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Dissipation in a partially coherent flux-driven ring
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We have studied a mesoscopic ring threaded by a magnetic flux that increases linearly with time. The ring
is partially coherent such that conduction electrons in the ring will encounter incoherent scatterings. We have
treated both the incoherent scatterings and the coherent inelastic processes on the same fGatiadyri>A
model, as proposed by Biker' for incoherent scatterings, has been adopted for our situation. This allows us
to solve exactly, and analytically, the coherent inelastic processes caused by the time-varying magnetic flux.
Our results demonstrate unequivocally that, for the electrons emanating out of incoherent scatterings, the lower
the energies of these electrons the greater will be their net contribution to the dc component of the induced
current. A physical explanation is presented.

[. INTRODUCTION band periodically, with a frequenay=eFL/#. It was hence
predicted that the induced current has no dc component but
A mesoscopic conducting ring threaded by a magnetidhas a Josephson-like ac comporiei@n the other hand,
flux has been of great interest to physicists because it prowhen the induced electric field is large enough to bring about
vides a paradigm allowing issues of fundamental importanceoticeable Zener tunneling, Lenseaal®>~® showed that the
to be tested experimentaffyFor a fixed magnetic flux, the phase randomization in the Zener tunneling alone can gener-
single-electron states in a one-dimensiofid)) ring can be ate a nonzero dc component in the current, and hence a re-
identified with the Bloch states in a 1D crystal that has asistive behavior, in the ring. This result was controverted by
periodic potentiaV(x)=V(x+L), whereV(x) is the poten- Landauet'® that, in the absence of inelastic scattering, all
tial along the ring and. is the circumference of the riry. ~ €nergies stored in the system are retrievable in later times so
The threading magnetic flus plays the role of a wave that the dc component in the induced current must be zero.
vector k such that the dependence @ of the electronic Meanwhile, Gefen and Thouléssstudied the same prob-
eigen-energies in the ring can be obtained through the did€™M Py taking the weak localization point of view and
persion relationE, (k) of the corresponding 1D crystal, sh_owed.that the states are Ioc_allzed in energy whenever the
wherek= — (2m/L)®/®* . Hered* =hcle is a flux quan- driven ring has elas'glc scatterings. Th_ey concluded that no
tum, and the band indexin E, (k) denotes the spectrum of energy can be supplied to the system in the steady state and

: . X i that the system would exhibit a resistive behavior only in the
eigen-energies for the electron states in the ring. Fumermorf)’resence of inelastic scattering. Blatter and Broteund
the persistent current in the ring, given by '

i out that the process of phase randomization in the Zener
== (2L)Zfojn=—C2nf, JE, /0P, where f, represents ynneling amplitudes leads to the localization of the electrons
the occupation number for theth eigenstate, is a periodic iy energy space but not to the resistive behavior. More re-
function of ®. It is due to the periodic dependence®Bf  cently, Goreliket al*® proposed the possibility of fractional
onk. pumping of energy into the ring. All these studies demon-

This concept of analogy between the states in a mesostrate beyond doubt that a driven ring is a complicated prob-
copic ring and that in a one dimension crystal was extendegbm and that the physics depends intricately upon both the
by Buttiker, Iml‘y, and LandaUélto the case when the flux is e|astic and ine|astic scatterings_
changing linearly in time. This analogy has taken the adia- These many different predictions to the physical proper-
batic pOint of view such that the time evolution of the Statesnes of a driven ring are based on the interpretation of the
are interpreted in terms of the instantaneous Eigenstates Wave functions expanded in terms of the instantaneous
the ring? The intuitive piCtUre that arises is essentia”y thateigenstates of the ring, as we have mentioned earlier. This
the eigenstates in the ring, when driven by the induced ﬁel%pproach, though forma”y Correct, is numerica”y very in-
F, eVOlVe along .theil‘ reSpeCtive diSperSion curves aCCOI’dingO|Ved and usua”y approximations were introduced to sim-
to the relationik= —eF. The modification of this picture plify the problem. However, in the case of a mesoscopic ring
due to the possible transitions between different energyhere phase coherence is important, we feel that the time-
bands have also been discussed. evolution of the states should be treated more carefully.

This intuitive picture has since become the basics for thedence we propose to solve the problem fully quantum me-
discussions of a number of physical properties proposed fachanically by invoking a different expansion scheme for the
mesoscopic rings. In a disordered ring, the eigen-energiesave functions of the states in the ring. In addition, to ad-
over the entire range ob can be grouped into bands sepa- dress the resistive behavior, we have adopted the incoherent
rated by energy gaps. For the case when the induced electricatterer modé&lfor the incoherent processes in the ring. As
field is small, such that the Zener tunneling between bandan illustration to the insights obtained from this approach,
can be neglected, the states are caused to traverse the saane to the effectiveness of this approach, we consider a par-
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tially coherent flux-driven smooth ring. We note that even In the following we select the length urit* = p, the en-
though we have not included other coherent processes, sueigy unit E* =#2%/(2m} R* 2), the time unitt* =4/E*, the
as those that arise from disorder, in the ring, we have inangular frequency uniw*=E*/4, and the flux unit®*
cluded in this case the coherent, but inelastic, processeshc/e. Furthermore, for a linearly increasing magnetic flux,
caused by the time-varying flux. We have solved these cowe have®z=wt®*. With this, the electron would have,
herent inelastic processes exactly. The extension of our apespectively, gained, or lost, an energyr@ if it moves
proach to the case when the ring has impurities is straightaround the ring once counter-clockwisely, or clockwisely.
forward and is currently under investigation. According to the above choice of units, the Salinger

In this work, the basic wave functions in a driven ring is equation is made dimensionless, given by
shown similar to that in a biased one dimension crystal ex-
cept for a phase factor that has coupled #ipatial to the . d 2 L0~
time coordinates. We note, however, that this phase factor -l %J”"t W(g)=i ﬁw(¢1t)’ 2
and the periodic boundary condition in the ring together con- ) ) _
stitute the essential causes for the difference in the physichich, when invoking a transformation
between a ring and a one dimension crystal. In fact, with ~ .
directions accounted for, the phase factor provides a way for V(p,t)=e"'"P (1), (©)]
the system to count the number of turns that the electron has;y 5150 be cast into the form
traversed. The wave function of the electron then becomes a
sum over many terms, each has its own time dependence and 52 P
each associates with a different number of net clockwise (— —2—w¢)\lf(¢,t)=i—‘lf(¢,t). (4)
turns traversed by the electron. Hence, our results are differ- g ot
ent from what one would expect if one adheres to the afore- . .
mentioned intuitive picture—that a driven ring behaves . F'oM the above equations, we see tifalescribes a one-

analogously to a biased one dimension crystal. Since the inQimensiclnal particle acted upon by a constant electric field
tuitive picture for the one dimension crystal has assumed thehereasV, together with the periodic boundary condition at
adiabatic viewpoint, the discrepancy we find is an examplell times, describes a particle in a driven ring. The two wave
showing that an adiabatic approximation that works in ondunctions differ by a phase facter '“'¢, which has coupled
dimension does not necessarily work in a mesoscopic ring.the time with thespatial coordinate. This phase factor con-
In addition to the fully quantum-mechanical treatment,tributes nontrivially to the deviation of the physics in a
our approach differs from previous works on driven rings bydriven ring from that in a driven one dimension system. This
the method of implementing incoherent scatterings. Incohereffect of the phase factor enters when we impose the single-
ent scatterings have previously been introduced by way of @alueness i’ by matching the wave function at=0 to
relaxation timé"**or a cut-off time* But in transport phe- that at¢= 2. To facilitate the matching, we define in the
nomena, the electrons that have suffered incoherent scattebiiowing a basic set of wave functions for the driven ring.
ing should not be discarded. Rather, these electrons shouithe actual wave function for the driven ring that satisfy the
be allowed to continue their contribution to the transportsingle valueness can be constructed out of this basic set of

current, albeit incoherently. We have adopted an incoherenyave functions. The basic wave functions that represent par-
scatterer model for our time-dependent situation. This modefcle moving counter clockwisely is given by

has the incoherently scattered electrons coupled to a reser-

voir through a unitary coherent scattetefhe model also 1) 2
has the nice feature that the incoherently scattered electrons _ Vg(d’vs)H(%) 553/2(‘1"8)} _
can be reintroduced back into the ring systematically. Fi- W(*)(¢,t;e)= 2 n g i(ztod)t
nally, in the calculation of the current in the ring, we have (63w/ )
included contributions from all electrons below the Fermi ®)
energy, we find that states below Fermi energy contributeind the basic wave functions that represent particle moving
significantly. clockwisely is given by
The paper is organized as follows. In Sec. Il, we present
our formulation that incorporates the incoherent scatterings 2)| 2
into the coherent states of the driven ring. In Sec. Ill, we Vf(fl’vs)H(% )[§§3/2(¢:8)
present our numerical results. Finally, in Sec. IV, we present W(7)(¢,t;e)= 5 m g l(etod)t,
a conclusion. (63wl )
(6)
Il. THEORY Here §(¢>,s)=w%(d)+8/w), and I—E)(z),H(%Z)(z) are Han-
The Schrdinger equation for an electron in a ring of ra- kel functions. The energy parameteris a continuous vari-
dius p, and threaded by a magnetic fldxs, is given by able.

The normalization of these basic wave functions is chosen
1 (h 19 e dg such that their particle current is unity, according~to our

2
- 9~
T;ﬁJ“ c 2mp q’(‘ﬁ’t):'ﬁﬁ‘y(‘ﬁ’t)' (D) units. The currentj, given by the expressiorj=¥*
(—idldp+ wt)¥+c.c., is in the unit of —eE*/h. This
is the effective mass of the electron agd 0. choice of the normalization for the basic wave functions is

*
2mg

*

wheremg
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$=0 has the nice feature that the outgoing amplitudes do not de-
pend on the location of the coupler. For definitness, in our
calculation, we choose the coupler to locatepat ¢.

We also define, in leads= 3,4, basic wave functions rep-
resenting particles that incident upon the coupler as

—i(st—Ex;)
Y(x ,t;e)=—(2\/g)l/2 , (8)
and that emanating from the coupler as
e i(et+ex))
Z(Xi,t;8)=W, 9

where the coupler is at=0.

When electrons are incident from the reservoir within an
energy intervatle via either lead 3 or 4, the incident current
is N(e)=2f(&)de, wheref(e) is the Fermi-Dirac distribu-
. tion for the reservoir with a chemical potentjal and a spin
Reservoir degeneracy has been included. Hence, we choose the inci-

FIG. 1. A partially coherent flux-driven ring. The flux, repre- dent amplitude to be/N(e). o
sented by the center shaded circle and directed out of the page, is NOW, for the case when the electrons incident from the
linear in time with ®gz=wt. The ring is coupled via a coupler, Ieadi_:4, the wave functions in the leads 4 and 3 are, re-
depicted by the triangle, to a reservoir, depicted by the wavy linespectively,
The coordinate) measures the counter-clockwise displacement of

an electron along the ring. @4: YN(&)Y(Xq4,t5€), (10)

deemed necessary, as pointed out by Stone and Szafer, and

we want to invoke the incoherent scatterer model of w

Buttlker.l for the incoherent processes in our system. V,= E tal(N)Z(Xs,t;80). (11)
The incoherent scatterer model consists of a coupler that n=0

couples the electrons in the system to a reservoir. Current .
that flows into the reservoir will be reinjected back into the V& Stress here that the coefficient8l(s) andts(n) are

system according to the distribution in the reservoir. There iN°T€ appropriately interpreted as the current amplitudes,
no phase correlation between the currents that flow in anf}ith the former as the incident current amplitude and the
out of the reservoir. It is through this process that phas atter as th(_e reflected current amplitudes. The use of the t_erm
coherence in the particles is lost. The unitary property of thdvave functiorfor the states in the leads 3 and 4 is to main-
coupler warrants the conservation of current. Furthermord@n the uniformity in our formulation. The index denotes

by describing the coupler in terms of an energy-independer{® possible reflected electron energies that are resulted from
S, the incoherent processes can be cast into a scattering prob€ action of the time-varying flux in the ring. ,

lem and is readily treated on the same footing with other Meanwjlle; the wave functions in the ring, and in the
coherent processes in the system. Bhmatrix,! given by region ¢o= =2, is of the form

0 Vi-a e 0 V=2 [An(en) T (9, e~ wgbo)
n
Vi—a 0 0 Vo ~
S Va 0 0 1=l @ +Bn(en) V() (p,ten— wo)], (12)
0 Ja  —Jl-a 0 and, in the region & ¢ < ¢, the wave function is given by
couples incoming waves, with  amplitudes a P, 22 [Co(en) T (,tie0— webo)

=(a;,a,,a3,a,), to the outgoing WaVEi, Wit? amplitudés

=(b,,b,,bs,b,), through the relatiorb'=Sa'. The nota- T(— o

tio(n i:onzveritiozrg) for thege amplitudes is shown in Fig. 1. +Du(en) V(@ tien— webo) . (13
The form of S is chosen such that it is unitary as long asHere, e,=¢+2mwwn. These wave functions are written in

the basic wave functions, both incoming and outgoing, arehe form that facilitates the matching of the wave functions

normalized to give a unit current. The coupling parameter at all times.

with O=a=<1, gives the extent the ring couples with the = From matching the wave functions ét=0 and¢$ =2 at

reservoir. Fora=1, the particle will lose track of its phase all times, we obtain the relatiorG, (e,)=A,_1(en_1), and

entirely once it encounters an incoherent process.a~e0, B, 1(en_1)=Dp(ey). At the coupler, we obtain two more

the ring and the reservoir are decoupled. Bmatrix also  relations,
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An(en)=\aN(g) 8, o+ V1—aCy(en), (14) Again, the solution can be understood according to the
following physical picture. The electrons incident from lead
and i =3 enter the ring as clockwisely moving states. Under the
B action of the induced electric field, tlemergyof these elec-
Dn(en)= V1= aBy(en). (19 {rons decreases as they maintain their clockwiseness. This

We note here thaC,(e,)=0 for n<0. Solving these rela- feature is reflected in the relatid,_;(e,_1)=Dn(&p). In
tions, we findB,=D,=0, andA,, is nonzero fon=0, given  the Nth clockwise turn, the wave functions become evanes-
by A,(e,) = \/aN(s)(l—a)n/Z. cent and the electrons are reflected into counter-clockwisely
. This s.olutio.n can b(_a understood gccordir)g to the; f°"°W'moving states. This feature is given by the relat%n,\,

ing physical picture. First of all, the increasing flux induces
an electric field that points clockwisely along the ring. Sec-
ond, the electrons incident from leaer4 enter the ring as ) , ) SR .
counter-clockwise moving states. These electrons will mainth€ induced field. This feature is given by the relation
tain their counter-clockwiseness under the action of the inCn(gn) =A,-1(en—1). At the coupler, the probability ampli-
duced field while theienergyincreases because of the phasetude for the electrons to maintain their phase coherence is
factor e '“'¢. This increasing irenergyis reflected by the contained in Eq(19) and also in the recurrence relation for
increasing in the indexn in the relation C,(ep) Zn(sn) just before Eq(19).

=An-1(en-1). At the coupler, there is a probability ampli-  The time-averaged curreftlj5), in the ring is evaluated
tude \1— a for the electrons to maintain their phase coher-to be

ence and this condition is contained in E4).

=D_\€%®). The electrons will then maintain their counter-
clockwiseness while theienergyincreases by the action of

The time-averaged curretd j,), in the ring is then evalu- . N *
ated to give (dja)= _nZO |D—n(8—n)|2+n;N [Crlen)|?
(djaye= 2 aN(e)(1—a)"=N(e). (16) =—N(&)[1—-(1— )"+ N(e)(1— )N,
e (22

For the case when the electrons incident from the fead where the first, second, current term is, respectively, the con-
=3, the wave functions in the lead 3 and 4 are, respectivelytribution of the clockwise moving, counter-clockwise-
moving, part of the electron wave function in the ring. It is
A v ) ) worth noting that in the case of largé the first current term
V= N(S)Y(X3’t’8)+§n: ra(N)Z0xs,ten),  (17) will dominate and its value approachesN(e), which is
exactly equal but opposite to the time-averaged current
(dja) in Eq. (16). This result implies that the net dc com-
ponent in the current goes to zero rapidly as the energy of the
V= tya(N)Z(Xs,tey). (18)  injected electrons increases beyarnd 2 mw.
n In any case, the net dc component in the current due to
The coefficients s5(n) andt,4(n) denotes the reflection cur- _particles injected from within thde interval in the reservoir

rent amplitudes in the leads 3 and 4, respectively. The wavéd®
functions in the ring are of the same form as in E4®) and

and

(13), except that the coefficiens,,, B,, C,,, andD, are (di)e=(djg)c+(dja)

replaced byA,,B,,C,, andD,,. FoIIov_ving the same matph- =2(1— a)N(2— a)f(s)de.

ing procedure, we obtain the relations (23)
Cn(en)=An-1(en-1),Br-1(en-1)=Dn(en), An(en)

The total dc component in the currefjh, then involves an
integral over all possible incident energies from particles
within the reservoir. The expression fop), is

=y1—-aA,_1(e,_1), and also the relation

Du(en)=VaN(g) 8yt V1= aDyi1(eni1), (19

where D,=0 for n>0. We note that the clockwise states <j>t:2(2_a)fm(l_a)Nf(S)dS. (24)
that are injected into the ring would become evanescent after 0
they have traversel turns, withN=[&/(27w)], where[x]

denotes the largest integer smaller than or equal &t the Since our major focus in this paper is the effects of incoher-

~ . ent processes on the low-temperature characteristics in me-
Nth turn, we haveC_ =D € *(). Finally, we obtain the soscopic rings, it suffices to let the temperature of the reser-
expressions oD _, for 0=<n=<N, voir be zero. Thus the expression ¢y, we used in our
following numerical examples is given by

D (s n)=(1—a)"*JaN(e), (20)
y23
and ofC,, for n=—N, <j>t:2(2_a)fo (1-a)" de, (25

Coley) =(1—a)N* 2% [4N(e). (21)  wherep is the chemical potential of the reservoir.
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FIG. 2. Total dc component in the currgjji}, as a function ofx FIG. 4. (j), as a function ofa for x=25, and for Zre
for 2rw=0.001 and fOfa:0.001, 0.0025, and 0.005. =0.01, 0.004. and 0.001.
. RESULTS ing to our choice of units, the induced electromotive force

27R*F in the ring equals 10’ V when 27w =0.004.
q d he chemical i2bf th ) Since our emphasis is upon the interplay between the coher-
ependence on the chemical potenpiadt the reservoir, on ot nayyre of the mesoscopic ring and the dissipation in the

2me, and one, respectively. In these numerical exampl_es,ring, the numerical examples presented will be in the small
the physical parameters are chosen to be that of a Sem'coﬂégime

ductor ring, withR* =150 nm andm} =0.067n,. Accord-

We present in Figs. 2—4 th§), characteristics and its

In Fig. 2, we present the total dc component in the current
(j); as a function of the chemical potential for 27w
=0.001 and fora=0.001, 0.0025, and 0.005. All the three
curves show thafj ), increases withu initially and saturates
] in the largeru regions. The saturated value @f), depends
0=0.0005 on a and is larger for smallew. Furthermore, the curves for
0=0.001 larger o have their saturation features occurred earlier, at
smaller . values. This saturation feature, together with the
- trend that the slope dfj); decreases monotonically wifh,
@=0.005 demonstrates unequivocally that the greater the energies of
e | the electrons that emanate out of incoherent scatterings, the
Ve smaller will be their net contribution t¢j),. These features
can be understood according to the remarks we made in the
paragraph before E@22).

- A more comprehensive account is summarized in the fol-
lowing. The electrons that have suffered from incoherent
- scatterings are reinjected back into the system, but they are
equally likely to be injected into either clockwise- or
counter-clockwise-moving states in the ring. Those electrons
- that move against the direction of the induced field will keep
- ] on moving in the same direction while the@nergiesin-
- =] crease continuously. This cannot keep on indefinitely be-
cause the electrons will, unavoidably, lose their phase coher-
S oo oo oom 0‘(;08 010 ence via incoherent scatterings_. On the othe_r hand, those

’ ’ ' > electrons that move along the direction of the induced field

T . . L
have theirenergiesdecrease continuously. Whether these

FIG. 3. (j); as a function of Zrw for =25, and for fivea  electrons can hit their classical turning point and change their

values. direction of propagation depends on the degree of coherence,

80

a=0.0001

80 «=0.0025

40

¢,

20
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the energy of the reinjected electrons, and the magnitude adrty that the contribution from larger is greater, which is
the induced field. The electrons will have a greater chance ddifferent from the dissipation characteristics in the dc com-
hitting their classical turning point if they can maintain their ponent in the current.

coherence longer. Hence, the favorable condition for the As a comparison with an adiabatic point of view, we
electrons to hit their classical turning point and be reflecteqa|culate the persistent currej(a) in the ring for a static

is to have smallx, x, and large Zrw. For those electrons  fjyx ¢ =ad*. Using similar approach in this paper, we ob-
that cannot hit their classical turning point, the correspondinggi,,

aN=a[el2mw] is very large. Our results in E§22) show
that the contributions to the dc component in the current

from both the clockwise- and counter-clockwise-injected Do _ _

electrons will then cancel each other exactly. However, for Jp=aN(e)[Fla.s.8)~F(a.e,~a)], @
those electrons that hit their classical turning point and be
reflected, they have a net contribution. With this understandghere
ing, we then expect the above two physical situations to
manifest differently in their dissipation characteristics.

Indeed, two dissipation characteristics are identified in 1
Fig. 2. In the small region,(j), increases with., showing F(a,e,a)= _
that all reinjected electrons contribute. The curvature in the 2—a—2\/1—a005{277(\/g— a)]
curves show that contributions from electrons of larger in-
jected energies are smaller. This then is the regime when the
reinjected electrons can hit their classical turning points. Wdf we assume the adiabatic viewpoint by allowing- wt,
call this the regime of coherent reflection. In the larger then j,(wt) would contain many terms with time depen-
region, (j), becomes saturated, showing that electrons oflences of the form sin@mwt). We find that then=1 term
larger injected energies no longer contribute. This then is the, ;, extracted from Eq(27) using Fourier expansion, is the
regime when electrons of larger injected energies cannot higame ag, in Eq.(26). Thus, we find in this situation that the
their classical turning point. We call this the saturation re-ac component in the current is consistent with the adiabatic
gime. In addition, ase decreases, the regime of coherentpoint of view but the dc component is not.
reflection becomes more favorable such that the saturation
feature is pushed to larger values and the saturation value
of (j) increases. IV. CONCLUSION

In Fig. 3, we presentj), as a function of the induced
electromotive force Zw for uw=25, and for five values of
a, as indicated in the figure. The curves @f 0.005, and
0.0025 are linear, showing Ohmic-like behavior. However,
the other curves of smallex values are no longer linear,

(28)

In conclusion, we have found interesting dissipation char-
acteristics in a partially coherent flux-driven ring. Two re-
gimes are identified. The first regime corresponds to the situ-

showing non-Ohmic-like behavior. With the help of Fig. 2 ation when the electrons that emanate out of incoherent

we see that the Ohmic-like behavior corresponds to thécattgrings, and move a!ong the direction of_the induced
saturation regime while the non-Ohmic-like behavior €l€ctric field, have appreciable chance of reaching their clas-
corresponds to the coherent reflection regime. Thus Fig. §ic@l tuming point. In this regime, the dissipation is not
is another manifestation of these two regimes. The deperf?mic-like and the dc component in the current increases
dence of(j), on a is presented in Fig. 4 wherp=25,  With the Fermi energy.. The second regime corresponds to
and 2r0=0.001, 0.004, and 0.01. The overall trend the situation when most of the electrons that emanate out of
shown is that(j), drops asa increases or as 2w incoherent scatterings, and move along the direction of the
decreases. Again, this trend is consistent with our abovéduced electric field, have negligible chance of reaching
understanding. their classical turning point. In this regime, the dissipation is
The approach in this paper also allows us to obtain théhmic-like while the dc component in the current becomes
analytic expressions for the ac component in the current ifndependent of the Fermi energy. However, in this latter re-
the saturation regime and in the smallregime. Since the gime, we find that the ac component in the current, with a
current expression obtained from the wave functions in Eqsperiod of 1k, is the same as the adiabatic result. All these
(12) and (13) involves a double sum over terms with time results are the consequences of the coherence and the topo-
dependences of the form sinf@wt), we look, in particular, logical nature of the ring combined. We expect these dissi-
at the ac componemh= 1. For electrons injected within the pation characteristics to manifest also in flux-driven rings
de interval, the net contribution to the ac compongntin containing impurities that are in the regime of significant

the ring is obtained, given by Zener tunneling.
j1=4N(e)J1-asin(Ve2m)sin2nwt).  (26) ACKNOWLEDGMENT
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