
270 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 48, NO. 2, FEBRUARY 2000

Antijam Capability Analysis of RS-Coded
Slow Frequency-Hopped Systems

Yu T. Su, Member, IEEE,and Li-Der Jeng

Abstract—The application of Reed–Solomon codes in slow
frequency-hopped systems has been extensively studied. Earlier
investigations assumed an infinite interleaving length and con-
sidered partial-band noise jammers only. This paper extends
previous efforts by analyzing the effect of finite interleaving length
and the impact of band multitone jammers. We also explain why
two-threshold (2T) erasure-insertion methods (EIM) are needed
and examine their performance. Numerical results are presented
to compare the effectiveness of EIM’s and jammer types and to
study the relationships among the hop rate, the interleaver size,
and the code rate. The use of 2T EIM’s necessitates the estimation
of several additional channel and signal parameters. Simple and
effective estimation algorithms are provided as well.

Index Terms—Errors-and-erasures decoding, frequency-hop,
jamming, RS code.

I. INTRODUCTION

A FAST frequency-hopped (FFH) system employs both
frequency and time diversity and enjoys the advantage

of having a “coding gain.” On the other hand, to acquire a
satisfactory antijam (AJ) capability, a slow frequency-hopped
(SFH) system usually has to add an extra mechanism of
protection—that is where forward error-control (FEC) coding
comes into play. Stark [1] compared the performance among
repetition codes, convolutional codes, and Reed–Solomon (RS)
codes for SFH systems. -ary frequency-shift keying (MFSK)
or differential phase-shift keying (DPSK) are two practical
modulation schemes that most frequently go with RS-coded
FH signals. An excellent review of the application of RS codes
to SFH/MFSK systems can be found in [10].

Side information, which offers the information about the
received symbol’s reliability, can help increase the error-cor-
recting capability of a given code. Stark [1] showed that the
use of binary side information about the presence of a jammer
to determine whether a received symbol should be erased can
enhance the error-control capability of RS codes. Hagenauer
and Lutz [4] used channel state and erasure information
derived from received waveform’s amplitude to improve the
performance of a mobile satellite system. In [6], test symbols
were utilized as a reference of symbol reliability in various
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concatenated, coded SFH systems. Viterbi introduced the
ratio threshold test (RTT) as a symbol reliability measure [8].
RTT was later used as an erasure-insertion method (EIM)
for errors-and-erasures (EE) decoding of RS codes in the
presence of partial-band jamming [10]. Bayesian methods for
erasure-insertion was investigated by Baum and Pursely [9].
Reference [11] examines various design issues pertaining to
the use of concatenated coding in SFH/binary frequency-shift
keying packet radio networks.

Interleaving is needed to randomize burst errors and to
increase the effectiveness of FEC codes. Most investigators
assume perfect interleaving in their analysis. We take the
effect of finite interleaving size into account and consider
both partial-band noise jamming and band multitone jamming.
Two EIM’s, namely, Viterbi’s RTT and Bayesian method are
examined in this paper. Besides, we propose two-threshold
(2T) EIM’s to enhance the EE decoder’s performance. As will
be shown, the 2T-RTT can achieve performance very close to
that of the much more complicated Bayesian method.

The rest of this paper is organized as follows. Section II
gives a general description of the RS-coded SFH/MFSK system
and the jamming models to be studied. Related system and
jammer parameters are also defined. Section III presents our
analysis of the codeword-error probability (CEP), taking finite
interleaving length effect into account. Then Section IV argues
why a 2T EIM is preferred, suggests how the corresponding
optimal thresholds can be found when a single-pass EE decoder
is used and derives the conditional probabilities needed in
computing CEP for different jamming threats. In addition to
partial-band noise jammers (PBNJ), which have been consid-
ered by earlier investigations on RS-coded SFH systems, we
also deal with band multitone jammers (BMTJ). Section V
presents a Bayesian EIM against BMTJ and discusses 2T
extensions for both RTT and Bayesian methods. Numerical
results and related discussion are given in Section VI. Finally,
Section VII summarizes our major results, and the appendix
presents channel and signal parameter estimation algorithms
that are needed for both one-threshold (1T) and 2T EIM’s.

II. SYSTEM DESCRIPTION ANDDEFINITIONS

Shown in Fig. 1 is a block diagram of an RS-coded
SFH/MFSK system. A binary data sequence of rate
bits/s is first converted to an -ary symbol sequence with a
symbol rate information symbols/s
and then sent to the (, ) extended RS encoder whose output
rate is coded symbols/s, where is the code rate.

The output sequence of the encoder is symbol-interleaved.
The interleaver can be a block interleaver or a convolutional

0090–6778/00$10.00 © 2000 IEEE



SU AND JENG: AJ CAPABILITY ANALYSIS OF RS-CODED SFH SYSTEMS 271

Fig. 1. Block diagram of an RS-coded SFH/MFSK system.

one. To avoid the “mismatch” between the coded symbol size
(i.e., codeword length ) and the modulated signal dimension
( ), we shall assume throughout our discussion.
Hence, when MFSK modulation is used, each element in the
coded symbol field is represented by a different MFSK tone.
The associated MFSK signal hops at hops/s according to
a preassigned pattern. The received waveform is dehopped,
despreaded, and noncoherently detected before being dein-
terleaved and decoded. Such an FH system assumes that the
hopper can only hop into uniformly and nonoverlapped spaced
bands. There are certainly other ways to arrange the candidate
signal bands.

Consider a block symbol interleaver with depth(number
of columns) and span (number of rows), where is equal to
an integer multiple of the codeword length, i.e., for
some . Only is considered in this paper. Generalization
to an arbitrary is straightforward. Code symbols are written
into the interleaver by columns and read out by rows. Conse-
quently, two consecutive input code symbols are separated by

symbols at the output. At the receiving end, the dein-
terleaver simply performs the inverse operation where demodu-
lated symbols are written into the deinterleaver as rows and read
out as columns. Convolutional interleavers can achieve the same
effect with only half of the storage requirement. Since both in-
terleavers can accomplish the same performance, we will limit
our discussion to block interleavers only. A bank ofenergy
detectors is used by the receiver to noncoherently detect the de-
hopped MFSK signal. It is assumed that the desired dehopped

-ary band for the candidate MFSK tones occupiescontin-
uous channels. This -ary band is called the signal baseband.
The channel used by the transmitted signal is called the signal or
the message channel and the other channels are referred
to as noise channels.
The first class of jammers considered is the PBNJ who dis-
tributes its total power evenly over a continuous spectrum of
bandwidth . Let be the total hopping bandwidth, then

is the fraction of band jammed. Within the

jammed band, the transmitted signal is corrupted by an equiva-
lent additive white Gaussian noise whose power spectral density
(PSD) level is equal to , where ;
otherwise, the PSD level is . If channel 1 is the mes-
sage channel, then the corresponding energy detector output
is a noncentral chi-square random variable whose probability
density function (pdf) is given by

(1)

where is the signal amplitude, is the noise variance and,
is the modified Bessel function of the first kind of order

zero. The energy detector output for a noise channel, on the other
hand, is central chi-square distributed, i.e.,

(2)

This is a result of our assumption that if one channel is jammed
by a PBNJ, the entire hopped -ary signal band is jammed
as well. Another class of jammers to be considered is the
BMTJ [5], which produces equal power continuous-wave
tones and places jamming tones in some randomly selected

-ary signal bands. The reason why a BMTJ can do this is the
assumption that it knows how the communicators partition the
total hopping band into disjoint -ary subbands. If the number
of orthogonal tones within the hopping band is ,
then the fraction of tones jammed is . Define

the dehopped signal band is jammed, and we have

(3)

Only the worst-case [5] is considered in this paper. Note
that the above equation uses an assumption mentioned before:
the candidate message bands are uniformly and nonoverlapped
spaced. If we allow the hopper to have a frequency step smaller
than a signal band or even smaller than a channel such that the
candidate bands are overlapped, then the worst-case ( )
BMTJ will become less effective.
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If the -ary band containing the signal is not jammed, then
is noncentral chi-square distributed and its pdf is the same

as (1) with . The other outputs are independent with
a common pdf given by (2) where . When an -ary
band suffers from the worst-case BMTJ, the jamming tone is
either in the message channel or in one of the noise channels.
If the message channel is jammed, then the pdf ofcan be
expressed as [7]

(4)

where is the jammer amplitude. In case the jamming tone is
in, say the second (noise) channel, then the outputs of the signal
channel and the jammed noise channel are noncentral chi-square
random variables, while those of the other noise channels are
independently, identically distributed central chi-square random
variables.

III. D ECODERPERFORMANCEANALYSIS

Recall that an RS code can correct any combination oferro-
neous symbols anderased symbols as long as ,
where is the minimum distance of the code used. Let us
assume that amongincorrectly detected symbols, of them
come from jammed symbols, and the remaining
symbol errors are caused by thermal noise alone. Similarly, we
divide erasures into those caused by jamming () and those
resulted from thermal noise only ( ). In investigating
the effect of a block interleaver, we assume that the hop duration
is equal to that of multiple rows of the interleaver. Hence, there
will be several hops in one interleaving block of depthand
span , and at the interleaver output, symbols of several adja-
cent rows (or columns) will be in the same hop. Again, we want
to emphasize that in general,can be chosen to be equal to an
integer multiple of , but only the case is considered
in this paper. Extension to the more general case is straightfor-
ward. Let be the code rate, be the interleaving size,

be the number of hops per seconds, and assumeof
hops are jammed. If one hop consists ofsymbols from

rows, the number of jammed symbols in one codeword is
and the remaining symbols are free of jamming. The
numbers of jammed and unjammed erasures and errors, ,

, and must satisfy the inequalities and
. Furthermore, the hop rate is related

to , , and by bits/hop. The
corresponding relation between the bit and hop signal energy

, can easily be derived accordingly.
With the above definitions and assumptions, we can write the

average CEP as

(5)

where is the CEP given that out of hops per inter-
leaving block is jammed. Assuming a random hopping pattern,
we can express the probability of the latter event as

(6)

Substituting (6) into (5), we obtain

(7)

In case BMTJ ( ) instead of PBNJ is present, the associ-
ated has the same expression withreplaced by defined
in (3). For EE decoding, , and for
errors-only (EO) decoding, .

The following definitions are needed.
symbols of a codeword are incorrectly detected

but not erased,
erasures in one codeword,

symbol erasedsymbol jammed ,
symbol erasedsymbol unjammed,
symbol incorrectly detectedsymbol jammed

but not erased,
symbol incorrectly detectedsymbol unjammed

and not erased.
It is worth noting that the condition—symbol erased or not
erased—becomes irrelevant if we set the erasure-insertion
threshold or (see the next two paragraphs for details) to
one, corresponding to the case when the EO decoder is used.
For this case, we have, with or

(8)

while for EE decoding

(9)

where

(10)

, , and . When
, , each symbol of a codeword belongs to a

different hop, and the performance of the decoder is equivalent
to that of the ideal (perfect) interleaving case ( ). This
can also be shown by substituting the above condition into (6)
and (7) [or (8)] and comparing the resulting expression with that
of the ideal interleaving case.

On the other hand, the probability depends on the EIM
used. We shall consider two such schemes. The first scheme,
borrowed from Viterbi’s RTT [8] and was used in [9], computes
the ratio between the largest and the second largest outputs of
the energy detector bank and compares it with a threshold.
An erasure is inserted when this ratio is smaller than. Let

be the outputs of the energy detector bank. De-
fine , , and the

th smallest among ’s. That is, is a per-
mutation of , which resulted from arranging
the latter in ascending order of magnitude. Then a symbol is
erased if .
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The second scheme is derived from Bayesian decision theory
[9] and can be described as follows. Let be the th code
symbol alphabet, be the -ary enve-
lope detector outputs, , the conditional pdf of given
that was sent, and , thea priori probability of sending .
The Bayesian method decides that a received symbol should be
erased if

(11)

where . Reference [9] considered PBNJ only; the
extension to the BMTJ case is presented in Section IV.

According to the above description, no matter whether the
RTT or Bayesian method is used, we have

(12)

IV. ERASUREINSERTIONANALYSIS

The above analysis indicates that to calculate the CEP, one
has to evaluate the conditional probabilities , , , and

. They are functions of the channel condition (jammer type)
and the EIM.

A. Why Two Thresholds?

Both RTT and Bayesian methods involve a threshold com-
parison operation. Previous investigations did not consider
channel state information (jammed or unjammed) and use
only one threshold no matter whether the received symbol is
jammed or not. Since the decoder’s performance is a function
of the channel state, if we use different thresholds for different
channel states, the resulting performance should be improved.

Although the CEP is a very complicated function of the
EIM performance, as presented in the last section, an ideal
single-pass EIM should erase those symbols that have been
incorrectly demodulated and leave the other symbols intact. In
practice, we want to maximize the following two probabilities:

symbol not erasedsymbol correctly detected

symbol erasedsymbol incorrectly detected

(13)

Let be the erasure-decision variable, and then such a design
goal can be achieved by the likelihood ratio test (LRT)

(14)

or equivalently

(15)

where is the conditional pdf of , given ,
is the corresponding joint pdf, while is thea priori prob-
ability of . It can be shown that for RTT in PBNJ

(16)

and

(17)

where , being the signal energy
per coded symbol.

Fig. 2 depicts the joint pdf’s for the above test when a PBNJ
is present. Obviously, the optimal thresholds derived from the
LRT for the jammed and unjammed channel states are far from
each other. Hence, a single threshold EIM is not appropriate
for this case. We can use a similar likelihood ratio to deter-
mine the optimal thresholds for Bayesian erasure method, but
closed-form expressions for the corresponding joint (or condi-
tional) pdf’s cannot be found. It is worth pointing out that, as ex-
amples in Section VI will show, there are cases when the two op-
timal thresholds derived from the LRT are so close that a single
threshold for both channel states is good enough.

B. Noise Jamming

Subsequent analysis assumes that channel 1 is the message
channel. We shall consider RTT only; for the Bayesian method,
we have been unable to find closed-form expressions for the
conditional probabilities that are needed to evaluate CEP. For
PBNJ, the following four equations are known [9, Appendix]:

(18)

(19)
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Fig. 2. Conditional pdf functions for the erasure-decision variable of RTT.

(20)

(21)

The above conditional probabilities are derived under the as-
sumption that the symbol of concern is not jammed. The corre-
sponding jammed conditional probabilities can be obtained by
the substitution .

C. Tone Jamming

For this case, and are the same as the corresponding
conditional probabilities—(19) and (18)—in PBNJ. Similarly,

and can be calculated from

(22)

and

(23)

where and are the same conditional probabilities
as and , except that the unjammed condition is re-
placed by the BMTJ-jammed condition. It is straightforward to
see

signal band is jammed

the first channel is jammed

signal band is jammed

the first channel is jammed

the second channel is jammed

signal band is jammed

the second

channel is jammed

the th channel is jammed

signal band is jammed

the th

channel is jammed

(24)

Using (4) and applying [13, eqs. (6.631.4) and (6.633.2)], we
obtain after some manipulation

(25)

(26)

and

(27)

where

(28)

The conditional probability

signal band

is jammed

signal band

is jammed
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can be computed from

the first channel is jammedsignal band

is jammed

the first channel

is jammed

the th channel is jammedsignal band

is jammed

the th channel is

jammed

(29)

where we can show

(30)

and

(31)

V. RELATED DESIGN ISSUES

A. Bayesian Erasure-Insertion in BMTJ

Equation (11) indicates that in order to derive the Bayesian
erasure-insertion rule in BMTJ, we need to obtain the corre-
sponding conditional pdf’s. It can easily be seen that in the ab-
sence of jamming, the conditional pdf becomes

(32)

When a BMTJ is present, the conditional pdf becomes
, where is

the conditional pdf of given that was sent and theth
channel is jammed. It is straightforward to show that if

(33)

and if

(34)

Given the above equations, the Bayesian erasure-insertion test
(11) becomes

(35)

B. 2T Methods

As discussed before, a 2T system is often needed to obtain op-
timal decoder performance. However, 2T systems require more
than the knowledge of the channel state. More specifically, be-
sides , we need to have an estimate of when a
PBNJ is present, and if the receiver is jammed by a BMTJ, the
signal and the interferer strength ( ) and the noise power
are needed. Methods for generating these estimates are given
in the appendix. Given these estimates, the 2T-RTT will erase
a received symbol if where is a function of

or ( , ). The analysis presented in the last section
can be used to evaluate the performance of both 1 and 2T-RTT
systems. When a 2T-Bayesian method is used to combat PBNJ,
a received symbol is erased if

and a jammer is present (36)

or if

and no jammer is present (37)

where . When BMTJ is present, (36) should be replaced
by

(38)
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VI. NUMERICAL RESULTS AND DISCUSSIONS

The numerical results presented in this section are based on
the following system parameter values: and a
hopping rate of 80 coded symbols/hop. Given a total jamming
power , a jammer can choose a suitable value foror
such that the resulting CEP is maximized. On the other hand,
either RTT or Bayesian method needs threshold values which
can be optimized to yield a minimum worst-case CEP. Since
the decoder performance depends on , , or ,
we need information about these parameters to find an optimal
threshold. Algorithms for estimating these channel and signal
parameters are given in the appendix. Numerical examples pre-
sented below assume that all estimations are perfect. To com-
pute CEP in PBNJ, we have invoked (7), (9), (10), (12), (18),
and (19). In addition to these equations, (22)–(27) and (29)–(31)
are also used in computing CEP in BMTJ.

Fig. 3 shows the worst-case CEP performance for the (32,
18) extended RS code when the 1T-RTT EE decoder is used.
We have shown performance with fixed threshold values 0.65,
0.71, and the optimal threshold, which depending on ,
is within the interval (0.59, 0.81). Evidently, 1T-RTT is not
very sensitive to the threshold value as long as the latter is
within a certain range of the optimal value. Those curves
labeled with “suboptimal threshold” are obtained by using the
optimal threshold associated with a known , assuming
no jamming (i.e., ). Their performance is very
close to that when the true optimal threshold is used. The
advantage of using an EE decoder can be seen from both Figs. 3
and 4 where the worst-case CEP performance of both the EO
decoder and the EE decoder with RTT are depicted. Each
PBNJ curve shown in Fig. 4 seems to converge to a plateau
which is due to a finite value (6 dB in this case). The
effect of finite-length interleaving, or equivalently, the hopping
rate, is examined in Figs 3–5. For a fixed interleaving length,
the increase of leads to a smaller , while increasing the
hopping rate (smaller symbols/hop) with a fixed interleaving
length yields a larger . It is worth mentioning that in a real
system, the hopping rate is usually kept constant. If jamming
is severe, the data rate is reduced but the hopping rate is un-
changed. With the same amount of interleaver, the interleaving
depth can be increased as the data rate is decreased. These
figures indicate the following. 1) EE decoding is preferred only
if the interleaving size is large enough; 2) BMTJ is a more
effective jammer against MFSK signals. We also notice that
the degradation due to finite interleaving length becomes more
significant as increases. Furthermore, the EE decoding
gain is a decreasing function of CEP and is larger when a PBNJ
is present. The performance improvement obtained by using
the Bayesian method can be found in Fig. 5. The improvement
is more impressive when used against BMTJ; it is also an
increasing function of .

The effect of code rate for the EE-RTT decoder is shown in
Fig. 6. A lower rate code has a better error-correcting capability
but yields a smaller symbol energy if is fixed. This
is similar to noncoherent FFH systems for which there exists
an optimal diversity order that achieves the best balance be-
tween the diversity gain and the noncoherent combining loss.

Fig. 3. The influence of the threshold value on the CEP performance of
1T-RTT against PBNJ. Performance under full-band jamming is also shown to
demonstrate the effectiveness of the PBNJ.

Fig. 4. CEP performance of the EO and the 1T EE-RTT decoders against PBNJ
and BMTJ. Performance under full-band jamming is also given.

Fig. 5. Worst-case performance comparison between two EIM’s against PBNJ
and BMTJ. The effect of finite interleaver can be seen as well.
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Fig. 6. The effect of the code rate on the worst-case CEP performance.

Fig. 6 and other numerical investigation [12] indicate that when
the given is larger than 4 dB but less than 10 dB, the
corresponding optimal code rate lies somewhere between 0.5
and 0.625. Figs. 7 and 8 compare the CEP and bit-error prob-
ability (BEP) performance of four EIM’s, 1T-RTT, 2T-RTT,
1T-Bayesian, and 2T-Bayesian, in PBNJ when dB.
A closed-form formula relating CEP and BEP cannot be found.
If we assume that all codewords are equiprobable and all de-
coding errors are equally likely, then the identity [14, p. 262]

(39)

according to our simulation results [12], is a quite accurate ap-
proximation no matter which EIM is used. Due to space limita-
tion, only one set of decoded BEP curves is shown in Fig. 8.

At lower ’s, 1T-Bayesian and 2T-Bayesian give
almost the same performance and outperform the other two
schemes. The performance of 2T-RTT is very close to that
of Bayesian methods and is superior to that of 1T-RTT. For
high values, however, all erasure schemes yield similar
performance, as erasure scarcely exists. The reason for the
performance difference between 2T-RTT and 1T-RTT can
easily be found from Fig. 2 and related discussion in Section IV:
at low ’s the optimal thresholds for the two states are
far apart, while at high ’s they are much closer. For
Bayesian methods, we find that the corresponding Bayesian
ratio values computed from (11) and (36) or (35) and (38) are
often very close and are dominated by the values contributed
by the correct conditional pdf’s. As our simulation assumes
perfect channel state detection and parameter estimations,
there is almost no performance difference between 1T- or
2T-Bayesian methods.

Fig. 9 shows the CEP performance of four EIM’s in BMTJ
for and 0.5. Similar to the PBNJ case, two Bayesian
methods give the best and almost identical performance, while
2T-RTT is far superior to 1T-RTT at low and medium ’s.

Fig. 7. CEP performance comparison of four EIM’s against PBNJ.

Fig. 8. BEP performance of four EIM’s against PBNJ.

Fig. 9. CEP performance comparison of four EIM’s against BMTJ.
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Fig. 10. CEP performance of various EIM’s as a function of�.

Fig. 11. Worst-case� for EO and 1T-RTT decoders against PBNJ.

At high ’s, all erasure schemes fail to achieve signifi-
cant EE decoding gain. As we have learned from Fig. 4, EE
decoding using 1T-RTT gives only negligible performance gain
in BMTJ. Using two thresholds does make RTT more useful
in this case. To validate our analysis, simulated performance of
1T-RTT and 2T-RTT is also given in Figs. 7 and 9. The simu-
lated performance of 1T-RTT and 2T-RTT matches those pre-
dicted by our analysis. Fig. 10 shows the CEP performance as
a function of against PBNJ and BMTJ, respectively. The (32,
18) extended RS code is used. When a BMTJ is present, 2T-RTT
and Bayesian method render similar performance for all. But
this is true for PBNJ only if . 1T-RTT does not pro-
vide any decoding gain over the EO decoder when
and a BMTJ is present. For both jammers, the performance of
1T-RTT and 2T-RTT converge asbecomes greater than 0.5.
Similar performance trends are observed for some other cases
[12]. Fig. 11 depicts the worst-caseas a function of .
The behavior shown in Fig. 11 is similar to other uncoded cases:
when is small, the jammer has enough power to spread
its power over a larger portion of the communication band but

if is large, the jammer has to concentrate its power over
a much smaller band.

VII. CONCLUSIONS

This paper examines various design issues of SFH/MFSK
systems that use an RS code and a block interleaver. These sys-
tems are designed to operate in the presence of PBNJ or BMTJ.
The capability to combat both types of jammers is enhanced by
using a single-pass EE decoder. We compare the effectiveness of
the two jammers and analyze the influence of the interleaving
length and the hopping rate. Other important issues discussed
are the selections of the EIM and the code rate. The study of
the influence of finite interleaving length enables us to carry
out tradeoffs between interleaving length and the CEP perfor-
mance. It is concluded that the 2T EE decoder does offer no-
ticeable performance improvement over the EO decoder when

is not too high and the interleaving length, or equiva-
lently, the hopping rate, is large enough.

Four EIM’s (1T-RTT, 2T-RTT, 1T-Bayesian, and
2T-Bayesian) for supporting an EE decoder are investi-
gated. We found that in most cases of interest, the performance
of 2T-RTT is very close to that of 1T-Bayesian, while the latter
is almost the same as that of 2T-Bayesian. The performance of
1T-RTT is not as impressive as that of 2T-RTT, especially when

is small. Because RTT is much easier to implement than
the Bayesian methods, 2T-RTT is clearly the most appropriate
EIM among the four.

We also use our CEP analysis to evaluate the effect of the
code rate and find an optimal range of code rates. For the two
classes of jammers—BMTJ and PBNJ—under investigation,
the former, since it possesses more information about the
communication signal, is clearly a more effective jammer.
Finally, for completeness, we present in the appendix simple
and effective algorithms for estimating several channel and
signal parameters that are needed in deciding the optimal
erasure threshold.

APPENDIX

CHANNEL AND SIGNAL PARAMETERS ESTIMATIONS

As mentioned in the main text, the threshold level used in
an erasure insertion decision is a function of some channel
and signal parameters. A maximum-likelihood (ML) or max-
imum a posteriori estimate based on the energy detector
bank output has to compute some conditional pdf of

. Unfortunately, the associated conditional pdf is not
available because we do not know which channel is the
message channel. This problem can be solved by using a
training sequence. For example, the transmitter can insert
known MFSK symbols at the beginning of every hop. But
for reliable estimation of the channel and signal parameters,
we may need several hundreds or even more than a thousand
training symbols. Another possible solution can be obtained
by applying the so-called generalized ML approach. The re-
sulting receiver would have to perform joint detection and
estimation; the structure is complicated and is different from
the simple engergy detector bank discussed in this paper.
Hence, we shall use an alternative approach that does not
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need extra training symbols and will not entail complicated
algorithms.

A. PBNJ

When a PBNJ is present, the parameter of interest is
(or ), which is a function of the signal amplitudeand
the noise variance . Consider the sum of the energy detector
outputs . The pdf of is given by

(A.1)

Obviously, the statistic of is independent of the fact that the
th channel is the message channel and is a function of both
and . ML estimates of and based on (A.1) can be

obtained, but the resulting estimates have to compute special
functions like and . To alleviate this difficulty
and provide simple, efficient estimates, we invoke the method
of moments, which calls for the evaluation of moments of.
The first two moments of are given by [14]

(A.2)

(A.3)

(A.4)

Let be the th sample of . The weak law of large number says
that the time average of theth moment , if
it exists, converges in probability to , i.e., .
It is easy to see

(A.5)

(A.6)

where, as defined above, and are the time average of
and , respectively. The weak convergence of the above two
equations follow from the facts that and are continuous
functions of and . These two equations imply that a rea-
sonable estimate for , , is given by

(A.7)

Fig. 12 shows the mean and standard deviation [i.e., root mean
squared (rms)] estimation error of the above estimator as a func-
tion of and the number of samples used. It is clear that
100 samples are enough to render an rms error smaller than 3 dB.

B. BMTJ

When the jammer is a BMTJ, the parameters of interest are
( , , ), or equivalently, ; see (4). Following the
approach used in the PBNJ case, we have to find a parameter

Fig. 12. Mean and rms error of theE =N estimator (A.7).

that is a function of the above parameters but is independent
of the information about which channel is jammed and which
channel bears the transmitted message. The parameter used in
the previous case, the sum of the energy detector output, is not
a good candidate in this case, since the corresponding pdf does
not render a closed-form expression. Moreover, the pdf and the
moments of depend on whether the jamming tone is in the
message channel or in a noise channel. Therefore, we consider
the new parameter defined by

(A.8)

where

(A.9)

(A.10)

and are the in-phase and the quadrature-phase compo-
nents of the th channel output. It follows that the pdf of is
given by

(A.11)

where . Furthermore

if a BMTJ is present (A.12)

otherwise (A.13)

and

if a BMTJ is present (A.14)
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Fig. 13. Means and rms errors of theS=Iestimator (A.20).

Fig. 14. PDF’s ofY .

otherwise (A.15)

Equivalently

if a BMTJ is present (A.16)

otherwise (A.17)

The above results immediately lead to

(A.18)

Estimations for and can be obtained by using samples of
from the unjammed hops; see (A.5) and (A.6). We can also use
samples of unjammed and apply the method of moments to

(A.13) and (A.15). An alternative approach, assuming estimate
of has been obtained, is based on (A.12), (A.14), and

(A.19)

where and are the time averages of and , respec-
tively. Equations (A.18) and (A.19) suggest that

(A.20)

(A.21)

The performance of the estimator (A.20) as a function of the
number of symbols and is shown in Fig. 13. Like the
estimator (A.7), a hundred symbols are good enough to guar-
antee an rms estimation error smaller than 3 dB.

The above estimators (A.20) and (A.21) assume that the
channel state information—whether a jammer is present or
not—is given. If the strength of the tone jammer is not too
weak, (A.12) suggests that is a good channel state indicator.
We can classify the jammed and the unjammed states by
computing the log likelihood ratio associated with, which is
equivalent to the test

jammed

not jammed (A.22)

Shown in Fig. 14 are the pdf’s of for both jammed and
unjammed cases. Obviously, a thresholdthat separates

jammed and unjammed can easily be found, and
the associated classification rule (A.22) will render only small
decision error. On the other hand, if is small, i.e., is
large, thedistancebetween the above two pdf’s is small, and it
is more difficult to separate the two channel states. But in this
case (high ), 1T systems perform just as well 2T systems
whence we can use the threshold derived from the
estimate alone without compromising the system performance.
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