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Abstract

This study develops an inventory model for initial-stock-dependent consumption rate when a delay in payment is
permissible. In the inventory model, shortages are not allowed. The e!ect of the in#ation rate, deterioration rate,
initial-stock-dependent consumption rate and delay in payment are discussed. In the study, mathematical models are also
derived under two di!erent circumstances, i.e., Case I: The credit period is less than or equal to the cycle time for settling
the account; and Case II: The credit period is greater than the cycle time for settling the account. Besides, expressions for
an inventory system's total cost are derived for these two cases. Moreover, a computational procedure and GINO
(Lasdon et al., ACM Transactions Mathematical Software 4 (1978) 34}50) are proposed to obtain the optimal order size
and cycle time. The results can help managers determine the optimal total cost. Finally, a numerical example
demonstrates the applicability of the proposed model. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the conventional EOQ model, it is implicit
that the customer must pay for the items as soon as
the items are received. In practice, however, sup-
pliers o!er their customers a certain credit period
without interest during the permissible delay time
period. Allowing a delay in payment to the supplier

is a form of price discount. Such a convenience is
likely to motivate customers to order more quantit-
ies because paying later indirectly reduces the
purchase cost. On the other hand, a decaying item
such as photographic "lm, electronic item and fruit
gradually loses its potential. When a price increase
is anticipated, companies may purchase large
amounts of items without considering related costs.
However, ordering large quantities would not be
economical if the items in the inventory system
deteriorate and the demand depends on the stock
level. Therefore, in this study, we develop an inven-
tory model under in#ation for stock-dependent
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consumption rate and deterioration of items when
delay in payment is permissible.

The area of permissible delay in payments has
received some attention. Davis and Gaither [1]
developed EOQ models for "rms o!ering a one
time opportunity to delay payments by their sup-
pliers for the order of a commodity. Goyal [2]
developed mathematical models for determining
the EOQ under conditions of a permissible delay in
payments. Shah et al. [3] studied the same model
when a delay in payments of order and shortages
are permitted. Mandal and Phaujdar [4] studied
the same situation by considering the interest
earned from the sales revenue. Shah [5] extended
an EOQ model in which delays in payment are
permissible and items in inventory deteriorate at
a constant rate over time. Shah [6] also developed
a probabilistic time-scheduling model for an expo-
nentially decaying inventory when payment delays
are permissible. Aggarwal and Jaggi [7] developed
ordering policies of deteriorating items under per-
missible delay in payments. Shah and Sreehari [8]
developed an EOQ model when the delay in
payment is permitted and the capacity of own
warehouse is limited. Jammal et al. [9] extended
Aggarwal and Jaggi's model with allowable short-
age.

Several studies have examined the in#ationary
e!ect on an inventory policy. Buzacott [10]
developed an approach of modeling in#ation by
assuming a constant in#ation rate. Misra [11]
proposed an in#ation model for the EOQ, in which
the time value of money and di!erent in#ation rates
were considered. Mangianeli et al. [12] not only
reviewed and classi"ed models appearing in
previous literature, but also presented some exam-
ples with relaxed assumptions. Brahmbhatt [13]
also developed an EOQ model under a variable
in#ation rate and marked-up prices. Later, Hwang
and Sohn [14] developed a deterministic inventory
model for items that deteriorate continuously and
follow an exponential distribution when a price in-
crease is anticipated. Gupta and Vrat [15] de-
veloped a multi-item inventory model for a resource
constraint system under a variable in#ation rate.

Other investigators have described inventory
policies for decaying items. Ghare and Schrader
[16] "rst analyzed the decaying inventory problem,

and also developed a relatively simple economic
order quantity model with a constant decay rate.
Covert and Philip [17] derived a revised form of
the EOQ model under the assumption of Weibull
distribution for deterioration. Also, Cohen [18]
formulated and solved an inventory model by
simultaneously considering pricing and ordering
policies for exponentially decaying inventory. Dave
[19] proposed a deterministic inventory model in
continuous units and discrete time for deteriorating
items.

Many studies have modi"ed inventory policies
by considering the `stock dependent consumption
ratea. Gupta and Vrat [20] considered this phe-
nomenon by using the following relation:

j"a#bQq, j"a!bQq, j"a#beQ, j"a!beQ,

where a, b, q are positive constants (q is initial-
stock-dependent consumption rate parameter; and
Q is order size). Their calculation of the average
system cost was based on order size rather than
inventory level. Mandal and Phaujdar [21] sugges-
ted that the demand rate depends on the current
stock level. Mandal and Phaujdar [22] also
developed a model for deteriorating items with
a stock-dependent consumption rate. In 1988,
Baker and Urban [23] developed an inventory
model with an inventory level-dependent demand
rate. In addition, Vrat and Padmanabhan [24]
developed an inventory model under a constant
in#ation rate for initial-stock-dependent consump-
tion rate. Padmanabhan and Vrat [25] proposed
an EOQ model for items with initial-stock-depen-
dent consumption rate and exponential decay.
Moreover, Datta and Pal [26] studied the inven-
tory problems for deteriorating items with inven-
tory level-dependent demand rate and shortages.
Pal et al. [27] developed a deterministic inventory
model for deteriorating items with stock-dependent
demand rate. Urban [28] developed inventory
models with the demand rate dependent on stock
and shortage levels. The model includes the e!ect
of a stock-dependent demand rate, considering
both initial-stock-dependent demand and instan-
taneous-stock-dependent demand rate. Karabi
et al. [29] developed an inventory model with two-
component demand rate and shortages. Su et al.
[30] developed an inventory model under in#ation
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for initial-stock dependent consumption rate and
exponential decay.

This study develops an inventory model for
initial-stock-dependent consumption rate when a
delay in payment is permissible. Shortages are not
allowed and the e!ect of the in#ation rate, deterio-
ration rate, initial-stock-dependent consumption
rate and delay in payment are discussed. Math-
ematical models are also derived under two di!er-
ent circumstances, i.e.,

Case I: The credit period is less than or equal to
the cycle time for settling the account and

Case II: The credit period is greater than the
cycle time for settling the account.

Also, expressions for an inventory system's total
cost are derived for the above two cases. Moreover,
a computational procedure and GINO [31] are
proposed to obtain the optimal ordering size and
cycle time. Those results help the decision-makers
in accurately determining the optimal total cost.
Finally, a numerical example demonstrates the ap-
plicability of the proposed model.

2. Notations and assumptions

The notations adopted in this paper are as fol-
lows:

H length of planning horizon
¹ cycle time
I inventory level
I
t

inventory level at time t
Q order size
k constant rate of in#ation ($/$/unit time)
C(t) unit purchase cost for an item bought at

time t. That is, C(t)"C
0
ekt where C

0
is the

unit price at time zero
A(t) ordering cost for an order placed at time t.

That is, A(t)"A
0
ekt, where A

0
is the order-

ing cost at time zero
i
*

inventory holding cost per unit per year
excluding interest charges

h a constant fraction of the on-hand inventory
which deteriorates per unit time

i
%

Annual interest that can be earned per unit
i
#

Annual interest charges payable per unit
(Note: We generally have i

#
'i

%
)

M permissible delay period for settling ac-
counts

QH
1

the optimal order size in Case I
QH

2
the optimal order size in Case II

¹H
1

the optimal cycle time in Case I
¹H

2
the optimal cycle time in Case II

The following assumptions are made:
(1) The unit price is subject to the same in#ation

rate as other inventory related costs, thereby
implying that the ordering size can be deter-
mined by minimizing the total cost over
a planning period.

(2) The in#ation rate is constant.
(3) The replenishment rate is in"nite, i.e., the re-

plenishment is instantaneous.
(4) Backlogging is not allowed.
(5) Lead time is zero.
(6) The demand rate is known and constant.
(7) Initial-stock-dependent consumption rate is

assumed, in which the demand rate depends on
the order size and follows the function
j"a#bQq, where a, b, q are positive con-
stants and Q is order size (QO0).

(8) The inventory carrying charge is a constant.
(9) A constant fraction, h, of the on-hand

inventory which deteriorates per unit time
and there is no repair or replenishment of
the deteriorated inventory during a cycle time
¹.

(10) During the "xed credit period M, a deposit is
made of the unit cost of generated sales revenue
into an interest bearing account. The daily
expenses of the system can be met by retaining
the di!erence between retail price and unit
cost. At the end of the credit period, the ac-
count is settled and interest charges are pay-
able on the account in stock.

The following considers the period in which
accounts of the purchased quantities are not
settled. The generated sales revenue is deposited in
an interest bearing account which earns an annual
interest at a rate of i

%
per unit. After the account is

settled, the system starts remitting interest charges
on the outstanding amount in inventory at a rate of
i
#

per unit. Only the unit cost from the generated
revenue is assumed herein to be deposited in an
interest bearing account. Consequently, the system
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can retain the di!erence between the retail price
and unit cost to meet daily expenses.

3. Model development

Assume that H"m¹, where m is an integer for
the number of replenishments to be made during
period H, and ¹ is a constant interval of time
between replenishments. The change in the inven-
tory level during an in"nitesimal time is a function
of the deterioration rate, demand rate and inven-
tory level. Thus, we have

!dI"I
t
h dt#j dt. (1)

After adjusting the constant of integration, the
solution of Eq. (1) is

I
t
"

j
h

(eh(T~t)!1), 0)t)¹. (2)

Consequently, initial inventory after replenishment
becomes

I
0
"Q"

j
h

(ehT!1). (3)

Since the inventory model considers delay in pay-
ment e!ect, there are two distinct types of cases in
inventory system.

Case I: M)¹

Let A(t) and C(t) denote the replenishment cost
and unit purchasing cost at time t, respectively.

Then replenishment cost in (0, H) is

C
3
"A(0)#A(¹)#A(2¹)#2#A((m!1)¹)

"A
0A

ekH!1

ekT!1B, (4)

and purchasing cost in (0, H) is

C
1
"Q[C(0)#C(¹)#C(2¹)#2#C((m!1)¹)]

"QC
0A

ekH!1

ekT!1B. (5)

For inventory carrying cost, let I(t) be the inventory
level at time t. Since Q"(j/h)(ehT!1), we have

I(n¹#t)"
j
h

(eh(T~t)!1), 0)t)¹ (6)

and holding cost in (0, H) is

C
#
"i

*

m~1
+
n/0

C(n¹)P
T

0

I(n¹#t) dt

"i
*
C

0

m~1
+
n/0

eknTP
T

0

j
h
(e(hT~t)!1) dt

"

ji
*
C

0
h2

(ehT!h¹!1)A
ekH!1

ekT!1B. (7)

Interest charged for the inventory not being sold
after the due date M in (0, H) is

C
*
"i

#

m~1
+
n/0

C(n¹)P
T

M

I(n¹#t) dt

"

ji
#
C

0
h C(M!¹)#

1

h
(eh(T~M)!1)A

ekH!1

ekT!1BD ,

(8)

and interest earned in (0, H) is

C
%1
"i

%

m~1
+
n/0

C(n¹)P
M

0

I(n¹#t) dt

"

ji
%
C

0
M2

h2 A
ekH!1

ekT!1B. (9)

From Eqs. (4), (5), (7)}(9), the total system cost over
(0, H) is

¹C
1
(H, ¹)"C

3
#C

1
#C

#
#C

*
!C

%1

"GA0
#QC

0
#

ji
*
C

0
h2

(ehT!h¹!1)

#

ji
#
C

0
h C(M!¹)#

1

h
(eh(T~M)!1)D

!

ji
%
C

0
M2

2 HA
ekH!1

ekT!1B. (10)

Case II: M'¹

No interest charged in (0, H) because the supplier
can be paid in full at the permissible delay and
interest earned in (0, H) is

C
%2
"i

%

m~1
+
n/0

C(n¹)CP
T

0

j dt#(M!¹)P
T

0

j dtD
"i

%
C

0
j(¹M!1

2
¹2)A

ekH!1

ekT!1B. (11)
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From Eqs. (4), (5), (7) and (11), the total cost over
(0, H) is

¹C
2
(H, ¹)"C

3
#C

1
#C

#
!C

%2

"GA0
#QC

0
#

ji
*
C

0
h2

(ehT!h¹!1)

!i
%
C

0
j(¹M!1

2
¹2)HA

ekH!1

ekT!1B.
(12)

Substituting the quadratic approximation of

ehT"1#h¹#(h¹)2/2,

eh(T~M)"1#h(¹!M)#
[h(¹!M)]2

2
,

ekT"1#k¹#

(k¹)2

2
, and

Q"

j
h

(ehT!1)

in Eqs. (10) and (12) yield

¹C
1
(H, Q)

"CA0
#QC

0
#

i
*
C

0
Q¹

2#h¹
#

QC
0
i
#
(¹!M)2

¹(2#h¹)

!

C
0
Qi

%
M2

¹(2#h¹)DA
ekH!1

k¹#(k2¹2/2)B , (13)

¹C
2
(H, Q)

"CA0
#QC

0
#

i
*
C

0
Q¹

2#h¹
!

QC
0
i
%
(2M!¹)

2#h¹

]A
ekH!1

k¹#(k2¹2/2)BD. (14)

In the proposed model, consumption rate is as-
sumed to follow the relationship j"a#bQq. In-
corporating this into Eqs. (13) and (14) yields

¹C
1
(H, Q)

"CA0
#QC

0
#

i
*
C

0
QN(Q)

2#hN(Q)
#

QC
0
i
#
(N(Q)!M)2

N(Q)(2#hN(Q))

!

C
0
Qi

%
M2

N(Q)(2#hN(Q))DA
ekH!1

kN(Q)#(k2N(Q)2/2)B
(15)

and

¹C
2
(H, Q)

"CA0
#QC

0
#

i
*
C

0
QN(Q)

2#hN(Q)
!

QC
0
i
%
(2M!N(Q))

2#hN(Q)

]A
ekH!1

kN(Q)#(k2N(Q)2/2)BD, (16)

where

¹"N(Q)"
!1#J1#(2Qh/(a#bQq))

h
. (17)

4. Special cases

Case (i): When M"0, i
%
"0 and i"i

*
#i

#
, Eqs.

(15) and (16) reduce to Su et al. [30]. Setting
(d¹C

1
(H, Q))/dQ"0 and (d¹C

2
(H, Q) )/dQ"0,

the optimal value of Q becomes

C
0
#C

0
i*

QM(Q)=(Q)#M(Q)N(Q)!QhN(Q)=(Q)

MM(Q)N2

!

(A
0
#QC

0
#QiC

0
N(Q)/M(Q))(=(Q)#kN(Q)=(Q))

N(Q)#k/2MN(Q)N2

"0, (18)

M(Q)"1#S1#
2Qh

a#bQq
, (19)

=(Q)"
(a#bQq)!qbQq

(a#bQq)2J1#(2Qh/(a#bQq))
. (20)

Case (ii): When M"0, i
%
"0, i"i

*
#i

#
, and

h"0, Eqs. (15) and (16) reduce to Vrat and
Padmanabhan [24]. Setting (d¹C

1
(H, Q) )/dQ"0

and (d¹C
2
(H, Q))/dQ"0, the optimal value of

Q becomes

1

2(a#bQq)#kQ

*C
kbqQq

a#bQqA
Q2C

0
i#4(a#bQq)(A

0
#QC

0
)

2(a#bQq)Q B
#QC

0
i!

2(A
0
#QC

0
)(a#bQq(1!q)#kQ

Q D
#C

0
"0. (21)
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Table 1
Results obtained from the example

M"0.1 year M"0.4 year M"0.7 year

Case I II II
Ordering size 79.45 80.77 81.06
Cycle time 0.153 0.155 0.156
Total cost 1417.90 1381.44 1345.24

Case (iii): When M"0, i
%
"0, i"i

*
#i

#
, k"0

and h"0, Eqs. (15) and (16) reduce to Gupta and
Vrat [20]. Setting (d¹C

1
(H, Q))/dQ"0 and

(d¹C
2
(H, Q))/dQ"0, the optimal value of Q be-

comes

Q2C
0
i!2A

0
a#2A

0
bQq(q!1)#2bqC

0
Qq`1"0.

(22)

Case (iv): When M"0, i
%
"0, i"i

*
#i

#
, h"0

and b"0, i.e., j"a, Eqs. (15) and (16) reduce to
Buzacott [10]. Setting (d¹C

1
(H, Q))/dQ"0 and

(d¹C
2
(H, Q))/dQ"0, the optimal value of Q be-

comes

Q2C
0
i!2aA

0
!k(2QA

0
#Q2C

0
)"0. (23)

Case (v): When M"0, i
%
"0, i"i

*
#i

#
, k"0,

h"0 and b"0, Eqs. (15) and (16) reduce to Classi-
cal EOQ. Setting (d¹C

1
(H, Q))/dQ"0 and

(d¹C
2
(H, Q)/dQ"0, the optimal value of Q be-

comes

Q"S
Aa
C

0
i
. (24)

5. Computational procedure

Eqs. (15) and (16) are the total system cost for
M)¹ and M'¹, respectively. Since these equa-
tions are nonlinear, the optimal value of Q can be
found by using a commercial software GINO
which utilizes a powerful CRG2 [31] optimizer. By
doing so the total cost can be minimized. The
optimal order size, cycle time and total cost can be
obtained as follows:

Step 1: Determine QH
1

from Eq. (15) and ¹H
1

from
Eq. (17), if ¹H

1
*M, obtain ¹C

1
(H, QH

1
) from Eq.

(15).
Step 2: Determine QH

2
from Eq. (16) and ¹H

2
from

Eq. (17), if ¹H
2
(M, obtain ¹C

2
(H, QH

2
) from Eq.

(16).
Step 3: By comparing ¹C

1
(H, QH

1
) and

¹C
2
(H, QH

2
), select the order size and cycle

time with the least total cost evaluated in Step 1,
Step 2.

6. Numerical example

An IC packaging factory needs a chemical com-
pound i.e., molding compound, to produce a 64-
Mega DRAM. The molding compound consump-
tion rate depends on initial-stock and is deteriora-
ting due to inappropriate storage, temperature, or
expiration date. There is a constant ordering inter-
val; permissible delay time period in payments for
the factory is 0.1, 0.4 and 0.7 year. It is assumed that
the deterioration rate is constant. The following
data are used:
a"500 units
b"1.00
q"0.6
i
*
"0.18 per year

i
%
"0.09 per year

i
#
"0.11 per year

H"1 year
C

0
"$2.50 per unit

A
0
"$7.50 per unit

k"$0.1 per unit per $
h"0.1

According to the proposed computational pro-
cedure, the results listed in Table 1 are obtained for
M"0.1, 0.4 and 0.7 year. This table reveals that an
increase in the permissible delay causes both the
order size and cycle time to increase. Moreover, the
total cost is markedly reduced.

The e!ect of h on the optimal order size, cycle
time and total cost is not signi"cant [7,9]. To
illustrate the intersection e!ect M, k and q, they are
assumed 0.05, 0.1 or 0.15 (change in the same rate
50%). Meanwhile, the other parameter values fol-
low those data mentioned above. By using the
computational procedure, Table 2 displays the
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Table 2
E!ects of M, q and k on the optimal ordering size, cycle time and total cost

k M 0.05 0.1 0.15

q 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

Ordering size 95.35 95.08 94.69 95.91 95.65 95.25 96.87 96.61 96.220.05
Cycle time 0.188 0.188 0.187 0.190 0.189 0.188 0.191 0.191 0.190
Total cost 1359.72 1360.57 1361.63 1353.20 1354.04 1355.10 1347.00 1347.85 1348.90

Ordering size 103.82 103.49 103.01 104.38 104.06 103.58 105.37 105.05 104.570.1
Cycle time 0.205 0.204 0.203 0.206 0.205 0.204 0.208 0.207 0.206
Total cost 1387.80 1388.69 1389.81 1381.10 1381.99 1383.10 1374.72 1375.60 1376.71

Ordering size 114.88 114.47 113.86 115.42 115.01 114.40 116.43 116.03 115.430.15
Cycle time 0.227 0.226 0.224 0.228 0.227 0.225 0.230 0.229 0.227
Total cost 1416.14 1417.07 1418.25 1409.26 1410.19 1411.37 1402.68 1403.61 1404.79

optimal order size, cycle time and total cost. From
above results, we can infer that:

1. When the parameter k increases and parameters
M and q remain unchanged, the optimal order
size, cycle time and total cost increase;

2. When the parameter q increases and parameters
M and k remain unchanged, the optimal order
size and cycle time decrease only slightly and the
optimal total cost increases only slightly;

3. When the parameters q and k increase and para-
meter M remains unchanged, the optimal order
size, cycle time and total cost increase;

4. When the parameters M and k increase and
parameter q remains unchanged, the optimal
order size, cycle time and total cost increase; and

5. When the parameters M and q increase and
parameter k remains unchanged; the optimal
order size, cycle time and total cost decrease
only slightly.

From Tables 1 and 2, we can know that the
parameters M, k and q a!ect the optimal order size,
cycle time and total cost. In terms of the intersec-
tion e!ect, the parameter k is stronger than the
parameters q and M about the optimal order size,
cycle time and total cost. The parameter q is stron-
ger than the parameter M about the optimal order
size and cycle time. However, the parameter M is
stronger than the parameter q about the optimal
total cost.

7. Concluding remarks

This study presents deterministic inventory mod-
els for initial-stock-dependent consumption rate
under a situation in which the supplier o!ers
a credit period to settle the account of a purchased
quantity. Shortages are not allowed and the e!ect
of the in#ation rate, deterioration rate, initial-
stock-dependent consumption rate and delay in
payment are discussed as well. Five special cases
are also presented. The proposed models can assist
the manager in concisely determining the order
size, cycle time and total cost. Numerical results
indicate that an increase in the permissible delay
causes both the order size and cycle time to
increase. Moreover, the total cost is markedly
reduced. The intuitive reason is that, when the
permissible payment period increases, the pur-
chaser earns more by investing the cash from the
sales of inventory resulting in lower costs. Also, the
purchaser tends to hold more inventory which ex-
tends the cycle time. The results of sensitivity analy-
sis indicate that the parameters M and k are more
sensitive toward the optimal total cost. That is, for
the parameters M, k, h and q, the e!ects of delay in
payment and in#ation are strong. The proposed
model can be used in inventory control of certain
decaying items such as photographic "lm, elec-
tronic components, and radio active materials.
A future study should further incorporate the
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proposed model into more realistic assumptions, such
as probabilistic demand, the demand which depends
on thecurrent stockanda"nite rateof replenishment.
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