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A new method for constructing sliding surfaces of linear
time-invariant systems

YON-PING CHEN{ and JEANG-LIN CHANG{

A new method for constructing the sliding surfaces is developed by using the pole-
assignment method; unlike the usual cases, the pole-assignment method is applied to
the overall closed-loop system and not the system in the sliding mode. Most import-
antly, the design procedure is simple since the sliding surfaces can be determined in an
explicit form. Also, three signi® cant properties listed in a theorem are proved and
demonstrated by a numerical example.

1. Introduction

In general, the sliding-mode controller design has two
fundamental steps (Decarlo et al. 1988) . The ® rst step is
to select the sliding surfaces such that the system exhi-
bits the desired behaviour in the sliding mode. The
second step is to determine control laws to guarantee
the reaching and sliding condition. Recently, several
methods available for the sliding surface design have
been developed. Utkin and Young (1979) proposed
three design procedures based on optimal control and
pole placement. Zinober (Elghezawi et al. (1983) and
Dorling and Zinober (1986, 1988) used a geometric
approach and eigenstructure assignment to design
sliding surfaces. Young and OÈ zguÈ ner (1993) incorpo-
rated the optimal approach with frequency shaping
technique. Su et al. (1996) constructed sliding surfaces
based on the Lyapunov equation. Here, this paper will
introduce a distinct and simple method for constructing
the sliding surfaces based on the the pole-assignment
method.

In fact, the commonest way used in the sliding surface
design is to assign the eigenvalues for the system in the
sliding mode by using the pole-assignment method.
Unfortunately, since the mathematical expression of
the sliding motion is quite complicated, it is always an

e� ort by adopting the pole-assignment method. In order
to ameliorate this drawback, this paper employs the
pole-assignment method for the overall closed-loop
system, but the system in the sliding mode. Because
this is based on the linear system theories, many tech-
niques have been well developed for the pole-assignment
method applied to the overall closed-loop system and
most importantly , many software packages are available
for these techniques, such as MATLAB software by The
Mathworks, Inc. This will make the pole-assignment
method more useful and convenient.

In section 2, the problem statement is given. Section 3
shows the sliding surface design based on the pole
assignment. Three conditions are considered for the
pole-assignment method to determine the feedback
gain matrix of the overall closed-loop system. One im-
portant theorem is also presented, which has three prop-
erties related to the sliding surface. This theorem will be
proved in detail. A numerical example is shown in sec-
tion 4 to verify the developed method. Finally, con-
cluding remarks are given in section 5.

2. Problem statement

In general, a linear time-invariant system is described
by

_x ˆ Ax ‡ B u ‡ d… †; …1†

where x 2 Rn is the system state, u 2 Rm is the control
input and d 2 Rm represents the matching-type disturb-
ance. It is further assumed that the system matrices
A 2 Rn£n and B 2 Rn£m are exactly known and the
pair A ;B… † is controllable. Also, the matrix B is of full
rank, that is rank …B† ˆ m. Usually, in the design of the
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sliding-mode controller, the ® rst step is to choose the
sliding vector as

s ˆ Cx ; …2†

where s ˆ s1 s2 ¢ ¢ ¢ sm‰ Š, C 2 Rm£n, and CB is non-
singular. Here, si ˆ 0, i ˆ 1 ;2 ; . . . ;m , are called the
sliding surfaces. Once the sliding condition sT _s < 0 is
guaranteed, the system will slide along the intersection
of these m sliding surfaces s ˆ 0, called the sliding mode.
It is known that the system in the sliding mode is
described by

_x ˆ In ¡ B CB… †¡1
C

h i
Ax; …3†

which, as expected, is robust to the matching-type dis-
turbance d . Here, In represents the n £ n identity matrix.
Later, for convenience, we de® ne Ik as the k £ k identity
matrix. Since ‰In ¡ B…CB†¡1

CŠA has m zero eigenvalues,
let its eigenvalues be denoted as

¶1 ;¶2 ; . . . ;¶n¡m ;0 ;0 ; . . . ;0|‚‚‚‚‚‚{z‚‚‚‚‚‚}
m0s

: …4†

It is known that, if the n ¡ m eigenvalues
f¶1 ;¶2 ; . . . ;¶n¡mg are stable, then the system stability
is guaranteed. However, owing to the complexity of
‰In ¡ B…CB†¡1

CŠA, it is often not easy to determine the
matrix C. The aim of this paper is to propose a simpler
design method for the sliding surfaces.

3. Design of the sliding surfaces

The design method introduced here is mainly based
on the pole-assignment method for the linear time-invar-
iant system (1) without any disturbance d , expressed by

_x ˆ Ax ‡ Bu: …5†

Since A;B… † is controllable, by using the pole-assign-
ment method a feedback gain K can be obtained by
assigning n eigenvalues ¶1 ;¶2 ; . . . ;¶nf g for A ¡ BK

(Chen 1984). To design the matrix C in (2) simply and
appropriately , the following conditions are considered.

Condition C1: The matrix A ¡ BK has no eigenvalues in
common with those of A.

Condition C2: The eigenvalues of A ¡ BK are chosen to
be stable and assigned as

¶1 ;¶2 ; . . . ;¶n¡m ;¶;¶; . . . ;¶|‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚}
m¶s

; …6†

with ¶ 6ˆ ¶i ; i ˆ 1 ;2 ; . . . ;n ¡ m.

Condition C3: The matrix A ¡ BK is diagonalizable
although it possesses m repeated eigenvalues ¶.

Note that condition C1 is usually required for the
techniques to determine the feedback gain K via the
pole-placement method. Also, since ¶ is not in the spec-

trum of A, the matrix A ¡ ¶In is non-singular. In other
words, A ¡ ¶In… †¡1 exists and later it will be included in
the expression for the matrix C. As for condition C2, it
will be used to prove theorem 1 given in this section. For
condition C3, in fact, it has been proved by Sinswat and
Fallside (1977) that A ¡ BK is diagonalizable with the
eigenvalues given as (6) , where the number of the
repeated eigenvalue ¶ is not greater than m ; this means
that

…A ¡ BK†W ˆ WJ …7†

where J ˆ diag ¶1 ¶2 ¢ ¢ ¢ ¶n¡m ¶ ¢ ¢ ¢ ¶‰ Š and
W is non-singular. Signi® cantly, it can be further decom-
posed into

…A ¡ BK†Wn¡m ˆ Wn¡mJn¡m ; …8†

…A ¡ BK†W¹m ˆ ¶W¹m ; …9†

where Wn¡m and W¹m contain the ® rst n ¡ m columns
and the last m columns of W. Also,
Jn¡m ˆ diag ‰ ¶1 ¶2 ¢ ¢ ¢ ¶n¡m Š, and W¹m is related
to the repeated eigenvalue ¶. Now, according to these
conditions, an explicit form of the matrix C is intro-
duced as

C ˆ K…A ¡ ¶In†¡1
; …10†

which will generate three important properties listed in
the following theorem.

Theorem 1: L et A 2 Rn£n, B 2 Rn£m , and the pair
…A ;B† is controllable. If B is of full rank and
C ˆ K…A ¡ ¶In†¡1 with K satisfying conditions C1, C2
and C3, then

(a) CB ˆ Im ,

(b) CWn¡m ˆ 0,

(c) ‰In ¡ B…CB†¡1
CŠA has the eigenvalues ¶1 ; . . . ;¶n¡m

and m zeros.

Proof:

(a) Let us show that CB ˆ Im . Rearranging (9) yields

…A ¡ ¶In†W ¹m ˆ BKW¹m …11†

and then

W¹m ˆ A ¡ ¶In… †¡1
BKW¹m …12†

Pre-multiplying K by (12) yields

KW¹m ˆ K A ¡ ¶In… †¡1
BKW¹m ˆ CBKW¹m …13†

or

…Im ¡ CB†KW¹m ˆ 0: …14†

From (11) , it can be declared that KW¹m is of full
rank because the other matrices A ¡ ¶In, W¹m , and
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B are all of full rank; as a consequence of (14) ,
Im ¡ CB ˆ 0. This proves that CB ˆ Im .

(b) From (10) , we have CA ˆ K ‡ ¶C. Pre-multiplying
C by (8) yields

…CA ¡ CBK†Wn¡m ˆ CWn¡mJn¡m …15†

By using CB ˆ Im and CA ˆ K ‡ ¶C, (15) is rewrit-
ten as

CWn¡m Jn¡m ¡ ¶In¡m… † ˆ 0: …16†

According to the condition ¶ 6ˆ ¶i , i ˆ 1 ;2 ; . . . ;
n ¡ m in condition C2, the diagonal components
of Jn¡m ¡ ¶In¡m are all non-zero. Hence,
Jn¡m ¡ ¶In¡m is non-singular and then CWn¡m ˆ 0
is proved.

(c) The truth of CB ˆ Im implies that rank …C† ˆ m.
Therefore, C‰In ¡ B…CB†¡1

CŠA ˆ 0 implies that the
eigenvalues of ‰In ¡ B…CB†¡1

CŠA should contain m
zeros. Further, by using CB ˆ Im and CA ˆ
K ‡ ¶C, we have

‰In ¡ B…CB†¡1
CŠA ˆ A ¡ BK ¡ ¶BC: …17†

Then, from (8) and CWn¡m ˆ 0, after post-multi-
plying Wn¡m by (17) , it can be shown that

‰In ¡ B…CB†¡1
CŠAWn¡m ˆ Wn¡mJn¡m : …18†

Obviously, the diagonal components of Jn¡m , that is
¶1 ;¶2 ; . . . ;¶n¡m , are the eigenvalues of
‰In ¡ B…CB†¡1

CŠA and the matrix Wn¡m contains
the eigenvectors corresponding to these eigenvalues.
This completes the proof. &

Based on this theorem, the matrix C can be directly
calculated from the explicit form C ˆ K…A ¡ ¶In†¡1

after the feedback gain K is obtained for the overall
closed-loop system (1) via the pole-assignment method.
In addition, this theorem also implies that the eigen-
values of the system in the sliding mode can be arbitra-
rily assigned under the restriction of CB ˆ Im . In the
next section, an example is used as a demonstration.

4. Numerical example

This section adopts the example given by Su et al.
(1996). In their work, the design of C is mainly based
on the Lyapunov equation. Although the matrix C can
be obtained rather straightforwardly, the system eigen-
values in the sliding mode cannot be pre-assigned and
thus the sliding behaviour is hard to predict. The system
matrices A and B of (1) are given as

A ˆ

0:2325 ¡0:9285 0:0154 0:1222

¡0:7274 1:01116 ¡0:0224 0:1576

¡1:6883 0:2214 0:6534 1:6278

¡0:5310 ¡0:2603 ¡0:0052 1:1025

2

6664

3

7775;

B ˆ

3:0 2:0

0 1:0

0:5 ¡2:0

1:3 0

2

6664

3

7775:

First the eigenvalues A are obtained as
f¡0:2 ;0:5 ;0:7 ;1:0g. According to conditions C1 and
C2, we choose the eigenvalues for the matrix A ¡ BK
as ¡0:612 ;¡1:22 ;¡0:5 ;¡0:5f g. Clearly, the matrix
A ¡ BK has no eigenvalues in common with those of
A. Also, the eigenvalues of A ¡ BK are stable and
¶1 6ˆ ¶2 6ˆ ¶ where ¶1 ˆ ¡0:612 ; ¶2 ˆ ¡1:22 ; and
¶ ˆ ¡0:5. Note that ¶1 and ¶2 are purposely assigned
to be the same as those in the work of Su et al. (1996) .
As for the repeated eigenvalue ¶, it is arbitrarily
assigned. By using the MATLAB software, the feedback
gain K is processed by the command `K ˆ place…A ;B ;p†’
for pole-placement with p ˆ ¡0:612 ;¡1:22 ;¡0:5 ;‰
¡0:5ŠT. The command `place’ allows the user to assign
the eigenvalues with multiplicity equal to the number of
inputs, as the case introduced in this paper. The numer-
ical result of K is then obtained as

K ˆ
3:92 ¡3:66 2:11 ¡7:19

¡2:81 2:51 ¡2:73 7:14

" #

:

Condition C3 can be checked by the command
‰̀W ;JŠ ˆ eig …A ¡ BK†’ where W and J are obtained as

W ˆ ‰W2 W¹2Š ˆ

¡0:72 0:54 0:35 ¡0:77

¡0:14 0:66 0:62 ¡0:44

¡0:54 ¡0:51 ¡0:66 ¡0:35

¡0:42 ¡0:12 ¡0:24 ¡0:30

2

6666664

3

7777775
;

J ˆ diag ‰¡1:22 ¡0:612 ¡0:5 ¡0:5Š:

Clearly, since J is diagonal, the matrix A ¡ BK is diag-
onalizable. Based on the explicit form
C ˆ K…A ¡ ¶I4†¡1 , the matrix C is then simply attained
as

C ˆ
2:75 ¡2:06 1:72 ¡6:24

¡2:57 1:59 ¡2:27 6:80

" #

:

By direct calculation, it is easy to verify the three proper-
ties in theorem 1, namely CB ˆ I2 , CW¹2 ˆ 0 and
‰I4 ¡ B…CB†¡1

CŠA has eigenvalues f¡0:612 ;¡1:22 ;
0 ;0g. Hence, it can be declared that, by choosing the
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sliding vector s ˆ Cx, the system stability in the sliding
mode is guaranteed.

5. Conclusions

This paper presents a new design method for sliding
surfaces and via the pole-assignment method. Most sig-
ni® cantly, the pole-assignment method is applied to the
overall closed-loop system with the system in the sliding
mode. This simpli® es the design work because many
numerical tools have been well developed for such a
pole-assignment method. Three conditions are consid-
ered for the pole-assignment method of the overall
closed-loop system. After the feedback gain is obtained,
the sliding surfaces can be determined in an explicit
form. The three properties listed in theorem 1 have
been proved and demonstrated by a numerical example.
Based on this theorem, the system stability in the sliding
mode can be guaranteed. Most signi® cantly, this the-
orem also implies that the eigenvalues of the system in
the sliding mode can be arbitrarily assigned under the
restriction of CB ˆ Im . This restriction has been
employed in many sliding-mode controller designs.
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