
EVALUATIONS FOR SOFTWARE ENGINEERING PROJECTS 423

Received September 15, 1997; revised May 14, 1998; accepted August 20, 1998.
Communicated by Jieh Hsiang.
1 A CPM/PERT can be either an AOV or an equivalent AOA (Activity On Arc) network. Here, AOV is adapted for

comparison with SPREM.
2 Here, deterministic means that when a process on vertex V is complete, then all of V�s successors will enact the

process individually.

JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 16, 423-446 (2000)

423

Short Paper

A Project Model for Software Development

BIN-SHIANG LIANG, JENN-NAN CHEN* AND FENG-JIAN WANG

Institute of Computer Science and Information Engineering
National Chiao Tung University
Hsinchu, Taiwan 300, R.O.C.

E-mail: fjwang@csie.nctu.edu.tw
*Samar Techtronics Cooperation Ltd.

Taiwan, R.O.C.

Uncertainty and dynamic changes in a software project cause iterations during
development and the need for decision-making in planning and controlling a project.
This paper presents a Software Project Review and Evaluation Model, SPREM, a
superset of CPM/PERT, which extends CPM/PERT�s notation to four types of verti-
ces (AA, AX, XA, and XX vertices) to express the non-deterministic and iterative
behaviors of software engineering projects. Several behavioral properties of SPREM
and analysis of them are discussed. For example, the enaction capability can be used
to evaluate the possibility that a vertex will enact processes beforehand. Project
managers can revise a SPREM graph to rescue dead vertices before project execution.
Furthermore, enaction ordering allows project managers to calculate the dependency
between processes to be enacted. This might help in computing important informa-
tion such as critical paths among these processes.

Keywords: CPM/PERT, software project management, SPREM, software process
modeling, project evaluation

1. INTRODUCTION

The CPM (Critical Path Method)/PERT (Plan Evaluation and Review Technique) net-
work has been applied broadly to project management. It is an acyclic and directed AOV
(Activity On Vertex)1 network able to express sequential, parallel, and synchronous activity
behaviors [3, 20]. However, its deterministic2 and acyclic properties are not suitable for
managing projects consisting of iteratively and decisionally-based procedures [20]. Especially,
it is not suitable for software development, due to the lack of iteration and decision-making
[5, 7, 20, 23]. Many studies have been devoted to extending CPM/PERT to modeling of the
behaviors of projects with a high degree of uncertainty and dynamically changing

BIN-SHIANG LIANG, JENN-NAN CHEN AND FENG-JIAN WANG424

characteristics. These studies can be divided into two categories: one category extends the
different types of CPM/PERT network vertices [9, 10, 12, 27], and the other combines CPM/
PERT with Petri nets [20, 21, 25]. GANs (Generalized Activities Networks) [12] introduces a
simple dichotomous choice at each vertex in order to provide a �decision-box planning and
scheduling� technique for research projects.

GAN, devised in [10], views vertices from input and output logic perspectives.
Unfortunately, these papers seem unclear in their definition [9]. GERT (Graphical Evalua-
tion and Review Technique) is based on ideas introduced in [27] and adds notations con-
cerning Exclusive-OR (XOR) vertices and the probability of OR/XOR vertices existing in
the network. Clearly, this method is restricted by analysis limitations, and its analysis relies
only on simulations. Design/Net [20] combines AND-OR graphs with Petri net notation to
describe and monitor software processes. However, it is acyclic, and little analysis is
provided. [25] combined Beat-distributed stochastic Petri nets with PERT, and [21] com-
bined generalized stochastic Petri nets with PERT for performance evaluation of concur-
rent processes. Both have problems with computational complexity in exploring state spaces
during analysis, and currently must restrict nets to being acyclic to reduce the computa-
tional complexity. In summary, the former category is limited to reliance on simulation [9].
As for the latter, evaluating the performance of Petri nets even with deterministic timing
and firing frequencies per cycle for all state transitions is often an NP-hard problem [29].
Furthermore, this approach seems unsuitable for managing large and complicated projects
because Petri nets use lower-level semantics for comprehension.

This paper presents the Software Project Evaluation and Review Model (SPREM),
a superset of CPM/PERT that extends CPM/PERT�s notation to four types of vertices
(AA, AX, XA, and XX vertices). SPREM can express the various behaviors required to
model software engineering projects. A* (AX and AX) vertices are able to model the syn-
chronization of a process while *A (AA and XA) vertices can model the fork of parallel
processes. X* (XA and XX) vertices are able to model what-if processes while *X (AX
and XX) vertices model decision-making processes. Looping is allowed in SPREM so as
to model iterative processes. With SPREM, managers can model large and complicated
projects using top-down and/or bottom-up approaches since a vertex can be decomposed
into a SPREM graph containing a set of vertices. Also, analysis in SPREM, such as enaction
capability and performance analysis, can be computed with a reasonable cost. Enaction
capability analysis can be used to evaluate the potential of a vertex to enact processes
beforehand. Project managers can revise a SPREM graph to rescue dead vertices before
project execution. In addition, enaction ordering allows project managers to calculate the
dependency between the processes to be enacted. This might help in computing important
information, such as critical paths among these processes.

The rest of this paper is organized as follows. Section 2 defines SPREM and dis-
cusses its enaction behaviors. To demonstrate the modeling ability of SPREM, section 3
presents an example based on the spiral model paradigm [4], widely accepted as a realistic
software development paradigm. The example indicates that with SPREM, it is easier to
model a software project than it is with a Petri net. In section 4, some interesting charac-
teristics of SPREM are defined and discussed. Sections 5 and 6 present the analysis algo-
rithms of SPREM, which are of interest during project planning and are introduced at two
levels, acyclic and cyclic, respectively. Some conclusions and future work are described in
section 7.

EVALUATIONS FOR SOFTWARE ENGINEERING PROJECTS 425

2. A SPREM GRAPH

2.1 Definition of SPREM

A SPREM graph is a Five-tuple <V, A, Sp, Ep, M0>. V = {V1, V2, ..., Vm} is a finite set of
vertices, where m, m ≥ 0, is the number of vertices. There are four types of vertices: AA (AND-
AND), AX (AND-XOR), XA (XOR-AND), and XX (XOR-XOR), where A represents �all�, X
represents �exclusion�, and the first character represents the condition that enacts the ver-
tex process while the second represents what is to be done at the end of the process. Fig. 1
(a-d) shows the notation associated with AA, AX, XA, and XX vertices, respectively.

Fig. 1. The notation associated with four types of vertices in SPREM.

A: V ¥ V = {A1, A2, ..., An} is a finite set of directed arcs, where n, n ≥ 0, is the number
of arcs. Each arc is associated with a Boolean value. Each pair of vertices contains at most
one directed arc. If a vertex contains only an input arc, the vertex is both an A* vertex and an
X* vertex. When a SPREM graph contains only AA vertices and no loops, the graph is a
CPM/PERT network.

Sp, Ep: There is only one entry vertex called Start Project, Sp, and only one exit
vertex called End Project, Ep, in any SPREM graph. To simplify discussion, Sp has no
input, and Ep has no output arcs.

M0: A Æ B is an initial SPREM graph indicating where B is a set of Boolean values.
A vertex is enactable if its precondition holds; i.e., the value of its input arc(s) satis-

fies an �AND� or �XOR� condition. An A* vertex is enactable when all its input arcs are
set to TRUE. An X* vertex is enactable when one of its input arcs is set to TRUE and the
rest are FALSE.

The Boolean values of arcs are assigned initially and then set or reset by its tail or
head during execution. The precondition of all vertices cannot hold at the beginning; i.e.,
only vertex Sp can enact a process at the beginning.

A vertex enacts a process once, including instantiating, running, and then terminating
the process. To simplify discussion, we assume that there is no condition checking, arc
value changing, or time consumption for process instantiation/termination. Every input arc
of an enabled vertex is set to FALSE while the vertex is instantiating a process. A process
starts to run as soon as it is instantiated. A vertex is active when it has a process running.
An enactable vertex cannot enact a new process if it is active; that is, a vertex cannot enact
a new process when it has a process running even though value changes in its input arc(s)
make it enactable. After the running process has been terminated, the vertex enacts a new
process if it is enactable. The values of the vertex output arcs can be treated as contribu-
tions for the termination of processes associated with the vertex. When *A vertex V termi-

BIN-SHIANG LIANG, JENN-NAN CHEN AND FENG-JIAN WANG426

nates its process, it sets all V�s output arcs to TRUE. When *X vertex V terminates its
process, it sets one of V�s output arcs to TRUE and the rest to FALSE, no matter what their
values were previously.

A vertex in a SPREM graph can represent another SPREM graph. For vertex Va rep-
resenting SPREM graph SPa, instantiating for Va means instantiating Sp in SPa. If the pro-
cess in Va runs, this means that the vertices in SPa except for Sp, run processes. The design
of SPa is erroneous, if Ep cannot enact a process. Ep in SPa may enact more than one
process. SPa is considered complete only when no running processes exist in any vertices
of SPa. The process in Va is terminated when SPa finishes (due to enaction).

Obviously, a SPREM graph may allow a vertex to enact more than one process even
though it contains no loop. For example, let X* vertex V contain only two predecessors,
which are enacting two distinct processes pa and pb, where pa terminates earlier than pb.
Assume that the process enacted by V terminates between the termination of pa and pb. V
will enact one new process when process pb is terminated. In other words, V enacts two
processes.

3. AN EXAMPLE OF MODELING A SPIRAL MODEL

To demonstrate the modeling ability of SPREM, an example based on the spiral model
paradigm [4] is presented in this section. This paradigm for software engineering is one
realistic approach to the development of large-scale software systems [26]. The paradigm
defines four major phases to be iterated evolutionarily during each development cycle: (1)
planning - determination of objectives, alternatives, and constraints, (2) risk analysis -
analysis of alternatives and identification/resolution of risks, (3) engineering - develop-
ment of the �next-level� product, and (4) customer evaluation - assessment of the results of
engineering. Obviously, the CPM/PERT technique fails to model this paradigm naturally.

3.1 A SPREM Example

When a development process is modeled using SPREM, its referred/generated arti-
facts can be modeled as the attributes associated with the input/output arcs of a vertex. The
artifacts must remain at some state and are changed after a process is enacted. Also, infor-
mation and/or states of resources and staffs can be modeled as vertex attributes to express
the requirements needed to enact processes. Fig. 2 shows the paradigm modeled using
SPREM. The processes/artifacts along each vertex/arc in Fig. 2 are listed in (Appendix)
Table 5 and Table 6, respectively. Fig. 10 in the Appendix shows the state transition dia-
gram of a software artifact manipulated by processes.

Fig. 2. An example of a spiral model created by SPREM.

EVALUATIONS FOR SOFTWARE ENGINEERING PROJECTS 427

In Fig. 2, the paradigm is modeled as an iterative cycle identified as A19 (the LBA)
incident from V16 to V1 and containing four phases. Each phase is shown within the region
enclosed by a dashed line. The planning phase contains V1 only to express the process
determine-objectives-alternatives-and-constraints. Assume that the project is required to
produce a product called artifact software. Software stays in an initialized state at the
beginning, described as A1. After the planning phase software is translated into a planned
state, described as A2, the project enters the risk-analysis phase, which contains V2, V3, and
V4. V2 enacts the risk-analysis process to analyze alternatives and identify/resolve risks.
After risks have been analyzed, described as A3, a prototype of software is produced, de-
scribed as A4, by the process prototyping enacted by V3.

Each time a prototype is generated and simulated (or measured), the decision-mak-
ing process on V4 (an AX vertex) will choose one thread in the engineering phase to enact
processes. For example, enacting process product-design on vertex V8 requires that artifact
product-design-specification be initialized or modified, i.e., requires A9 to be TRUE. The
Engineering phase contains three threads: requirement analysis, product design, and de-
tailed design. Each time one thread is chosen and executed, a process in the customer-
evaluation phase is followed to plan the �next-level� product and assess the results of engi-
neering software. For example, if the product design phase is chosen, then the process
product-design on V8 translates artifact product-design-specification from the initial or modi-
fied state to the completed state. After the process verification-and-validation on V9 is
completed, the process integration-and-test-plan on V10 and the process customer-evalua-
tion on V16 (an XX vertex) are enacted.

At the end of a development cycle, the process customer-evaluation on V16 either
chooses (1) an iterate cycle, described as A19 (software = evaluated) or (2) terminates the
project, described as A20 (software = completed).

Fig. 10 in the Appendix shows software�s state transition diagram derived from the
example in Fig. 2. The state transition diagram provides managers with a product view so
that they can monitor and control projects. A product view gives the current state of a
product, which reveals the completeness of the product. SPREM can present various views
in multiple layers, where a higher-layered view can hide the details of the lower ones. For
example, software can be considered as the super-artifact of the artifacts requirement-
specification, product-design-specification, detailed-design-specification, and module. Each
sub-artifact has its own state transition diagram. In this case, if software transits from the
prototype-created state to the integration-tested state, this means that the artifacts detailed-
design-specification and model have been completed.

3.2 A Short Comparison

Petri nets are successful in a wide variety of applications. They have been extended
with different notations for different applications, especially timing and functional modeling.
Timing is mainly concerned with performance evaluation, including evaluation of the Time
Petri Net (TPN) [24], Timed Petri Net, (TdPN) [28], Stochastic Petri Net (SPN) [22] etc.
The functional capability is used to describe various functional specifications of a system.
This category of high-level Petri nets includes the Colored Petri Net (CPN) [17], Predicate/
Transition net (Pr/T net) [15], Entity/Relation net (ER net) [16] etc. These nets have some
similarities and allow tokens to carry various kinds of information.

BIN-SHIANG LIANG, JENN-NAN CHEN AND FENG-JIAN WANG428

Some comparisons between SPREM and Petri nets are summarized in Table 1 based on
an example Petri net for modeling of the spiral paradigm, shown in Fig. 3.

Table 1. Summary of comparisons between SPREM and Petri Nets.

Original PN High-level PNs C P M / P E RT S P R E M

Transi t ion and

Place. Any two vertices Transition and AA AA, AX, XA, and

Vertex Types of the same type can P lace X X

not connect with

each other directly.

Arc with attributes N o Yes AOV or AOA Artifact state

To k e n Yes, without Yes, with attributes N o N o

attr ibutes CPN [17],

Pr/T net [15],

ER net [16], etc.

Keep History Yes Yes N / A No, but artifact

states maintain the

h i s to ry

T i m i n g N o TPN [24] , Beta-distribution Not discussed in this

T dPN [28] , paper .

Stochastic PN [22], etc.

Precondition Logic AND for transition Complicated Predicate AND AND/XOR

OR for place

Postcondition Logic AND for transition Complicated Predicate AND AND/XOR

XOR for place

Fig. 3. An example of modeling the spiral model using a Petri Net.

Petri nets have two vertex types, transition and place, while SPREM has four: AA, AX,
XA, and XX. In a Petri net, a token is added to a place cumulatively when the process on an
input transition of the place finishes. The value of an arc in SPREM is set or reset when a
process enaction or completion occurs in its head or tail, respectively, no matter what its
current value is. SPREM is suitable for modeling a system which focuses on the current
status only, but a Petri net is better for a system that needs to keep history information.

EVALUATIONS FOR SOFTWARE ENGINEERING PROJECTS 429

SPREM is more concise than Petri nets. In the example of modeling the spiral model, 16
transitions, 14 places, and 33 arcs are used in the Petri net shown in Fig. 3, but 18 vertices
and 20 arcs are used in the SPREM graph shown in Fig. 2.

In SPREM, the logic operators in a precondition/postcondition of a vertex used to
enact a process are either AND or XOR. In a Petri net, the logic operator is AND-AND for
a transition and OR-XOR for a place. Firing a transition T consumes one token from each
of T�s input places and generates one token which is sent to all of T�s output places. For a
place P, any of P�s input transitions can generate a token sent to P while a token in P can
only be consumed by one of P�s output transitions. The precondition/postcondition for
firing a transition can be a complicated predicate in a high-level Petri net. With SPREM,
software project managers can get a more natural view from a graph since the pre/
postcondition of enacting a process for a vertex can be seen directly from the SPREM
graph.

Furthermore, it is worth noting that SPREM is not intended to serve independently as
a software Process Modeling Language PML. Many researches [5, 6, 11, 13] in software
process modeling have adopted high-level Petri nets to serve as PMLs. Some comparisons
between these PMLs can be found in [1, 14, 23, 31]. To model a software development
process, a PML is required to describe various and complicated elements, such as people,
resources, artifacts, inter-structures of individual elements, and interrelations between
elements, rather than the behavior only [1-3, 8, 9, 14]. SPREM uses simple notation for
modeling various behaviors required in software engineering projects such that some man-
agement parameters for the projects, such as the enaction capability and schedule, can be
evaluated beforehand or during project execution. Also, SPREM is one part of PLAN, a
PML used in our related work [18].

4. SOME CHARACTERISTICS OF A SPREM GRAPH

4.1 Enaction Capability

Vertices in a SPREM graph can be divided into four enactability kinds according to
their enaction capability. A vertex V is called dead if V cannot enact a process. Vertex V
is called simple if V can enact one and only one process. Vertex V is called essential if V
can enact at least one process. Vertex V is called dangerous if it is not one of the above; i.
e., it is indeterminate.

A vertex and its successors (predecessors) are not necessarily of the same enactability
kind. The enactability kind of a vertex can be determined by several factors: its type (A* or
X*), its predecessor types, the values of its input arcs, and its execution behavior (process
duration or decision-making).

Obviously, an A* vertex is dead if it has one FALSE input arc with a dead tail. An X*
vertex is dead if (1) it has two or more TRUE input arcs, either of whose tails are dead or
*A; i.e., these arcs cannot be set to FALSE any more by their tails, or (2) all of its input arcs
are FALSE with dead tails.

Whether or not a dangerous vertex can enact a process cannot be determined before
project execution. For example, an A* vertex V is dangerous if it has one not-dead prede-
cessor whose type is *X and may always set its output arc to V to FALSE; i.e., V can not
enact any processes. An X* vertex is dangerous if it has two or more TRUE input arcs
among which there exists at most one whose tail is dead or *A.

BIN-SHIANG LIANG, JENN-NAN CHEN AND FENG-JIAN WANG430

Let a vertex V have m input arcs Aj, j = 1, 2, ..., m, and let each Aj have tail Vj. Suppose
vertex Vj enacts processes no more than MaxEN(Vj) times and no less than MinEN(Vj)
times.

Consider the case in which V is A*. V enacts at least one process if each of V�s input
arcs Aj satisfies one of the following cases: (1) Aj is TRUE and has a *A tail, (2) Aj is TRUE
and has a dead* *X tail, or (3) Aj is FALSE and has a simple or essential *A tail. The
maximum number of processes enacted by V is

MaxEN V MaxEN V
j m

j() min ()= +
≤ ≤1

dj, where dj is equal to one when Aj is TRUE, zero
otherwise. (1)

The minimum number of processes enacted by V is

MinEN V MinEN V
j m

j j() min min () ,= +
≤ ≤1

1δ , if all of V�s processors are *A. (2)

Consider the case in which V is X*. The maximum number of processes enacted by V is

MaxEN V

MaxEN V V s ar TRUE

MaxEN V k V has k TRUE k

j
j m

j
j m

()

(), ;

() , , .
=

∑

− +∑







≥









≤ ≤

≤ ≤

 if at most one of in put arcs or

max if in put arcs;

'
1

1
2 0 2

(3)

Consider an X* vertex V with all FALSE input arcs. If V has one simple or essential *A
predecessor Vj, then V�s enactability kind is the same as that of Vj. If V has two or more
simple or essential *A predecessors, then V is essential.

4.2 Enaction Ordering

A vertex in a SPREM graph is said to depend on another vertex graphically if there
exists a path from the latter to the former. A vertex V1 is absolutely dependent on another
vertex V2 if every path from Sp to V2 always contains V1. A vertex V2 absolutely trails
another vertex V1 if every path from V1 to Ep always contains V2.

In a SPREM graph, two vertices have no graphical dependency relationship if there is
no path between them. Processes enacted in two distinct vertices may run concurrently,
and the order of process enaction in separate vertices is not decided only by their graphical
dependency. Thus, it is overly complex and unnecessary to compute the order of enaction
in separate vertices. To simplify discussion, here, we consider only the first process enaction
in a vertex.

Let the first-enaction of a vertex be the first time the vertex is enacted. A vertex is
enaction-prior (enaction-posterior) to another if its first-enaction is earlier (later) than that
of the other. A vertex is enaction-prior to its A* successor; i.e., an A* vertex is enaction-
posterior to its predecessor. A vertex is enaction-prior to its X* successor if there is only
one successor. If a vertex is absolutely dependent on another vertex, the latter is always
enaction-prior to the former.

EVALUATIONS FOR SOFTWARE ENGINEERING PROJECTS 431

The enaction of Sp in a SPREM graph results from an external enaction at the beginning.
During the enaction, Sp does not allow any other external enaction until no vertices in the
SPREM graph contain running processes. A vertex containing no input paths from Sp is not
graphically dependent on Sp. A vertex containing no output paths to Ep is not graphically
depended upon Ep. Two vertices V1 and V2, where V2 is graphically dependent upon V1, do
not necessarily entail V2 enacting a process when V1 does so. Neither does it mean that V1

must enact or complete its process before V2 can enact its process. However, a vertex that
does not depend on Sp graphically can never enact any processes (i.e., it is a dead vertex). A
process of a vertex that Ep does not graphically depend on will not affect the project.

4.3 Looping in a SPREM Graph

A loop is a simple path in which the first and last vertices are the same. Two paths are
said to be distinct if they contain no common vertex. A vertex within a loop is called an
entry vertex to the loop if there is a path from Sp to the vertex that is distinct from the loop
except for the vertex. A vertex within a loop is called an exit vertex from the loop if there is
a path from the vertex to Ep that is distinct from the loop except for the vertex. An input
(output) arc of an entry (exit) vertex of a loop is called an entry (exit) arc of the loop if the
arc is not in the loop. A loop may have multiple entry/exit vertices and arcs.

To simplify discussion, each loop in a SPREM graph is allowed to have only one
entry vertex, only one exit vertex, and one arc from the exit vertex to the entry vertex of the
loop, called the loop back arc (LBA for short). LBAs are initially set to FALSE. A loop can
never make the entry A* vertex of the loop enact any process because one input arc (the
LBA) is FALSE. A running loop cannot stop if the exit vertex of the loop is *A because the
LBA will make the entry X* vertex enact a process when the exit vertex process is terminated.
Thus, the entry and exit vertices of a loop must be X* and *X, respectively.

A SPREM graph is well-structured if and only if all the loop(s) in the SPREM graph
contain one X* entry vertex, one *X exit vertex, and one FALSE LBA. More than one loop
may share a common LBA. In a well-structured SPREM graph, a set of loops sharing a
common LBA constitutes a strongly connected subgraph, called an LSUB. An LSUB can
be considered as an XX vertex. Thus, a well-structured SPREM graph can be considered as
a partially ordered network, where the duration of the associated project can be estimated
beforehand. Like unrestricted gotos in programs, general cases of looping are too com-
plicated to deal with [30]. A well-structured SPREM graph is more modularized because
every LSUB has only one entry and one exit point. The SPREM graph shown in Fig. 4 is not
well-structured since the loop (V1, A3, V3, A5, V4, A6, V1) has two entry vertices, V1 and V2,
and the loop (V3, A5, V4, A7, V5, A8, V6, A10, V3) has two exit vertices, V6 and V7.

Fig. 4. A SPREM graph that is not well-structured.

BIN-SHIANG LIANG, JENN-NAN CHEN AND FENG-JIAN WANG432

4.4. Mutual Exclusion and Dependency

A set of vertices is a Mutually Exclusive Set, MES, if the set has more than one vertex,
if only one vertex can enact a process, and if no other enaction is possible. The vertices in
an MES are called mutually exclusive with respect to enaction. In other words, two vertices
are mutually exclusive if they are in a common MES. A Dependent Enaction Set, DES, is a set
of vertices in which at least one vertex cannot enact a process.

In an MES of two vertices, when one vertex enacts a process, the other cannot. Con-
sider the examples shown in Fig. 5. V1 and V2 in (a) are mutually exclusive since V can
change one output arc�s value once. Cases (b-d) are different. For example, in case (d), V1

and V2 enact processes concurrently while A0 and A2 are set to TRUE by V0 and V,
respectively.

Fig. 5. Examples of mutual exclusion.

Consider the examples shown in Fig. 6. Let all vertices be simple and all arcs be FALSE.
Suppose the set of vertices {V1, V2, V3} is not a DES. Then, the set of vertices S = {V4, V5, V6,
V7} in cases (a) and (b) constitutes a DES, but it does not in case (c). In (a), at most three
vertices in S can enact processes. In (b), only V4, and V6, V4, and V7, or V5 and V7 in S can
enact processes. In (c), all vertices in S can enact processes while A1 is set to TRUE by V1,
A3 and A4 are set to TRUE by V2, and A6 is set to TRUE by V3.

Fig. 6. Examples of a DES.

EVALUATIONS FOR SOFTWARE ENGINEERING PROJECTS 433

5. ENACTION CAPABILITY OF ACYCLIC SPREM

5.1 Vertex Enactability

Consider a SPREM graph. Let LPN(V)/SPN(V) be the Largest/Smallest Possible Num-
ber of processes to be enacted by vertex V. LPN(V) is always larger than or equal to SPN(V).
If LPN(V) = 0, V can enact no processes; i.e., V is dead. If LPN(V) = SPN(V) = 1, V can enact
one and only one process; i.e., V is simple. If SPN(V) ≥ 1, V can be enact at least one process;
i.e., V is essential. If LPN(V) > 0 and SPN(V) = 0, V may or may not enact a process; i.e., V is
dangerous. Table 2 summarizes the relationships among the enactability kinds of vertex V
and its SPNs and LPNs.

Table 2. Enactability kinds of vertices

LPN(V) =1 LPN(V) =1 LPN(V) >1

SPN(V) = 0 Dead Dangerous Dangerous

SPN(V) =1 X Simple Essential

SPN(V) >1 X X Essential

Let an A* vertex V have m input arcs Aj, j = 1, 2, ..., m and Aj�s tail Vj.
V is dead if (1) it has at least one FALSE input arc Aj whose value cannot be changed

to TRUE; i.e., Aj is FALSE and Vj is dead; (2) the set of V�s predecessors whose output arcs
to V are FALSE is a DES; or (3) V is mutually exclusive with one of its predecessor(s) that
has a FALSE output arc to V.

V is dangerous (i.e., V may or may not enact a process) if V is not dead and has at
least one input arc Aj, and if either (1) Vj is *X and not dead; or (2) Aj is FALSE and Vj is *A
and dangerous. In the former case, Aj may be changed to FALSE before V�s precondition
holds even though it is currently TRUE. In the latter case, Aj may not be changed to TRUE
even when Vj is *A since Vj may not enact a process.

Otherwise, V can enact at least one process (i.e., V is simple or essential) since each
input arc Aj is either (1) TRUE and not changed to FALSE by Vj; or (2) FALSE and will be
changed to TRUE. In the former case, Aj is TRUE and Vj is (a) *A, or (b) *X and dead. In
the latter case, Aj is FALSE and Vj is *A and simple or essential.

Let an X* vertex V have m input arcs Aj, j = 1, 2, ..., m and Aj�s tail Vj. According to
the value of V�s input arc, V can be classified into one of the following cases:

Case 1: V has only one TRUE input arc. This case is not allowed in M0.
Case 2: V has two or more TRUE input arcs. If two or more TRUE input arcs are dead or if *A

tails, then V is dead since these arcs can no longer be set to FALSE by their tails.
Otherwise, V is dangerous, and the LPN(V) can be obtained from Eq.(3).

Case 3: All of V�s input arcs are FALSE. V is simple or essential if V has at least one
simple or essential *A predecessor. V is dead if all of V�s predecessors are dead.
Otherwise, V is dangerous since V has at least one dangerous predecessor or one
simple or essential *X predecessor. These predecessors will absolutely not change
the value of their output arcs to V to TRUE. The LPN(V) of a not-dead vertex can
be obtained from Eq.(3). Whether a vertex is simple or essential can be deter-
mined as follows:

BIN-SHIANG LIANG, JENN-NAN CHEN AND FENG-JIAN WANG434

Case (a): V has one simple or essential *A predecessor Vj. V�s enactability kind is the
same as that of Vj; i.e., SPN(V) = SPN(Vj) and LPN(V) = LPN(Vj).

Case (b): V has two simple or essential *A predecessors, namely Vi and Vj. V is
essential. If SPN(Vi) = 1 and SPN(Vj) = 1, then SPN(V) = 2, SPN(V) = 1
otherwise.

Case (c): V has more than two simple or essential *A predecessors. V is essential
and SPN(V) = 1.

5.2 Evaluating an A* Vertex

This subsection discusses how to evaluate the enactability kind of an A* vertex. Given
a SPREM graph SP and an A* vertex V in SP, algorithm Evaluate-A-Vertex, presented in
Appendix B, can evaluate V�s enactability kind as follows. Let each vertex V in a SPREM
graph SP be associated with two integer variables lpn and spn used to store LPN(V) and
SPN(V), respectively, and two string variables kind and type to indicate V�s enactability
kind and type, respectively. Let each arc A be associated with a Boolean variable value
used to store A�s value and an integer variable isTrue used for computing the lpn and spn of
A�s head. A.isTrue is set to one if A is TRUE, zero otherwise. Before evaluation, in all the
vertices and arcs, V.type, A.value, and A. isTrue are defined, and V.kind is set to dead and V.
spn and V.lpn are set to zero initially. The evaluation for the A* vertex can be done by
following the five steps below.

Step 1: Initialization. In step 1, integer variables MaxEN and MinEN store the results
obtained from Eqs.(1) and (2), respectively. The boolean variable VIsDangerous,
set to FALSE here, indicates whether V has a predecessor that makes it dangerous.
The boolean variable ArcAllTrue, set to TRUE here, indicates whether all input
arcs of V are TRUE.

Step 2: Evaluate-A-Vertex uses the function Has-Exclv-Vex() [19] to examine whether V
has two predecessors that are mutually exclusive or whether V and one of its
predecessor(s) are mutually exclusive. If the result is true, i.e., V is dead, it is
returned and the algorithm terminates.

Step 3: Each of V�s predecessors Vj, j = 1, 2, ..., m, is examined as follows. If one predeces-
sor renders V dead, then it is returned and the algorithm terminates. If one prede-
cessor renders V dangerous, then VIsDangerous is set to TRUE. If V is found to
have has one FALSE input arc, then ArcAllTrue is set to FALSE.

Step 4: ArcAllTrue is checked. If ArcAllTrue = TRUE, then an error is returned since this is
not allowed in M0, and the algorithm terminates.

Step 5: VIsDangerous is checked. If VIsDangerous = TRUE, then V.kind is set to dangerous;
otherwise, V.kind is set to simple or essential. In step 5.1, V.lpn = MaxENI is set.
V.spn = MinEN and V.lpn = MaxEN are set, and V is determined to be simple or
essential. If MaxEN =1, i.e., V is simple, then V.kind is set to simple, or to essen-
tial otherwise.

EVALUATIONS FOR SOFTWARE ENGINEERING PROJECTS 435

Based on the above, algorithm Evaluate-A-Vertex in Appendix B evaluates a vertex
V�s enactability kind. It first computes LPN(V)/SPN(V) according to Eqs. (1-2),
respectively, when the enactability kind of V�s predecessors are evaluated. Then, it evalu-
ates whether V is dead in step 2 (mutual exclusive set checking) and in step 3 (checking
whether one predecessor renders V dead), and whether V violates the criteria in M0, in step
4. If these cases do not happen, it determines V�s enactability kind, as discussed in section
5.1, in step 5. Thus, evaluation is correct.

5.3 Evaluating an X* Vertex

This subsection discusses how to evaluate the enactability kind of an X* vertex. Given
a SPREM graph SP and an X* vertex V in SP, the algorithm Evaluate-X-Vertex in Appen-
dix B can evaluate V�s enactability kind as follows.
Step 1: Initialization. Variables L1 and L2 store the results obtained from Eq.(3). The

variables NumOfTrueArc and NumOfPositiveVex, set to zero here, represent the
number of V�s TRUE input arcs and simple or essential *A predecessors,
respectively. The variable NumOfDead, set to zero here, stands for the number of
TRUE input arcs in whose tails are either *A or dead. The variable ExistNeuDanVex,
set to FALSE here, indicates whether V has a FALSE input arc whose tail is danger-
ous or is simple or essential *X.

Step 2: Each of V�s input arcs Aj and predecessors Vj, j = 1, 2, ..., m is examined. If Aj.value
= TRUE, then (1) NumOfTrueArc is increased by one, and (2) the algorithm checks
whether Vj.type = *X or Aj.kind = dead. If the result is TRUE, then NumOfDead is
increased by one. If Aj.value = FALSE and Vj is simple or essential *A, then
NumOfPositiveVex is increased by one. If V is found to have one dangerous or one
simple or essential *A predecessor, then ExistNeuDanVex is set to TRUE.

Step 3: The algorithm evaluates V in the following cases. In case 1: NumOfTrueArc = 1, it
returns an error since this case is not allowed in M0. In case 2: NumOfTrueArc ≥ 2,
it checks NumOfDead. If NumOfDead ≥ 2, then it returns since V is dead. Otherwise,
it sets V.lpn = L1 and V.kind = dangerous. In case 3: NumOfTrueArc = 0. If
NumOfPositveVex = 0 and ExistNeuDanVex = TRUE (subcase 1), then V.kind =
dangerous and V.lpn = L2 are set (if ExistNeuDanVex = FALSE, then V is dead). If
NumOfPositveVex = 1 (subcase 2), then V.spn = Vj.spn and V.kind = Vj.kind are set.
If NumOfPositveVex = 2 (subcase 3), then V.kind = essential is set. If
NumOfPositveVex ≥ 3 (otherwise part in subcase), then V.kind = essential and
V.spn = 1 are set.

Step 4: The algorithm terminates.

The evaluation correctness for the algorithm Evaluate-X-Vertex is discussed in the
following. For a vertex V, let the enactability kind of V�s predecessors be evaluated. The
algorithm first computes variables L1 and L2 according to Eq.(3). Then, it computes vari-
ables NumOfTrueArc, NumOfDead, NumOfPositiveVex, and ExistNeuDanVex by evaluat-
ing each of V�s predecessors in step 2. Based on the above, it correctly determines V�s
enactability kind according to these variables.

BIN-SHIANG LIANG, JENN-NAN CHEN AND FENG-JIAN WANG436

5.4 Evaluating an Acyclic SPREM

Referring to the discussion in section 5.1, V�s enactability kind can be determined if
those of its predecessors are known. A topological sorting algorithm lists the vertices in
an acyclic graph with the predecessors at the front. In an acyclic SPREM graph, the algo-
rithm Evaluate-Acyclic-SPREM in Appendix B can be used to traverse an acyclic SPREM
graph SP to output the LPN, SPN, and enactability kind of each vertex.

Let each vertex V in SP be associated with two integer variables lpn and spn storing
LPN(V) and SPN(V), respectively, and two string variables kind and type indicating V�s
kind and type, respectively. Let each arc A in SP be associated with a Boolean attribute
beenTraversed. The beenTraversed of an arc, set to FALSE initially, is changed to TRUE
when its tail is traversed. Let each arc A be associated with a Boolean variable value used
to store A�s value, and an integer variable isTrue used for computing the lpn and spn of A�s
head. A.isTrue is set to one if A is TRUE, zero otherwise.

Evaluate-Acyclic-SPREM uses a queue Q to store vertices temporarily during tra-
versal of SP. A vertex V is inserted into Q when all of its input arcs have beenTraversed =
TRUE; i.e., the computation of all its predecessor(s) is finished. V is removed from Q
while it is being computed. Each vertex can be computed at most once as follows.

Step 1: Initialization. Queue Q is cleared. For each vertex V in SP, the variable V.kind is
set to dead, and V.spn and V.lpn are set to zero. For each arc A, A.beenTraversed is
set to FALSE, and A.isTrue is set to one if A.value is TRUE, zero otherwise.

Step 2: Traversing SP from Sp. First, Sp.kind = simple, LPN(Sp) = 1, and SPN(Sp) = 1 are
set, and beenTraversed in all of the output arcs of Sp is set to TRUE. Then, Sp�s
successor(s) are inserted into Q if all of their input arcs where beenTraversed =
TRUE.

Step 3: Performing traversal with a while loop. The loop is repeated until Q is empty, i.e.,
until all vertices are traversed. Then the algorithm terminates. In each turn, a
vertex V is retrieved from queue Q and evaluated. If V.type = A*, then Evaluate-A-
Vertex is invoked, Evaluate-X-Vertex otherwise. Then, beenTraversed in all output
arcs of V is set to TRUE. If V�s successor has input arcs where beenTraversed =
TRUE, then it is inserted into Q.

The algorithm Evaluate-Acyclic-SPREM traverses acyclic SPREM graph SP in topo-
logical sorting order using queue Q. This order allows the predecessors of a vertex V to be
visited before V; i.e., when V is evaluated, its predecessors have already been evaluated.
When V is evaluated, either algorithm Evaluate-A-Vertex or algorithm Evaluate-X-Vertex is
used. Thus, evaluation is correct.

5.5 An Example of Evaluating an Acyclic SPREM

A SPREM graph is well-defined if and only if the network contains no dead vertices.
Fig. 7 shows a SPREM graph that is not well-defined. Vertex V4 is dead since it has two
TRUE input arcs A4 and A5 whose tails are simple, e.g., V1 and V2, respectively. V8 is
dangerous since it has two TRUE input arcs, A12 and A13, in which A12�s tail V5 is *X. Table
3 lists the M0 of the SPREM graph. Table 4 shows the results of analyzing the SPREM
graph using Evaluate-Acyclic-SPREM.

EVALUATIONS FOR SOFTWARE ENGINEERING PROJECTS 437

6. ENACTION CAPABILITY OF CYCLIC SPREM

In a SPREM graph, general loopings, like arbitrary goto in a program, are too compli-
cated to deal with. Unrestricted loopings should be avoided since they make a program
difficult to understand and maintain. In a well-structured SPREM graph, each loop has
only one entry and one exit. A set of loops sharing a common entry and exit can be deemed
as a group of iterations. A loop can be nested within another one. Therefore, the set of
vertices within a loop can be reduced as one higher-level vertex to help: (1) by recognizing
a well-structured SPREM graph as a partially ordered network, where the duration of the
associated project can be estimated at the beginning3, (2) by reducing the analysis complex-

Table 3. The Mo of the SPREM graph in Fig. 7.

Arcs A1 A2 A3 A4 A5 A6 A7 A8 A9

M0 F F F T T F F F F

Arcs A10 A11 A12 A13 A14 A15 A16 A17 A18

M0 T F T T F T F T F

Table 4. The results of analyzing the SPREM graph in Fig. 7.

Vertex Kind SPN LPN Vertex Kind SPN LPN

Sp Simple 1 1 V6 Essential 1 2

V1 Simple 1 1 V7 Dead 0 0

V2 Simple 1 1 V8 Dangerous 0 3

V3 Simple 1 1 V9 Essential 1 2

V4 Dead 0 0 Ep Dangerous 0 1

V5 Dangerous 0 1

Fig. 7. A SPREM graph that is not well-defined.

3 The estimation of a project�s duration is beyond the scope from this paper. For more details, please refer to [9].

BIN-SHIANG LIANG, JENN-NAN CHEN AND FENG-JIAN WANG438

ity of a complicated system represented by SRPEM, and (3) making a SPREM graph easy to
understand and maintain. Algorithm Is-Structured [19] can be used to determine whether a
SPREM graph is well-structured.

An LSUB can be reduced to an XX vertex whose input and output arcs are those of
the entry and exit of the LSUB, respectively, except for the LBA. The inner of an LSUB
consists of all the vertices inside the LSUB except for the entry and exit. An LSUB is
called a containing LSUB of a vertex V if V is the entry, exit, or an inner of the LSUB. Fig.
8 shows a sample LSUB in (a) and its corresponding XX vertex Va-b, in (b). The LSUB in is
denoted as LSUB(Va, Vb). A nested LSUB can eventually be reduced recursively to an XX
vertex eventually. Fig. 9 shows a sample nested LSUB. LSUB(Vb, Vc) in (a) is reduced to
Vb-c in (b), and LSUB(Va, Vd) in (b) is reduced to Va-d in (c).

Fig. 8. A sample LSUB.

Fig. 9. A sample nested LSUB.

The enaction capability of a well-structured SPREM SP graph can be evaluated by: (1)
removing LBAs on each LSUB in SP to make the SP acyclic, (2) evaluating the acyclic SP
with Evaluate-Acyclic-SPREM, and (3) adding the LBAs back to SP to refine the evaluation.
In a well-structured SP, the entry and exit vertices of an LSUB are X* and *X, respectively,
and the LBAs are set to FALSE initially. Thus, the enactability kind of a vertex in LSUB is not
changed by the refinement, as mentioned in the earlier discussion about Evaluate-X-Vertex.

EVALUATIONS FOR SOFTWARE ENGINEERING PROJECTS 439

7. CONCLUSIONS AND FUTURE WORK

This paper has presented the software project review and evaluation model SPREM.
SPREM can be used to express processes with sequence, parallelism, iteration,
synchronization, and decision-making behaviors in software projects. Its modeling capa-
bility has been demonstrated using an example which describes the spiral model in soft-
ware engineering. SPREM is a superset of CPM/PERT and has more concise and natural
graphical notation than do (high-level) Petri nets. Several behavioral properties of SPREM
have been discussed. For example, its enaction capability can be used to evaluate the pos-
sibility that a vertex will enact processes beforehand. Project managers can revise a SPREM
graph in order to rescue dead vertices before project execution. Furthermore, enaction
ordering allows project managers to calculate the dependency between the processes to
be enacted. This might help in computing important information, such as the critical paths
among these processes. The detection of MES and DES in a SPREM graph can help project
managers avoid pitfalls in modeling. The algorithms Evaluate-Acyclic-SPREM and Evalu-
ate-Cyclic-SPREM, based on several other algorithms, including Evaluate-A-Vertex, Evalu-
ate-X-Vertex etc., have been presented to evaluate the enaction capability of acyclic and
well-structured SPREMs, respectively.

In addition, some comparisons between SPREM and Petri nets have been discussed
in this paper. The high-level Petri nets are better for modeling a system that needs to keep
history information, and they can express a complicated predicate in order to enact a transition.
However, SPREM is concise and better for modeling a system where the focus is on the
current status only. With SPREM, software project managers can get a more natural view
from a graph. Some further works need be done in the future:

(1) analysis of the enaction capabilities for a general SPREM graph,
(2) detection of the possible execution scenarios of a SPREM graph, and
(3) estimation of the completion time (or cost) for a SPREM graph, including determina-

tion of the critical path(s) and the instantiating, running, and terminating times for each
process.

REFERENCES

1. P. Armenise, S. Bandinelli, C. Ghezzi, and A. Morzenti, �A survey and assessment of
software process representation formalisms,� International Journal of Software Engi-
neering and Knowledge Engineering, Vol. 3, No. 3, 1993, pp. 401-426.

2. J. W. Armitage and M. I. Kellner, �A conceptual schema for process definitions and
models,� in Proceedings of 4th International Conference on Software Processes,
1994, pp.153-175.

3. R. Balzar, �What we do and don�t know about software process,� CQS European Ob-
servatory on Software Engineering: CASE and Software Quality, October 1990.

4. B. W. Boehm, �A spiral model of software development and enhancement,� ACM
SIGSOFT Software Engineering Notes, Vol. 11, No. 4, 1986, pp.14-24.

5. S. Bandinelli, A. Fuggetta, and C. Ghezzi, �Software process as real time systems: a
case study using high-level Petri nets,� in Proceedings of International Phoenix Con-
ference on Computer and Communication, 1994, pp. 231-242.

BIN-SHIANG LIANG, JENN-NAN CHEN AND FENG-JIAN WANG440

6. S. C. Bandinelli and A. Fuggetta, �Software process model evolution in the SPADE
environment,� IEEE Transaction on Software Engineering, Vol. 19, No. 12, 1993, pp.
1128-1144.

7. S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi, and G. P. Picco, �Modeling and improv-
ing an industrial software process,� IEEE Transaction on Software Engineering, Vol.
21, No. 5, 1995, pp. 440-454.

8. B. Curtis, M. I. Kellner, and J. Over, �Process Modeling,� Communication of ACM, Vol.
35, No. 9, 1992, pp. 75-90.

9. C. W. Dawson and R. J. Dawson, �Clarification of node representation in generalized
activity networks for practical project management,� International Journal of Project
Management, Vol. 12, No.2 1994, pp. 81-88.

10. S. E. Elmaghraby, �An algebra for the analysis generalized activity networks,� Man-
agement Science, Vol. 10, No. 3, 1964, pp. 494-514.

11. W. Emmerich and V. Gruhn, �FUNSOFT Nets: A Petri-Net based software process
modeling language,� in Proceedings of the 6th International Workshop on Software
Specification and Design, 1991, pp. 175-184.

12. H. Esiner, �A generalized network approach to the planning and scheduling of a re-
search project,� Operation Research, Vol. 10, No. 1, 1962, pp. 115-125.

13. C. Fernstrom, �Process weaver: adding process support to UNIX,� in Proceedings of
3rd International Conference on Software Process, 1993, pp. 2-11.

14. A. Fuggetta and C. Ghezzi, �State of the art and open issues in process-centered soft-
ware engineering environment,� Journal of System Software, Vol. 26, No. 1, 1994, pp. 53-
60.

15. H. J. Genrich, �Predicate/transition nets,� in Advances in Petri Nets, 1986, W. Brauer,
W. Reisig, and G. Rozenberg, Eds. New York: Springer-Verlag, 1987, pp. 3-43.

16. C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezze, �A unified high-level Petri net
formalism for time-critical systems,� IEEE Transaction on Software Engineering, Vol.
17, No. 2, 1991, pp. 160-172.

17. K. Jensen, �Colored Petri nets and the invariant method,� Theoretical Computing Science,
Vol. 14, No. 3, 1981, pp. 317-336.

18. B. S. Liang, M. F. Chen, and F. J. Wang, �A distributed software process engineering
environment,� in Proceedings of Workshop of Distributed System Technology and
Application, 1997, Taiwan, R.O.C., pp. 531-538.

19. B. S. Liang and F. J. Wang, �A software project review and evaluation model, SPREM,�
Technical Report CSIE-97-1003, Department of Computer Science and Information
Engineering, National Chiao-Tung University, March 1997.

20. L. C. Liu and E. Horowitz, �A formal model for software project management,� IEEE
Transaction on Software Engineering, Vol. 15, No. 10, 1989, pp. 1280-1293.

21. J. Magott and K. Skudiarski, �Combing generalized stochastic Petri networks for the
performance evaluation of concurrent process,� in Proceedings of IEEE TH0288-1/89/
0000/0249, 1989, pp. 249-256.

22. M. A. Marsan, G. Balbo, and G. Gonte, �A class of generalized stochastic Petri nets for
the performance evaluation of multiprocessor system,� ACM Transaction on Com-
puter System, Vol. 2, No. 2, 1984, pp. 93-122.

23. I. R. McChesney, �Toward a classification scheme for software process modeling
approach,� Information and Software Technology, Vol. 37, No. 7, 1996, pp. 363-374.

24. P. Merlin and D. J. Faber, �Recoverability of communication protocol,� IEEE Transac-

EVALUATIONS FOR SOFTWARE ENGINEERING PROJECTS 441

tions on Communication, Vol. 24, No. 9, 1976, pp. 1036-1045.
25. C. S. Park, G.S. Lee, and J. M. Yoon, �An executable software project management

model by beta-distributed stochastic Petri nets,� in Proceedings of IEEE TENCON
(Region 10 Conference), 1993, pp. 430-434.

26. R. S. Pressman, Software Engineering: A Practitioner�s Approach, McGRAW-Hill
International, 1993, pp. 29.

27. A. A. B. Pritsker and G. E. Whitehouse, �GERT: Graphical evaluation and review
technique part I: fundamentals,� Journal Industry Engineering, Vol. 17, No. 3, 1966, pp.
267-274.

28. C. Ramchandani, �A study of asynchronous concurrent systems by timed Petri nets,�
Technical Report, 120, Project MAC, Massachusetts Institute Technology, February
1974.

29. C. V. Ramamoorthy and G. S. Ho, �Performance evaluation of asynchronous concur-
rent systems by Petri nets,� IEEE Transactions on Software Engineering, Vol. 6, No.
5, 1980, pp. 440-449.

30. R. W. Sebesta, Concepts of Programming Languages, Addison-Wesley, 1996, pp.
309-313.

31. I. Thomas, �The strengths and weaknesses of process modeling formalisms,� in Pro-
ceedings of 7th International Software Process Workshop, 1991, pp. 2-9.

APPENDEX-----A

Table 5. The vertex processes in the example shown in Fig. 2.

Vertex Process

V1 determine objectives, alternatives, constraints

V2 risk analysis

V3 prototyping

V4 decision making based on simulations, model, benchmarks

V5 requirement analysis

V6 requirement validation

V7 development planning

V8 product design

V9 design verification and validation

V10 integration and test planning

V11 detailed design

V12 coding

V13 unit testing

V14 integration testing

V15 acceptance testing

V16 customer evaluation

BIN-SHIANG LIANG, JENN-NAN CHEN AND FENG-JIAN WANG442

APPENDIX ----- B ::::: ALGORITHMS

B -1

Algorithm Evaluate-A-Vertex (SP, V)
Input: SP = < V, A, Sp, Ep, M0 > (a SPREM grapg), VŒ V, is an A* vertex.
Output: V.spn, V.lpn, and V.kind.

/* Given a SPREM graph SP and an A* vertex V in SP, output V�s SPN, LPN, and
enactability kind. Let V have m input arcs Aj, j = 1 to m, and let each Aj have a
tail Vj.
Suppose that V.kind is set to dead, that V.spn and V.lpn are set to zero initially,
and that V�s predecessors have been evaluated already.*/

begin

Table 6. The vertex arcs in the example shown in Fig. 2.

Arc Artifact = State

A1 software = initialized

A2 software = planned

A3 software = risk-analyzed

A4 software = prototype-created

A5 requirement-specification = initialized or modified

A6 requirement-specification = completed

A7 requirement-specification = validated

A8 software = development-planned

A9 product-design-specification = initialized or modified

A10 product-design-specification = completed

A11 product-design-specification = validated

A12 software = integration & test-planed

A13 detailed-design-specification = initialized or modified

A14 detailed-design-specification = completed

A15 module = coded

A16 module = tested
A17 software = integration-tested
A18 software = acceptance-tested
A19 software = evaluated
A20 software = completed

EVALUATIONS FOR SOFTWARE ENGINEERING PROJECTS 443

step 1: MaxEN = min
1≤ ≤j m Vj.lpn + Vj.is True;/* equation (1)*/

MinEN = min min . . ,
1

1
≤ ≤

+
j m

j jV spn V isTrue ; /* equation (2) */

VIs Dangerous = FALSE; ArcAllTrue = FALSE;

step 2: if Has-Exclv-Vex (V)
 then return; /* V.kind = dead; V.SPN = 0; V.LPN = 0*/

step 3: for j = 1 to m do
begin

step 3.1: if (Aj.value = FALSE and Vj.kind = dead)
 then return; /* V.kind = dead; V.SPN = 0; V.LPN = 0 */

step 3.2: if not VIsDangerous then
 begin

 if (Vj.type = *X and Vj.kind π dead) or
 (Aj.value = FALSE and Vj.type = *A and Vj.kind = dangerous)
 then VIsDangerous = TRUE;

end; /* of if */
step 3.3: if Aj.value = FALSE then ArcAllTrue = FALSE;

end; /* of for */
step 4: if ArcAllTrue

then return error; /* this case is not allowed in M0*/
step 5: if VIsDangerous
step 5.1: then begin

V.kind = dangerous; V.lpn = MaxEn;
end;

step 5.2: else begin */" Vj.satisfy one of the following cases:
(1) Aj is TRUE and Vj is *A,
(2) Aj is TRUE and Vj is *X and dead, or
(3) Aj is FALSE, Vj is *A and simple or essential. */

V.lpn = MaxEN; V.spn = MinEN;
if (MaxEN =1)

then V.kind = simple else V.kind = essential;
end if;

end; */ of Evaluate-A-Vertex */

B-2

Algorithm Evaluate-X-Vertex (SP, V)
Input: SP = <V, A, Sp, Ep, M0 > (a SPREM), V Œ V, is an A* vertex.
Output: V.spn, V.lpn, and V.kind.

/* Given a SPREM SP and an X* vertex V in SP, output V�s SPN, LPN, and kind.
Let V have m input arcs Aj, j = 1 to m, and let each Aj have a tail Vj.
Suppose that V.kind is set to dead, that V.spn and V.lpn are set to zero initially,
and that V�s predecessor have been evaluated already.

BIN-SHIANG LIANG, JENN-NAN CHEN AND FENG-JIAN WANG444

begin

step 1: L1 = max V lpn kj
j m

. ,− +∑





≤ ≤

2 0
1

 , where k is the number of V�s TRUE input arcs�/*

equation (3) */

L2 =
1≤ ≤

∑
j m

Vj.lpn /* equation (3) */

 NumOfTrueArc = 0;
 NumOfDead = 0;

NumOfPositveVex = 0;
ExistNeuDanVex = FALSE;

step 2: for j = 1 to m do
begin

step 2.1: if (Aj.value = TRUE)
step 2.2: then begin;

 NumOfTrueArc = NumOfTrueArc +1;
 if (Vj.type = * A or Vj.kind = dead)

 then NumOfDead = NumOfDead + 1;
 end;

step 2.3: else begin /* Aj = FALSE */
 if ((Vj.type = * A) and (Vj.kind = simple or Vj.kind = essential))

 then NumOfPositveVex = NumOfPositveVex +1;
 if (not ExistNeuDanVex) then
 begin

 if (Vj.kind = dangerous) or
 ((Vj.type = *X) and (Vj.kind = simple or Vj.kind = essential))
 then ExistNeuDanVex = TRUE;

 end;
 end; /* of if */

 end; /* of for */
step 3: case NumOfTrueArc of
step 3.1: case 1: = 1 /*only one Aj = TRUE */

return error; */ This case is not allowed in M0*/
step 3.2: case 2: ≥ = 2 /*two or more Aj = TRUE */

if (NumOfDead < 2) /* NumOfDead ≥ 2 then V is dead */
then V.kind = dangerous; V.lpn = L1; else V.kind = dead;

step 3.3: otherwise: /* NumOfTrueArc = 0, i.e., "Aj = FALSE */
V.lpn = L2;
case NumOfPositveVex of
case 1: = 0; /* no positive predecessor */

if (ExistNeuDanVex = TRUE) /* else "Vj are negative, V is dead */
then V.kind = dangerous;

case 2: = 1; /* only one positive predecessor */
V.spn = Vj.spn; kind = Vj.kind

case 3: = 2; /* exactly two positive predecessors */
/* suppose the two predecessors are Vi and Vj */

V.kind = essential;
 if Vi.spn = 1 and Vj.spn =1

EVALUATIONS FOR SOFTWARE ENGINEERING PROJECTS 445

 then V.spn = 2 else V.spn = 1;
otherwise: /* ≥ 3, i.e., three or more positive predecessors */
 V.kind = essential; V.spn = 1;

end case;
end case;

step 4: return;
end; */ of Evaluate-X-Vertex*/

B-3

Algorithm Evaluate-Acyclic-SPREM (SP)
Input: SP = <V, A, Sp, Ep, M0 > (a SPREM).
Output: V.spn, V.lpn, and V.kind. for each V in SP.

/* Given a SPREM SP, for each V in SP, output V�s SPN, LPN, and enactability
kind. */

begin
/* initialization */

step 1: clear queue Q;
for each vertex V in V do
begin

V.kind = dead; */ suppose V.type is defined in SP */
V.spn = 0;
V.lpn = 0;

end;
for each arc A in A do
begin

A.beenTraversed = FALSE;
if A.value = TRUE /* suppose A.value is defined in SP */

then A.isTrue =1
else A.isTrue = 0;

end;
/* traverse SP from Sp firstly */

step 2: Sp.kind = simple; Sp.lpn = 1; Sp.spn = 1;
set the beenTraversed of all output arcs of Sp to TRUE;
for each successor Vm of Sp whose all input arcs with beenTraversed = TRUE do

En-Queue (Q, Vm);
end;
/* traverse the vertices in topological order */

step 3: while not Empty (Q) do
begin

step 3.1: V = De-Queue(Q);
/* evaluate a vertex */

step 3.2: if V.type = A*
then Evaluated-A-Vertex (V)
else Evaluated-X-Vertex (V); /* V.type = X * */

BIN-SHIANG LIANG, JENN-NAN CHEN AND FENG-JIAN WANG446

step 3.3: set the beenTraversed of all output arcs of V to TRUE;
step 3.4: for successor Vm of V whose all input arcs with beenTraversed = TRUE do

 En-Queuye(Q, Vm);
end;

end; /* of while */
end; /* of Evaluate-SPREM */

Bin-Shiang Liang () received his B.S. and M.S. degrees in computer science
and information engineering from National Chiao Tung University in 1991 and 1993,
respectively. He is currently a Ph.D. candidate in computer science and information engi-
neering at National Chiao Tung University. His research interests include software
measurement, software process modeling, process-centric software engineering environ-
ment (PSEE), network-centric computing (NCC), ISO 900 standards certification, and Web-
based information systems (WIS).

Jenn-Nan Chen () received his B.S. degree in Applied Mathematics from the
Chung Cheng Institute of Technology, Taiwan, R.O.C., in 1972. He received his M.S.
degree from the Department of Operation Research, Stanford University, U.S.A., in 1976.
He then worked at the Chung Shan Institute of Science and Technology Computer Center as
a system engineer for seven years. He attended Northwestern University in the spring of
1983 and received his M.S. and Ph.D. degrees in Computer Science from the Department of
Electrical Engineering and Computer Science in 1984 and 1986. He is currently the presi-
dent of the SAMAR Techtronics Corporation. His interests include software engineering,
software quality assurance, software process modeling, object-oriented techniques, and
ISO9000 software methodology development.

Feng-Jian Wang () graduated from National Taiwan University, Taipei, Taiwan,
R.O.C., in 1980. He received his M.S. and Ph.D. degrees in E.E.C.S. from Northwestern
University, U.S.A., in 1986 and 1988. He is currently a professor in the Department of
Computer Science and Information Engineering, National Chiao Tung University. His in-
terests include software engineering, compiler, object-oriented techniques, distributed
system software, and the internet.

