solid
state
communications

PERGAMON

Solid State Communications 114 (2000) 167-172

www.elsevier.com/locate/ssc

Effects of an impurity on the dissipation in a partially coherent
flux-driven ring

M.T. Liu, C.S. Chd

Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC
Received 3 December 1999; accepted 8 December 1999 by A.H. MacDonald

Abstract

We have studied a mesoscopic ring threaded by a magnetic flux that increases linearly with time. The ring is partially
coherent, such that conduction electrons in the ring will encounter incoherent scatterings. In addition, the electrons encounter
elastic scatterings due to the presence of an impurity in the ring. We have addptadtax model, as proposed by Biker
[M.Biittiker, Phys. Rev. B 32 (1985) 1846; M:Biker, Phys. Rev. B 33 (1986) 3020], for the incoherent scatterings in this time-
dependent situation. This allows us to treat the incoherent scatterings, the elastic scatterings and the coherent inelastic processe
on the same footing. We have solved the problem exactly. Our results demonstrate that, in the case of a weak impurity, the lower
the energies of the electrons that emanate out of incoherent scatterings, the greater will be their net contribution to the dc
component . of the induced current. In the case of a strong impurity, howeygalternates between regions of zero and
nonzero values as the chemical potentiahcreases. The peak valuelgfin the nonzero region increases wjthWe find that
these regions of zero, and nonzekg,correspond closely with the gaps, and the bands, respectively, of a one-dimensional
energy band. All these characteristics arise from the fact that the electrons traversing the ring haseetigigsshifted
gradually until theirenergiesfall upon a forbidden region, where they suffer total reflection. This total reflection at the
forbidden region does not occur in a ring that has a constant flux. Rather, it results from the nonadiabatic effect of the changing
flux. The evolution of the nonadiabatic effects in the intermediate impurity regime has also been investig4ied.Elsevier
Science Ltd. All rights reserved.
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where k= —2n/L)®/d*. Here ¢* =hce is a flux
quantum, and the band index in E,(k) denotes the

1. Introduction

A mesoscopic conducting ring threaded by a magnetic
flux has been of great interest to physicists because it
provides a paradigm allowing issues of fundamental impor-
tance to be tested experimentally [1]. For a fixed magnetic
flux, there is an exact analogy between the single-electron
states in a 1D ring and the Bloch states in a 1D crystal that
has a periodic potentidl(x) = V(x + L), whereV(x) is the
potential along the ring and is the circumference of the
ring [2]. The threading magnetic flu® plays the role of a
wavevectork such that the dependencedoof the electro-
nic eigen-energies in the ring can be obtained through the
dispersion relatiorE, (k) of the corresponding 1D crystal,
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spectrum of eigen-energies for the electron states in the ring.
The concept of analogy between the single-electron states
in a mesoscopic ring and that in a one-dimension crystal was
extended by Bttiker et al. [2] to the case when the flux is
changing linearly in time. This analogy has taken the
adiabatic point of view such that the eigenstates of the
ring for a fixed flux are reckoned as the momentary states
of the ring with the fixed flux equaling the momentary flux.
This intuitive picture has since become the basic for the
discussions of a number of physical properties proposed for
mesoscopic rings. In a disordered ring, the eigen-energies
over the entire range ofP can be grouped into bands
separated by energy gaps. For the case when the time rate
of change in the magnetic flux is low, the induced electric
field along the ring is small, and the Zener tunneling
between bands can be neglected. Hence the states are caused
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to traverse the same band periodically, with a frequency scattered electrons coupled to a reservoir through a unitary
o = eFl/A, so that the induced current was predicted to coherent scatterer [6]. The model allows us to treat the
have no dc component but has a Josephson-like ac coherent and the incoherent scatterings on the same footing.
component [2]. Later studies show that the ring will exhibit The paper is organized as follows. In Section 2 we present
resistive behavior, or a nonzero dc comporgnonly in the our formulation that incorporates the incoherent scatterings
presence of incoherent scatterings [3,4]. The phase into the coherent states of the driven ring. In Section 3 we
randomization in the Zener tunneling amplitudes was present our numerical results. Finally, in Section 4, we
found to lead only to the localization of the electrons in present a conclusion.
the energy space rather than leading to the resistive behavior
[4]. More recently, Gorelik et al. [5] proposed the possibility
of fractional pumping of energy into the ring. All these
studies demonstrate beyond doubt that a driven ring is a
complicated problem of which the physics depends
intricately upon both the coherent and the incoherent
scatterings.
Besides the adiabatic point of view, the previous 1 (451 9 e P \?2 .
. . . . B ~
studies have also assumed that major contributions to (-*** + *7) +53(¢) V(1)
o . : ) o i pod c2mp
the resistive behavior arise from electrons in the vicinity
of the Fermi energy. However, reasonable these two
assumptions might appear to be, it is still of our interest
in this paper to explore the scope of validity of these
assumptions in the mesoscopic ring, where both phase
coherence and topological factor together could lead to
surprises. Tovya_rds this end, we propose to consider a time unitt” — #/E*, the angular frequency uni * = E*/#,
simplest nontrivial problem that has incorporated both R ; .
. . and the flux unit ®” = hcde. Meanwhile, the linearly
coherent and incoherent scatterings and yet can be solved. - . . . . -
. . . : increasing magnetic fluxbg is defined aswt®™ and y =
exactly. The system is a partially coherent flux-driven ring _. . - o R
. . . - E"vy. Thus the dimensionless Sc¢hlinger equation is given
that consists of an impurity. In solving the problem fully
guantum mechanically, we have invoked an expansion
scheme for the wavefunctions of the conduction electrons
in the ring, and have also implemented the incoherent {(
scattering processes in terms of an incoherent scatterer
model proposed by Btiker [6,7].

2. Theory

The Schrdinger equation for an electron in a ring of
radius p, threaded by a magnetic fluPz and with an
impurity, is

2mg

0 =
= Ihﬁ Y(,t), 1

wherem;, is the effective mass of the electron aad 0.
To make this equation dimemsionless, we define the
length unitR* = p, the energy uni€* = #%/(2m;R*?), the

—ia+t2+3 ift—iaift 2
5 w) v(«b)} @H=i2FGD @

By invoking a transformation

The basic wavefunctions we used for the expansion q,w t):efiwt(bq,(d) t) 3)
scheme is shown similar to that in a biased one-dimension ’ ’
system except for a phase factor that has coupledhtal Eg. (2) can be cast into the form

to the time coordinates. This phase factor effectively 52 3
provides a way for the system to count the number of {—2 — wd + yé(¢>)}qf(¢>, t)=i—Wae,t). (€]
turns that the electron has traversed around the ring. The Id ot

wavefunction of the electron is then an expansion involving
many terms, each has its own time dependence and each
associates with a different number of net turns traversed.
The different time dependences of these terms render each

term to contribute independently tg. This is in contrast  he ring once counter-clockwisely or clockwisely. This is
with the situation of a fixed magnetic flux in which all the  ;qngjstent with the direction of the induced electric field
terms, regardless of the number of turns traversed, have thealong the ring. This phase factor plays a very important
same time dependence, and thus contribute to the current,gq in imposing the single-valueness # at all time, and
cohereptly. . . . . at ¢ =0, and 2. To facilitate the matching, we define in
The incoherent scatterings in the flux-driven ring have e following a basic set of wavefunctions for the driven
been incorporated in previous studies by introducing & jng The actual wavefunctio®” for the driven ring that
relaxation time [5,8] or a cut-off time [3]. However, inthe  gagisfies the single-valueness is constructed out of this
transport phenomena, the electrons that have sufferedaqic set of wavefunctions. The basic wavefunctions repre-
incoherent scattering should be allowed to continue their senting counter-clockwise-moving particles are given by

contribution to the transport current, albeit incoherently.
Thus we adopt an incoherent scatterer model [7] for our VP, e)H(jg[2/3§3’2(¢, o] o ier ot
(6Jw/m)? ’

time-dependent situation. This model has the incoherently

The wavefunction? describes a one-dimension particle
acted upon by a constant electric field. The phase factor
e " jn Eqg. (3) is suggestive that an electron will gain,
or lose, arenergyof 2mw if it moves, respectively, around

i’(ﬂ((b, te) = 5)
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Reservoir

Fig. 1. A partially coherent flux-driven ring. The flux, represented
by the center shaded circle and directed out of the page, is linear in
time with @z = wt. The ring is coupled via a coupler, depicted by
the triangle, to a reservoir, depicted by the wavy line. The electron
coordinate increases in the counter-clockwise direction along the
ring. The impurity is atp = 0.

whereas the basic wavefunctions representing clockwise-
moving particles are given by

VIS OHRBI2IE (D, O] i(ewin
(6Jw/m)V? '

Here {(¢,e) = 0(¢ + éw), and H{(2), HA@ are
Henkel functions. The energy parameteis a continuous
variable.

These basic wavefunctions are normalized with unit
particle current, in the unit of-eE’/h. This choice of the
normalization for the basic wavefunctions is deemed

1I~f(_)(¢>,t; €) = (6)
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couples incoming waves, with current amplitudas=

(a1, &y, a3, 4), to the outgoing waves, with current ampli-
tudes b = (b, by, bs, by), through the relationb” = Sd'.
The notation convention for these amplitudes is shown in
Fig. 1.

The form ofSis chosen such that it is unitary as long as
the basic wavefunctions are all normalized to a unit current.
The coupling parametes, with 0 = « =< 1, denotes the
extent that the ring couples with the reservoir. In the limiting
case ofa =1, the particle will entirely lose track of its
phase every time it encounters the incoherent scatterer. In
the other limiting case, whem =0, the ring and the
reservoir are decoupled. For definiteness, we choose the
coupler to locate ah = ¢g. Our results, however, turn out
to be independent ofy. This reassures us, in part, the
credibility of the S-matrix incoherent scatterer model for
this time-dependent problem.

The basic wavefunctions in leads= 3,4 are

. e—i(et—\/gx‘)
YOX, e =~ 8
%, e 2Je? ®
for particles incident upon the coupler, and
. efi(etJr\/Zx‘)
YOt ) = —— 9
%, € 2/ 9
for particles leaving the coupler. The coordinakes= 0 at

the coupler.

In the following, we first consider electrons incident upon
the ring within an energy intervaledfrom the reservoir via
either leads 3 or 4. The incident currenti$(e) = 2f(¢) de,
wheref (€) is the Fermi—Dirac distribution for the reservoir
with a chemical potentiak, and the spin degeneracy has
been included. The incident current amplitude is then

chosen to bg/. A (e).
For electrons incident from the ledd= 4, the wave-

necessary, as pointed out by Stone and Szafer [9], when functions in the leads 4 and 3 are, respectively, given by

invoking the incoherent scatterer model oftiker [6] for
the incoherent processes in our system.
The incoherent scatterer model consists of a coupler that

couples the electrons in the system to a reservoir. Current

that flows out of the ring, and into the reservoir, will be
reinjected back into the system according to the distribution
in the reservoir. There is no phase correlation between the
currents that flow in and flow out of the reservoir. It is

Vy= N (OY V0t 0 + D 1Y ), (10)

@3 = Zt34(n)Y(7)(X3,t; €n)- D

through this process that phase coherence in the particlesThe coefficientd;4(n), andr,4(n) are the reflection current

is lost. Further, by describing the coupler in terms of an
energy-independen$, the incoherent processes are cast
into a scattering problem. TH&@matrix [6], given by

0 Vi-a Ja 0

_ Vi—a 0 0 Ja @
Ja 0 0 ~1—a|
0 Ja  —V1-a 0

amplitudes in leads 3 and 4, respectively. The inaex
denotes the possible reflected electron energies that result
from the action of the time-varying flux in the ring. The
wavefunctions in the ring within the region<0 ¢ < ¢y is
written as

V= AV (.t €n — wibo)

+ Bu(e) ¥ (o, t; €4 — 0p)], (12
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and, within the regionpy < ¢ < 2, is written as additional clockwise loop it traversed. This lowering of
- S energy continues until, at th&lth clockwise loop, the
Py = [Colen ¥ (ot en — wio) electron encounters its forbidden region, where the wave-
" function becomes evanescent, and the electron will suffer
+ Du(en) ¥ (. t; €0 — wpo)], (13 total reflection. HereN = [¢/(2mw)] and [ denotes the
largest integer smaller than or equal xto Subsequently,
the relation between the coefficients in this last looping is
given by either A_y/B_y = €™, or C_p/D_y = €™,
depending on the location of this so-called classical turning
point.

It could happen that, in the presence of incoherent
processes, the electron may not even be able to reach
its classical turning point. This is the case whin>

where €, = € + 2mwn. These wavefunctions, including
their energy arguments, — wdg, are written in the form
that facilitates the matching of the wavefunctiongat ¢,
and at all times. Without loss of generality, we let the
impurity to locate at¢ = 0, with a potential y5(¢). The
matching of the wavefunctions @ = 0 and 2r and at all
times gives us the relations

A, B, Niax Where N like Nma in the counter-clockwise
( ) = Se(en — w¢o)( ) (14 loop, is the maximum number of clockwise loop in
Dn-1 n-1 which the traversing electron can maintain its
where coherence.
L 172 1 Fo_r the_electrons incident from the Ieiad=_3, the wave-
Sulen — wby) = — |Z|2 ( Y ' *2) (15) functions in the leads 3 and 4 are, respectively
Y oo Ty = [T V060 + 3 Y g te) (17
and n
S SHA[213)32) 16 and
6Jw/m™? Vy= tisY X b €). (18)
Here x, = x(en — wéo) = 0" (en/w — o). "
The relations between the coefficielts B,, C,—, and The coefficientgz3(n), andt,z(n) are the reflection current
D,_1, given by Eq. (14), and the connections of these amplitudes inleads 3 and 4, respectively. Further, the wave-
coefficients to that in leads 3 and 4, obtained viaSieatrix functions in the ring are in a form similar to those in Egs.

in Eqg. (7), can be used to solve the coefficients simulta- (12) and (13), except that the coefficieAts B,,, C,, andD,,
neously. However, a direct approach to solving these are replaced by, B,, C,, andD,. Again, following the
simultaneous equations is very inefficient. An alternative same aforementioned matching procedure, we obtain all
approach that we have undertaken is to solve, separately,these coefficients.
for the reflected wave of a counter-clockwise-moving Finally, the total dc particle curreng,, averaged over a
injected wave, and that of a clockwise-moving injected time period of 1w, and at zero temperature, can be
wave. The multiple scatterings in these two separate expressed in terms of the above wavefunction expansion
calculations can be treated exactly and efficiently, coefficients, given by
using the transfer matrix method. The total wavefunc- . N Ny
tion is then obtained by cogpllng_the resul_ts from the lge = ZJ {Z(|An|2 _ |Bn\2) n Z (\Cn|2 _ |Dn|2)
above two separate calculations via tBematrix to the 0 = =
incident amplitude.

We note that in the case of the counter-clockwise-moving -N Ninax
injected wave, the energy of the electron increasesshy 2 + 3 (AL = 1BA + D (G - By} de. (19
for every additional counter-clockwise loop it traversed. n=0 n=0
This looping cannot keep on indefinitely because of the
incoherent processes and the impurity scattering. Hence,
our actual calculation involves choosing a sufficiently
large numberN,, for the maximum counter-clockwise
loopings traversed by the electron. We then calculate the
reflected wave, and the coefficients for each looping by
invoking the transfer matrix method. A reasonable choice 3. Results
of Nimax has to produce the converged values of the reflection
coefficients. In this section, we present the effects of impurities on

The above method can be applied, essentially, to the casethe dissipation in a partially coherent ring by plottihg
of the clockwise-moving injected wave, except now that the versus u for a number of impurity strengths. The
energy of the electron decreases byr«?2 for every physical parameters we choose are consistent with that of

whereu is the chemical potential.

We have checked the convergence of our results with
respect to our choice ., and have also checked that the
net dc currentj;; between the ring and the reservoir is zero.
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these dips increase monotically wjthand saturate towards
the largeu region. In addition, theslg. values decrease with
increasingy. Therefore, further increase in the strength of
the impurity, as indicated by the curves fpe= 5.0 and 30,
causes the dips to drop eventually to zero. By then the
dissipation enters its strong impurity regime where the
dips are flattened intdy. = O plateaus. In the following

paragraphs, we will present a physical picture explaining
the characteristics in all these dissipation regimes.

Before we proceed further, we recall, from Eq. (19), that
l¢c is an energy integral that includes contribution from all
energies belows. These energies are the energies of the
electrons that are emanating out of incoherent scatterings.
These electrons are equally likely to be reinjected into the
ring as clockwise-moving or counter-clockwise-moving
states, because of the symmetry in the incoherent scatter-
ings. However, the subsequent propagation of the electrons
may or may not preserve this symmetry. We will address
this issue of symmetry for the subsequent propagation later.
But if there were to be perfect symmetry between the
‘ subsequent propagation for the clockwise and the counter-
clockwise injected electrons, the contribution Itg from
these emanating electrons would exactly cancel each
other. Hence, it is understandable that, for a given
emanating energy intervakdthe more asymmetric it is in
the subsequent propagation, the greater will be the net
contribution tol 4.

In the case of a smooth ring, the currdgt increases
initially with w but saturates in large. regions. This
demonstrates that the greater the energies of the electrons
that emanate out of incoherent scatterings, the smaller will
a semiconductor ring, withR* =150 nm and n = be their net contribution tty.. Particularly, in the saturation
0.067m.. Since our emphasis is upon the interplay between region, the electrons emanate with energies peaio not
the coherent and the dissipative nature in the mesoscopic contribute toly., while the saturatety, value is contributed
ring, we present only the cases for the smallregime. from electrons that emanate with much lower energies.
Hence in Fig. 2, we choose= 0.01 In addition, we choose = These features can be understood from considering the
2mw = 0.01, which corresponds to an induced electro- symmetry in the propagation directions.
motive force ZrR'F =2.5x 10’V in the ring. Finally, One might expect, in the case of a time-varying magnetic
the curves for the six impurity strengthg € 0.0, 0.1, 0.2, flux, that the induced electric field in the ring should forbid
0.4, 5.0, and 30) in Fig. 2 present the entire spectrum of the any possibilities of symmetry between the clockwise and
impurity effects: from the weak impurity regime all the way  counter-clockwise propagation. This is certainly so for the
to the strong impurity regime. case of large induced electric field. But if the induced

The general features presented in Fig. 2 are summarized electric field is low enoughi2mw < u ), as it is the case
in the following paragraphs. For a smooth ring, whes 0, in Fig. 2, where Zw = 0.01, the symmetry between the two
lqc is shown to increase with initially and saturates inthe  propagation directions within a few loopings still holds,
larger u regions. This solid curve in Fig. 2 also serves as an except for a phase factor &'¢. This phase factor, as has
upper bound to that for rings with impurities, becaligds been discussed in the previous section, causes the energy of
lowered in the presence of an impurity. When the impurity is  the electron to increase or decrease twZor every loop it
weak, such as represented by the dashed ayrve0.1) in traversed. Takingo as positive, the energy of the electron
Fig. 2, the overall trend ihy.(w) follows that of the smooth will increase, or decrease, for every counter-clockwise, or
ring, except that,. shows additional oscillatory behavior. clockwise, loop it traversed, respectively. This small shift in

The amplitudes of this oscillation increase with the energy does not affect the symmetry if only a few loopings
strength of the impurity as indicated by the curvesyoe were to traverse. However, if there were no restriction on the
0.2 and 0.4, while the oscillation pattern evolves into finger- number of coherent loopings the electron can traverse, the
like structures separated by dips. The valudgit both the effect of the energy shift, accumulated in due loopings,
maxima of these finger-like structures and the minima of would violate the symmetry significantly. It then occurs
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Fig. 2. Total dc componen. as a function ofu for 2w = 0.01,
a = 0.01 and fory = 0.0, 0.1, 0.2, 0.4, 5.0, and 30.
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that the clockwise-moving electrons will encounter their the propagation symmetry. The multiple finger-like
classical turning point and suffer total reflection. Since the structures demonstrate that the presence of impurities in
number of loopings the electrons traverse before they the ring gives rise to multiple turning points, thus causing
encounter their classical turning poinths= [e/2mw], the the rapid change ity to occur in many different. regions.
symmetry can be restored if a maximum number Finally, the intermediate impurity regime, as shown by
Nmax(Nmax <€ N) of coherent loopings can be imposed they= 0.2, and 0.4 curves in Fig. 2, exhibits a reasonable
upon the electrons. and continuous transition connecting the weak and the
Here, the incoherent scatterings provide us a natural strong impurity regimes. It is believed that Zener tunneling
restriction upon the number of net loopings, with,., = comes into play in this regime.
V. Therefore, for a giverx and w, the contribution from
emanating electrons, with energyfalls into two regimes.
In the smalle regime, whereN < N4, the electrons can
reach their forbidden region coherently, hence violating the
symmetry, and contribute significantly kg. This regime is
characterized by a rapid changein The other is the large
€ regime, whereN > N4 Such that the electrons cannot
reach their forbidden region, hence restoring the symmetry,
and having resulted in zero contributionl§g This regime is
characterized by a saturateld.. The physical picture
presented above is supported by an analytic solution for a
partially coherent flux-driven smooth ring [10].
The above physical picture can be extended to the case of
the strong impurity regime, such as the= 5.0 curve in Fig.
2. This curve exhibits regions of zetg in between finger-
like structures. The finger-like structures are symmetrijg in
and consist of a sharp rise g followed by a sharp drop in
l¢e- When we look into the energy band structure of a one-
dimensional crystal formed by the= 5.0 impurities, and
separated by a period &f, we find that the energy gaps
overlap exactly with the regions of zetg. This shows,
first of all, that the impurities have brought forth, to the  Acknowledgements
electrons in the ring, multiple gap regions, or, according

to our previous discussions, _multiple forbidden regions.. This work was supported in part by the National Science
Secondly, the exact overlapping shows that band-edge is cqncj of the Republic of China through Contract No.
well defined, which in turn shows that Zener tunneling N gcg9-2112-M-009-0109.

between energy bands is insignificant. Therefore, electrons
with emanating energies that fall within an energy gap do
not contribute td.

However, for the finger-like structures, where the
emanating energies fall within an energy band, there are

4. Conclusion

We have solved exactly the dissipation characteristics of
a partially coherent flux-driven ring in the presence of an
impurity. A physical picture is proposed to explain the
general dissipative features. In particular, our results
demonstrate the close relation between the breaking of the
propagation symmetry and the rapid change gfin the
ring. It was predicted by Btiker et al. [2], using the adia-
batic point of view, thaty. = 0 whenever Zener tunneling is
negligible. This prediction is consistent with the zdgp
regions in our results, but not with the finger-like
structures in théy.(w) curve. Thus, the finger-like structures
found in this work are the nonadiabatic results. The inter-
esting possible manifestation of this nonadiabatic feature in
the case of an oscillatory magnetic flux, and in the case
when electron—electron interactions are taken into account,
is left to future investigations.
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