j≤li−1

{(pi,j, pi,j+1), (qi,j, r
1
i,j), (r

li,j

i,j , qi,j+1)|}

∪
⋃

0≤i≤k−1

⋃
1≤j≤li

{(rm
i,j, r

m+1
i,j ), (sm

i,j, s
m+1
i,j )|

1 ≤ m ≤ L∗ − 1}, and

E4 =
⋃

0≤i≤k−1

⋃
1≤j≤li

{(pi,j, qi,j)}

∪
⋃

0≤i≤k−1

⋃
1≤j≤li

{(rm
i,j, s

m
i,j)|1 ≤ m ≤ L∗}.

Consider f ∈ E1. By Lemma 2, there is a Hamiltonian
cycle H in ExtC(G) − f. Since ExtC(G) is trivalent, it
follows that H contains at least an edge e in OC, say e =
(qi,j, qi,j+1), for some 0 ≤ i ≤ k − 1 and 1 ≤ j ≤ li − 1.
Then, M1(H, e, m), 1 ≤ m ≤ li,j − 1, is a Hamiltonian
cycle of Ext2

C(G) − f for f ∈ E1.
Consider f ∈ E2. Since G is 1-Hamiltonian,

there is a Hamiltonian cycle in G − (xi−1, xi). It fol-
lows from the proof of Lemma 3 that we have

FIG. 16. An example of Ext2
C(G).
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a Hamiltonian cycle, say H, in ExtC(G) contain-
ing 〈qi−1,li−1 , qi,1, qi,2, . . . , qi,li−1, qi,li , qi+1,1〉 as a subpath.
Since pi,j is adjacent to pi,j+1 for all 1 ≤ j ≤ li − 1,
we can apply the operation M2 on any (qi,j, qi,j+1).
Hence, M2(H, (qi,j, qi,j+1)) forms a Hamiltonian cycle

in Ext2
C(G) − {(s

li,j−1

i,j−1, s1
i,j), (s

li,j

i,j , s1
i,j+1)}. Observing the

Hamiltonian cycle M2(H, (qi,li−1, qi,li )) which contains
〈s1

i,li
, r1

i,li
, r2

i,li
, . . . , r

Li

i,li
〉 as a subpath, it follows that it is

also a Hamiltonian cycle of Ext2
C(G) − (qi,li , r

1
i,li

). Simi-
larly, we can use a Hamiltonian cycle of G − (xi, xi+1)
to construct a Hamiltonian cycle H′ of ExtC(G) which
contains 〈qi,li , qi+1,1, qi+1,2, . . . , qi+1,li+1 , qi+2,1〉 as a sub-
path. Therefore, M2(H′, (qi+1,1, qi+1,2)) forms a Hamil-
tonian cycle in Ext2

C(G) − {(rLi

i,li
, qi+1,1), (sLi

i,li , s
1
i+1,1)}.

Consider f ∈ E3. We first consider f =
(xi, pi,1) or (pi,li , xi+1). It follows from the proof of
Lemma 2 that there is a Hamiltonian cycle H1 in
ExtC(G) − f. Since ExtC(G) is trivalent, H1 con-
tains at least an edge (qi′,j, qi′,j+1) in OC for some
0 ≤ i′ ≤ k − 1, i ≠ i′, and 1 ≤ j ≤ li′ − 1.
Hence, M1(H1, (qi′,j, qi′,j+1), m) is a Hamiltonian cycle
of Ext2

C(G) − f, where 1 ≤ m ≤ li′,j − 1. Second, we

consider f = (pi,j, pi,j+1), (qi,j, r
1
i,j), or (r

li,j

i,j , qi,j+1). It fol-
lows from the proof of Lemma 2 that there is a Hamil-
tonian cycle H2 in ExtC(G) − {(pi,j, pi,j+1), (qi,j, qi,j+1)}.
Since ExtC(G) is trivalent, H2 contains (qi,j+1, qi,j+2).
Hence, M1(H2, (qi,j+1, qi,j+2), m) is a Hamiltonian cycle

of Ext2
C(G) − {(pi,j, pi,j+1), (qi,j, r

1
i,j), (r

li,j

i,j , qi,j+1)}, where
1 ≤ m ≤ li,j+1 − 1. Finally, we consider f = (rm

i,j, r
m+1
i,j )

or (sm
i,j, s

m+1
i,j ). Similarly, there is a Hamiltonian cycle H3

in ExtC(G) − (qi,j−1, qi,j). Hence, we can apply the oper-
ation M1 on (qi,j, qi,j+1) and m with 1 ≤ m ≤ li,j − 1.
Then, M1(H3, (qi,j, qi,j+1), m) is a Hamiltonian cycle of
Ext2

C(G) − f.
Consider f ∈ E4. Since G is 1-Hamiltonian, there

is a Hamiltonian cycle H of G − (xi−1, xi). Then,
both (xi−2, xi−1) and (xi, xi+1) are in H. Therefore,
H1 = M1(H, (xi−2, xi−1), j) for some 1 ≤ j ≤ li−2 −
1 is a Hamiltonian cycle of ExtC(G), which con-
tains 〈qi−1,li−1 , qi,1, qi,2, . . . , qi,li , qi+1,1〉 as a subpath. We
then can apply the operation M1 again on H1 and
(qi−1,li−1 , qi,1). It follows that M1(H1, (qi−1,li−1 , qi,1), m)
with 1 ≤ m ≤ Li−1 − 1 is a Hamiltonian cycle of
Ext2

C(G) − f.
Therefore, Ext2

C(G) is 1-edge-Hamiltonian, and the
lemma follows.

Theorem 8. Let G be a trivalent 1-Hamiltonian graph
and C = 〈x0, x1, x2, . . . , xk−1, x0〉 be a cycle of G. Then,
Extn

C(G) is trivalent 1-Hamiltonian for n ≥ 2.

Proof. Since G is 1-Hamiltonian, it follows from
Lemma 4 and Corollary 3 that Ext2

C(G) is 1-Hamiltonian
and that O2

C is recoverable with respect to Ext2
C(G). As-

sume that Extk
C(G) is 1-Hamiltonian and Ok

C is recov-
erable with respect to Extk

C(G) for 2 ≤ k ≤ l. Con-

sider Extl+1
C (G) = ExtOl

C
(Extl

C(G)). Then, by Theorem 7,
ExtOl

C
(Extl

C(G)) = Extl+1
C (G) is 1-Hamiltonian. Further-

more, it follows from Lemma 3 that Ol+1
C is recoverable

with respect to Extl+1
C (G), which makes the induction

applicable. Hence, the theorem follows.

Recursively applying cycle extensions, we can con-
struct a family of 1-Hamiltonian graphs from a known
trivalent 1-Hamiltonian graph. In what follows, we dis-
cuss two such families of graphs, namely, eye networks
and extended Petersen graphs. The eye networks pro-
posed by Wang et al. [6] are, indeed, constructed by re-
cursive cycle extensions from Eye(1) as shown in the
next theorem. The 1-Hamiltonicity of Eye(n) is then a
direct consequence of Theorem 8, whereas in [6], the
authors showed the 1-Hamiltonicity of Eye(n) using a
different approach.

Theorem 9.

(i) Eye(n) = Extn−1
O1 (Eye(1)) for n ≥ 2, where O1 be the

outermost cycle of Eye(1) (as shown by the darkened
edges in Fig. 14).

(ii) Eye(n) is 1-Hamiltonian for n ≥ 3.

Proof. It can be easily verified that Eye(2) is ob-
tained by performing a cycle extension on Eye(1) around
O1, that is, Eye(2) = ExtO1 (Eye(1)). Let O2 be the out-
ermost cycle of Eye(2). Note that O2 is also the ex-
tended cycle of O1 in Eye(2). Let On denote the out-
ermost cycle of Eye(n) for n ≥ 1. It can be easily ver-
ified that for n ≥ 3, Eye(n) = ExtOn−1 (Eye(n − 1)) and
On is the extended cycle of ExtOn−1 (Eye(n − 1)). Thus,
Eye(n) = Extn−1

O1
(Eye(1)) for n ≥ 2.

Note that Eye(1) is a 3-join of two K4 and is also
trivalent 1-Hamiltonian. It follows from Theorem 8 that
Extn

O1
(Eye(1)), that is, Eye(n + 1), for n ≥ 2, is 1-

Hamiltonian. Hence, the theorem follows.

By recursively applying cycle extensions, we define
extended Petersen graphs, denoted by EP(n) for n ≥ 0,
as follows:

(i) EP(0) is the Petersen graph shown in Figure 17(a)
with a specific cycle C indicated by the darkened
edges. Define O0

C = C.

FIG. 17. Extended Petersen graphs.
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(ii) Define EP(1) = ExtO0
C
(EP(0)) as shown in Figure

17(b) and O1
C = OC shown by the darkened edges

in this figure.
(iii) For n ≥ 2, define EP(n) = ExtOn−1

C
(EP(n − 1)) and On

C

as the extended cycle of On−1
C in EP(n). Equivalently,

we write EP(n) = Extn
C(EP(0)).

It is known that the Petersen graph is 1-vertex-
Hamiltonian but neither Hamiltonian nor 1-edge-
Hamiltonian. We can use the properties of cycle exten-
sions to show the 1-Hamiltonicity of EP(n) as stated in
the following theorem:

Theorem 10. EP(n) is 1-Hamiltonian for n ≥ 1.

Proof. Since the Petersen graph EP(0) is 1-vertex-
Hamiltonian, it follows from Lemma 1 that EP(1) is also
1-vertex-Hamiltonian. Furthermore, EP(1) is Hamilto-
nian, where a Hamiltonian cycle of EP(1) is illustrated
in Figure 17(c) by the darkened edges. Using proper ro-
tation of EP(1), we can always obtain a Hamiltonian cy-
cle without containing any specific edge. It follows that
EP(1) is 1-edge-Hamiltonian and, thus, 1-Hamiltonian.
It can also be easily verified that O1

C is recoverable with
respect to EP(1). It follows from Theorems 7 and 8 that
EP(n) is 1-Hamiltonian for n ≥ 2.

4. CONCLUDING REMARKS

In this paper, we introduced three construction
schemes, namely, 3-join, (3, 4)-join, and cycle extension,
to construct families of 1-Hamiltonian graphs including
several families already known in the literature and some
new families. It follows from Corollary 1 that trivalent 1-
edge-Hamiltonian graphs are closed under 3-joins. It fol-
lows from Lemma 1 that trivalent 1-vertex-Hamiltonian

graphs are closed under cycle extensions. However, some
families of 1-Hamiltonian graphs can be generated from
performing 3-joins on 1-edge-Hamiltonian graphs and
performing cycle extensions on 1-vertex-Hamiltonian
graphs. For example, the 1-Hamiltonian graph shown in
Figure 2(b) is obtained by performing a sequence of 3-
joins on K4 and K3,3, where K3,3 is 1-edge-Hamiltonian
but not 1-vertex-Hamiltonian. In this paper, 3-joins and
cycle extensions on trivalent graphs were studied, al-
though these operations can be applied to arbitrary
graphs. We wonder whether these operations can be ap-
plied to nontrivalent graphs and still preserve the good
properties of the original graphs. On the other hand, we
want to explore in the future what properties of graphs
can be preserved under these operations.
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