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Abstract

We have studied a mesoscopic ring threaded by a magnetic flux that increases linearly with time. The ring is partially
coherent, such that conduction electrons in the ring will encounter incoherent scatterings. In addition, the electrons encounter
elastic scatterings due to the presence of an impurity in the ring. We have adopted aS-matrix model, as proposed by Bu¨ttiker
[M.Büttiker, Phys. Rev. B 32 (1985) 1846; M.Bu¨ttiker, Phys. Rev. B 33 (1986) 3020], for the incoherent scatterings in this time-
dependent situation. This allows us to treat the incoherent scatterings, the elastic scatterings and the coherent inelastic processes
on the same footing. We have solved the problem exactly. Our results demonstrate that, in the case of a weak impurity, the lower
the energies of the electrons that emanate out of incoherent scatterings, the greater will be their net contribution to the dc
componentIdc of the induced current. In the case of a strong impurity, however,Idc alternates between regions of zero and
nonzero values as the chemical potentialm increases. The peak value ofIdc in the nonzero region increases withm . We find that
these regions of zero, and nonzero,Idc correspond closely with the gaps, and the bands, respectively, of a one-dimensional
energy band. All these characteristics arise from the fact that the electrons traversing the ring have theirenergiesshifted
gradually until theirenergiesfall upon a forbidden region, where they suffer total reflection. This total reflection at the
forbidden region does not occur in a ring that has a constant flux. Rather, it results from the nonadiabatic effect of the changing
flux. The evolution of the nonadiabatic effects in the intermediate impurity regime has also been investigated.q 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

A mesoscopic conducting ring threaded by a magnetic
flux has been of great interest to physicists because it
provides a paradigm allowing issues of fundamental impor-
tance to be tested experimentally [1]. For a fixed magnetic
flux, there is an exact analogy between the single-electron
states in a 1D ring and the Bloch states in a 1D crystal that
has a periodic potentialV�x� � V�x 1 L�; whereV�x� is the
potential along the ring andL is the circumference of the
ring [2]. The threading magnetic fluxF plays the role of a
wavevectork such that the dependence toF of the electro-
nic eigen-energies in the ring can be obtained through the
dispersion relationEn�k� of the corresponding 1D crystal,

where k � 2�2p=L�F=F p
: Here F p � hc=e is a flux

quantum, and the band indexn in En�k� denotes the
spectrum of eigen-energies for the electron states in the ring.

The concept of analogy between the single-electron states
in a mesoscopic ring and that in a one-dimension crystal was
extended by Bu¨ttiker et al. [2] to the case when the flux is
changing linearly in time. This analogy has taken the
adiabatic point of view such that the eigenstates of the
ring for a fixed flux are reckoned as the momentary states
of the ring with the fixed flux equaling the momentary flux.

This intuitive picture has since become the basic for the
discussions of a number of physical properties proposed for
mesoscopic rings. In a disordered ring, the eigen-energies
over the entire range ofF can be grouped into bands
separated by energy gaps. For the case when the time rate
of change in the magnetic flux is low, the induced electric
field along the ring is small, and the Zener tunneling
between bands can be neglected. Hence the states are caused
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to traverse the same band periodically, with a frequency
v � eFL="; so that the induced current was predicted to
have no dc component but has a Josephson-like ac
component [2]. Later studies show that the ring will exhibit
resistive behavior, or a nonzero dc componentIdc, only in the
presence of incoherent scatterings [3,4]. The phase
randomization in the Zener tunneling amplitudes was
found to lead only to the localization of the electrons in
the energy space rather than leading to the resistive behavior
[4]. More recently, Gorelik et al. [5] proposed the possibility
of fractional pumping of energy into the ring. All these
studies demonstrate beyond doubt that a driven ring is a
complicated problem of which the physics depends
intricately upon both the coherent and the incoherent
scatterings.

Besides the adiabatic point of view, the previous
studies have also assumed that major contributions to
the resistive behavior arise from electrons in the vicinity
of the Fermi energy. However, reasonable these two
assumptions might appear to be, it is still of our interest
in this paper to explore the scope of validity of these
assumptions in the mesoscopic ring, where both phase
coherence and topological factor together could lead to
surprises. Towards this end, we propose to consider a
simplest nontrivial problem that has incorporated both
coherent and incoherent scatterings and yet can be solved
exactly. The system is a partially coherent flux-driven ring
that consists of an impurity. In solving the problem fully
quantum mechanically, we have invoked an expansion
scheme for the wavefunctions of the conduction electrons
in the ring, and have also implemented the incoherent
scattering processes in terms of an incoherent scatterer
model proposed by Bu¨ttiker [6,7].

The basic wavefunctions we used for the expansion
scheme is shown similar to that in a biased one-dimension
system except for a phase factor that has coupled thespatial
to the time coordinates. This phase factor effectively
provides a way for the system to count the number of
turns that the electron has traversed around the ring. The
wavefunction of the electron is then an expansion involving
many terms, each has its own time dependence and each
associates with a different number of net turns traversed.
The different time dependences of these terms render each
term to contribute independently toIdc. This is in contrast
with the situation of a fixed magnetic flux in which all the
terms, regardless of the number of turns traversed, have the
same time dependence, and thus contribute to the current
coherently.

The incoherent scatterings in the flux-driven ring have
been incorporated in previous studies by introducing a
relaxation time [5,8] or a cut-off time [3]. However, in the
transport phenomena, the electrons that have suffered
incoherent scattering should be allowed to continue their
contribution to the transport current, albeit incoherently.
Thus we adopt an incoherent scatterer model [7] for our
time-dependent situation. This model has the incoherently

scattered electrons coupled to a reservoir through a unitary
coherent scatterer [6]. The model allows us to treat the
coherent and the incoherent scatterings on the same footing.

The paper is organized as follows. In Section 2 we present
our formulation that incorporates the incoherent scatterings
into the coherent states of the driven ring. In Section 3 we
present our numerical results. Finally, in Section 4, we
present a conclusion.

2. Theory

The Schro¨dinger equation for an electron in a ring of
radius r , threaded by a magnetic fluxFB and with an
impurity, is
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wheremp
e is the effective mass of the electron ande . 0:

To make this equation dimemsionless, we define the
length unitRp � r; the energy unitEp � "2

=�2mp
eRp2�; the

time unit tp � "=Ep
; the angular frequency unitv p � Ep

=";
and the flux unit F p � hc=e: Meanwhile, the linearly
increasing magnetic fluxFB is defined asvtF p and ~g �
Epg: Thus the dimensionless Schro¨dinger equation is given
by
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By invoking a transformation

~C �f; t� � e2ivtfC�f; t�; �3�
Eq. (2) can be cast into the form
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The wavefunctionC describes a one-dimension particle
acted upon by a constant electric field. The phase factor
e2ivtf in Eq. (3) is suggestive that an electron will gain,
or lose, anenergyof 2pv if it moves, respectively, around
the ring once counter-clockwisely or clockwisely. This is
consistent with the direction of the induced electric field
along the ring. This phase factor plays a very important
role in imposing the single-valueness in~C at all time, and
at f � 0; and 2p. To facilitate the matching, we define in
the following a basic set of wavefunctions for the driven
ring. The actual wavefunction~C for the driven ring that
satisfies the single-valueness is constructed out of this
basic set of wavefunctions. The basic wavefunctions repre-
senting counter-clockwise-moving particles are given by

~C �1��f; t; e� �
��������
z�f; e�p

H�1�1=3�2=3z3=2�f; e��
�6 ���

v3
p

=p�1=2 e2i�e1vf�t
; �5�
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whereas the basic wavefunctions representing clockwise-
moving particles are given by

~C �2��f; t; e� �
��������
z�f; e�p

H�2�1=3�2=3z3=2�f; e��
�6 ���

v3
p

=p�1=2 e2i�e1vf�t
: �6�

Here z�f; e� � v1=3�f 1 e=v�; and H�1�1=3�z�; H�2�1=3�z� are
Henkel functions. The energy parametere is a continuous
variable.

These basic wavefunctions are normalized with unit
particle current, in the unit of2eEp

=h: This choice of the
normalization for the basic wavefunctions is deemed
necessary, as pointed out by Stone and Szafer [9], when
invoking the incoherent scatterer model of Bu¨ttiker [6] for
the incoherent processes in our system.

The incoherent scatterer model consists of a coupler that
couples the electrons in the system to a reservoir. Current
that flows out of the ring, and into the reservoir, will be
reinjected back into the system according to the distribution
in the reservoir. There is no phase correlation between the
currents that flow in and flow out of the reservoir. It is
through this process that phase coherence in the particles
is lost. Further, by describing the coupler in terms of an
energy-independentS, the incoherent processes are cast
into a scattering problem. TheS matrix [6], given by
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couples incoming waves, with current amplitudesa�
�a1; a2; a3;a4�; to the outgoing waves, with current ampli-
tudes b � �b1; b2; b3; b4�; through the relationbT � SaT

:

The notation convention for these amplitudes is shown in
Fig. 1.

The form ofS is chosen such that it is unitary as long as
the basic wavefunctions are all normalized to a unit current.
The coupling parametera , with 0 # a # 1; denotes the
extent that the ring couples with the reservoir. In the limiting
case ofa � 1; the particle will entirely lose track of its
phase every time it encounters the incoherent scatterer. In
the other limiting case, whena � 0; the ring and the
reservoir are decoupled. For definiteness, we choose the
coupler to locate atf � f0: Our results, however, turn out
to be independent off0. This reassures us, in part, the
credibility of the S-matrix incoherent scatterer model for
this time-dependent problem.

The basic wavefunctions in leadsi � 3; 4 are

Y�1��xi ; t; e� � e2i�et2 �
e
p

xi �

�2 ��
e
p �1=2 �8�

for particles incident upon the coupler, and

Y�2��xi ; t; e� � e2i�et1 �
e
p

xi �

�2 ��
e
p �1=2 �9�

for particles leaving the coupler. The coordinatesxi � 0 at
the coupler.

In the following, we first consider electrons incident upon
the ring within an energy interval de from the reservoir via
either leads 3 or 4. The incident current isN�e� � 2f �e� de;
wheref �e� is the Fermi–Dirac distribution for the reservoir
with a chemical potentialm , and the spin degeneracy has
been included. The incident current amplitude is then
chosen to be

�������
N�e�p

:

For electrons incident from the leadi � 4; the wave-
functions in the leads 4 and 3 are, respectively, given by

~C 4 �
�������
N�e�p

Y �1��x4; t; e�1
X
n

r44�n�Y�2��x4; t; en�; �10�

and

~C 3 �
X
n

t34�n�Y �2��x3; t; en�: �11�

The coefficientst34�n�; and r44�n� are the reflection current
amplitudes in leads 3 and 4, respectively. The indexn
denotes the possible reflected electron energies that result
from the action of the time-varying flux in the ring. The
wavefunctions in the ring within the region 0, f , f0 is
written as

~C I �
X
n

�An�en� ~C �1��f; t; en 2 vf0�

1 Bn�en� ~C �2��f; t; en 2 vf0��; �12�

M.T. Liu, C.S. Chu / Solid State Communications 114 (2000) 167–172 169

Fig. 1. A partially coherent flux-driven ring. The flux, represented
by the center shaded circle and directed out of the page, is linear in
time withFB � vt: The ring is coupled via a coupler, depicted by
the triangle, to a reservoir, depicted by the wavy line. The electron
coordinatef increases in the counter-clockwise direction along the
ring. The impurity is atf � 0:



and, within the regionf0 , f , 2p; is written as

~C II �
X
n

�Cn�en� ~C �1��f; t; en 2 vf0�

1 Dn�en� ~C �2��f; t; en 2 vf0��; �13�
where en � e 1 2pvn: These wavefunctions, including
their energy argumentsen 2 vf0; are written in the form
that facilitates the matching of the wavefunctions atf � f0;

and at all times. Without loss of generality, we let the
impurity to locate atf � 0; with a potentialgd�f�: The
matching of the wavefunctions atf � 0 and 2p and at all
times gives us the relations

An
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� Sc�en 2 vf0�
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 !
; �14�

where
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1 1 iguZu2
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�6 ���
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Herexn � x�en 2 vf0� � v1=3�en=v 2 f0�:
The relations between the coefficientsAn; Bn; Cn21 and

Dn21; given by Eq. (14), and the connections of these
coefficients to that in leads 3 and 4, obtained via theSmatrix
in Eq. (7), can be used to solve the coefficients simulta-
neously. However, a direct approach to solving these
simultaneous equations is very inefficient. An alternative
approach that we have undertaken is to solve, separately,
for the reflected wave of a counter-clockwise-moving
injected wave, and that of a clockwise-moving injected
wave. The multiple scatterings in these two separate
calculations can be treated exactly and efficiently,
using the transfer matrix method. The total wavefunc-
tion is then obtained by coupling the results from the
above two separate calculations via theS matrix to the
incident amplitude.

We note that in the case of the counter-clockwise-moving
injected wave, the energy of the electron increases by 2pv
for every additional counter-clockwise loop it traversed.
This looping cannot keep on indefinitely because of the
incoherent processes and the impurity scattering. Hence,
our actual calculation involves choosing a sufficiently
large numberNmax for the maximum counter-clockwise
loopings traversed by the electron. We then calculate the
reflected wave, and the coefficients for each looping by
invoking the transfer matrix method. A reasonable choice
of Nmax has to produce the converged values of the reflection
coefficients.

The above method can be applied, essentially, to the case
of the clockwise-moving injected wave, except now that the
energy of the electron decreases by 2pv for every

additional clockwise loop it traversed. This lowering of
energy continues until, at theNth clockwise loop, the
electron encounters its forbidden region, where the wave-
function becomes evanescent, and the electron will suffer
total reflection. HereN � �e=�2pv�� and [x] denotes the
largest integer smaller than or equal tox. Subsequently,
the relation between the coefficients in this last looping is
given by either A2N=B2N � eip=3

; or C2N=D2N � eip=3
;

depending on the location of this so-called classical turning
point.

It could happen that, in the presence of incoherent
processes, the electron may not even be able to reach
its classical turning point. This is the case whenN .
N 0max; where N 0max; like Nmax in the counter-clockwise
loop, is the maximum number of clockwise loop in
which the traversing electron can maintain its
coherence.

For the electrons incident from the leadi � 3; the wave-
functions in the leads 3 and 4 are, respectively

~C 3 �
�������
N�e�p

Y �1��x3; t; e�1
X
n

r33�n�Y�2��x3; t; en� �17�

and

~C 4 �
X
n

t43�n�Y �2��x4; t; en�: �18�

The coefficientsr33�n�; and t43�n� are the reflection current
amplitudes in leads 3 and 4, respectively. Further, the wave-
functions in the ring are in a form similar to those in Eqs.
(12) and (13), except that the coefficientsAn; Bn; Cn; andDn

are replaced by~An; ~Bn; ~Cn; and ~Dn: Again, following the
same aforementioned matching procedure, we obtain all
these coefficients.

Finally, the total dc particle currentIdc, averaged over a
time period of 1=v; and at zero temperature, can be
expressed in terms of the above wavefunction expansion
coefficients, given by

Idc � 2
Zm

0
{
X2 N

n�0

�uAnu2 2 uBnu2�1
XNmax

n�0

�uCnu2 2 uDnu2�

1
X2 N

n�0

�u ~Anu2 2 u ~Bnu2�1
XNmax

n�0

�u ~Cnu2 2 u ~Dnu2�} de; �19�

wherem is the chemical potential.
We have checked the convergence of our results with

respect to our choice ofNmax, and have also checked that the
net dc currentI 0dc between the ring and the reservoir is zero.

3. Results

In this section, we present the effects of impurities on
the dissipation in a partially coherent ring by plottingIdc

versus m for a number of impurity strengths. The
physical parameters we choose are consistent with that of
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a semiconductor ring, withRp � 150 nm and mp
e �

0:067me: Since our emphasis is upon the interplay between
the coherent and the dissipative nature in the mesoscopic
ring, we present only the cases for the smalla regime.
Hence in Fig. 2, we choosea � 0:01: In addition, we choose
2pv � 0:01; which corresponds to an induced electro-
motive force 2pRpF � 2:5 × 1027 V in the ring. Finally,
the curves for the six impurity strengths (g � 0:0; 0.1, 0.2,
0.4, 5.0, and 30) in Fig. 2 present the entire spectrum of the
impurity effects: from the weak impurity regime all the way
to the strong impurity regime.

The general features presented in Fig. 2 are summarized
in the following paragraphs. For a smooth ring, wheng � 0;
Idc is shown to increase withm initially and saturates in the
largerm regions. This solid curve in Fig. 2 also serves as an
upper bound to that for rings with impurities, becauseIdc is
lowered in the presence of an impurity. When the impurity is
weak, such as represented by the dashed curve�g � 0:1� in
Fig. 2, the overall trend inIdc�m� follows that of the smooth
ring, except thatIdc shows additional oscillatory behavior.

The amplitudes of this oscillation increase with the
strength of the impurity as indicated by the curves forg �
0:2 and 0.4, while the oscillation pattern evolves into finger-
like structures separated by dips. The values ofIdc at both the
maxima of these finger-like structures and the minima of

these dips increase monotically withm and saturate towards
the largem region. In addition, theseIdc values decrease with
increasingg . Therefore, further increase in the strength of
the impurity, as indicated by the curves forg � 5:0 and 30,
causes the dips to drop eventually to zero. By then the
dissipation enters its strong impurity regime where the
dips are flattened intoIdc � 0 plateaus. In the following
paragraphs, we will present a physical picture explaining
the characteristics in all these dissipation regimes.

Before we proceed further, we recall, from Eq. (19), that
Idc is an energy integral that includes contribution from all
energies belowm . These energies are the energies of the
electrons that are emanating out of incoherent scatterings.
These electrons are equally likely to be reinjected into the
ring as clockwise-moving or counter-clockwise-moving
states, because of the symmetry in the incoherent scatter-
ings. However, the subsequent propagation of the electrons
may or may not preserve this symmetry. We will address
this issue of symmetry for the subsequent propagation later.
But if there were to be perfect symmetry between the
subsequent propagation for the clockwise and the counter-
clockwise injected electrons, the contribution toIdc from
these emanating electrons would exactly cancel each
other. Hence, it is understandable that, for a given
emanating energy interval de , the more asymmetric it is in
the subsequent propagation, the greater will be the net
contribution toIdc.

In the case of a smooth ring, the currentIdc increases
initially with m but saturates in largem regions. This
demonstrates that the greater the energies of the electrons
that emanate out of incoherent scatterings, the smaller will
be their net contribution toIdc. Particularly, in the saturation
region, the electrons emanate with energies nearm do not
contribute toIdc, while the saturatedIdc value is contributed
from electrons that emanate with much lower energies.
These features can be understood from considering the
symmetry in the propagation directions.

One might expect, in the case of a time-varying magnetic
flux, that the induced electric field in the ring should forbid
any possibilities of symmetry between the clockwise and
counter-clockwise propagation. This is certainly so for the
case of large induced electric field. But if the induced
electric field is low enough�2pv ! m �; as it is the case
in Fig. 2, where 2pv � 0:01; the symmetry between the two
propagation directions within a few loopings still holds,
except for a phase factor e2ivtf

: This phase factor, as has
been discussed in the previous section, causes the energy of
the electron to increase or decrease by 2pv for every loop it
traversed. Takingv as positive, the energy of the electron
will increase, or decrease, for every counter-clockwise, or
clockwise, loop it traversed, respectively. This small shift in
energy does not affect the symmetry if only a few loopings
were to traverse. However, if there were no restriction on the
number of coherent loopings the electron can traverse, the
effect of the energy shift, accumulated in due loopings,
would violate the symmetry significantly. It then occurs
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Fig. 2. Total dc componentIdc as a function ofm for 2pv � 0:01;
a � 0:01 and forg � 0:0; 0.1, 0.2, 0.4, 5.0, and 30.



that the clockwise-moving electrons will encounter their
classical turning point and suffer total reflection. Since the
number of loopings the electrons traverse before they
encounter their classical turning point isN � �e=2pv�; the
symmetry can be restored if a maximum number
Nmax�Nmax ! N� of coherent loopings can be imposed
upon the electrons.

Here, the incoherent scatterings provide us a natural
restriction upon the number of net loopings, withNmax <
1=a: Therefore, for a givena andv , the contribution from
emanating electrons, with energye , falls into two regimes.
In the smalle regime, whereN , Nmax; the electrons can
reach their forbidden region coherently, hence violating the
symmetry, and contribute significantly toIdc. This regime is
characterized by a rapid change inIdc. The other is the large
e regime, whereN @ Nmax; such that the electrons cannot
reach their forbidden region, hence restoring the symmetry,
and having resulted in zero contribution toIdc. This regime is
characterized by a saturatedIdc. The physical picture
presented above is supported by an analytic solution for a
partially coherent flux-driven smooth ring [10].

The above physical picture can be extended to the case of
the strong impurity regime, such as theg � 5:0 curve in Fig.
2. This curve exhibits regions of zeroIdc in between finger-
like structures. The finger-like structures are symmetric inm
and consist of a sharp rise inIdc followed by a sharp drop in
Idc. When we look into the energy band structure of a one-
dimensional crystal formed by theg � 5:0 impurities, and
separated by a period ofL, we find that the energy gaps
overlap exactly with the regions of zeroIdc. This shows,
first of all, that the impurities have brought forth, to the
electrons in the ring, multiple gap regions, or, according
to our previous discussions, multiple forbidden regions.
Secondly, the exact overlapping shows that band-edge is
well defined, which in turn shows that Zener tunneling
between energy bands is insignificant. Therefore, electrons
with emanating energies that fall within an energy gap do
not contribute toIdc.

However, for the finger-like structures, where the
emanating energies fall within an energy band, there are
two forbidden regions, of which the turning points occur
at the upper and the lower band edge. The clockwise-
moving injected electrons will encounter their forbidden
region at the lower band edge while the counter-clock-
wise-moving injected electrons will encounter their forbid-
den region at the upper band edge. Therefore, contribution
from emanating energye , close to the lower band edge will
be dominated by counter-clockwise-moving electrons while
that frome , close to the upper band edge will be dominated
by clockwise-moving electrons. The sharp rise and drop of
Idc in a finger-like structure then results from the breaking of

the propagation symmetry. The multiple finger-like
structures demonstrate that the presence of impurities in
the ring gives rise to multiple turning points, thus causing
the rapid change inIdc to occur in many differentm regions.

Finally, the intermediate impurity regime, as shown by
theg � 0:2; and 0.4 curves in Fig. 2, exhibits a reasonable
and continuous transition connecting the weak and the
strong impurity regimes. It is believed that Zener tunneling
comes into play in this regime.

4. Conclusion

We have solved exactly the dissipation characteristics of
a partially coherent flux-driven ring in the presence of an
impurity. A physical picture is proposed to explain the
general dissipative features. In particular, our results
demonstrate the close relation between the breaking of the
propagation symmetry and the rapid change ofIdc in the
ring. It was predicted by Bu¨ttiker et al. [2], using the adia-
batic point of view, thatIdc � 0 whenever Zener tunneling is
negligible. This prediction is consistent with the zeroIdc

regions in our results, but not with the finger-like
structures in theIdc�m� curve. Thus, the finger-like structures
found in this work are the nonadiabatic results. The inter-
esting possible manifestation of this nonadiabatic feature in
the case of an oscillatory magnetic flux, and in the case
when electron–electron interactions are taken into account,
is left to future investigations.
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