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Abstract

A method is proposed for solving a fuzzy multi-objective linear programming problem (FMP) with quasiconcave
membership functions and fuzzy coe�cients. The proposed method �rst expresses a piecewise function as the summation
of absolute terms. Then we search for the interval where the optimal solution is allocated by �nding the corresponding
points with same value of membership functions. After that, the problem is solved by goal programming techniques.
Comparing with other FMP methods, the proposed method does not need to add extra zero–one variables, to divide the
original problem into several sub-problems, or transforming all original quasiconcave functions into concave functions. In
addition, the proposed method could solve a FMP problem with fuzzy coe�cients to obtain a solution closing to a global
optimum. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Fuzzy multi-objective linear programming; Goal programming; Piecewise linear membership function;
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1. Introduction

A fuzzy multi-objective linear programming problem (FMP) with crisp constraints discussed in this study
is expressed as follows:

FMP problem:

Maximize {�1(z1(X )); �2(z2(X )); : : : ; �n(zn(X ))}

subject to zi(X )=
m∑
j=1

bijxj + ci; i=1; 2; : : : ; n;

m∑
j=1

bijxj + ci¿0; i= n+ 1; n+ 2; : : : ; I;

X =(x1; x2; : : : ; xm);

(1.1)
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Fig. 1. A quasi-concave membership function.

where �i(zi(X )) are piecewise linear membership functions, i=1; 2; : : : ; n; 06�i(zi(X ))61; zi(X ) are the
objective functions, bij and ci are constants, and X is a vector of decision variables.

In general, a piecewise linear membership function �i(zi) may be concave shaped or convex shaped. The
marginal possibility with respect to a concave membership function is decreasing, whereas the marginal
possibility with respect to a convex membership function is increasing. If the marginal possibility increases
�rst then decreases, or decreases �rst then increases, then the membership function becomes a quasiconcave
shape as shown in Fig. 1. Since many empirical evidences [10, 11] have revealed that membership functions
in real-life situations are usually not concave or convex but quasiconcave, this study emphasizes on solving
a FMP problem in (1.1) where �i(zi(X )) are quasiconcave membership functions.
In many practical multi-objective decision models, decision makers (DM) are often di�cult to specify the

coe�cients of variables and=or resources. Suppose the imprecise or uncertain nature of input data is modeled,
then we have possibilistic multi-objective problems in which some constraints have fuzzy values for coe�cients
of variables or resources. Notable that the meaning of a membership function is di�erent from the possibility
distribution. The membership function is based on a DM’s preference but the possibility distribution is based
on the degree of a precise data set.
Suppose some constraints in (1.1) have fuzzy coe�cients in variables and resources, then (1.1) can be

expressed as the following fuzzy program:

FMP′ problem:

Maximize {�1(z1(X )); �2(z2(X )); : : : ; �n(zn(X ))}

subject to zi(X )=
m∑
j=1

b̃ijxj + c̃i ; i=1; 2; : : : ; n;

m∑
j=1

b̃ijxj + c̃i¿0; i= n+ 1; n+ 2; : : : ; I;

X =(x1; x2; : : : ; xm);

(1.2)

where b̃ij are imprecise variable coe�cients of xj and c̃i is uncertain resource of ith constraint.
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Current FMP methods [2, 4, 11, 12, 16], however, are not computationally e�cient for solving a FMP problem
with quasiconcave membership functions. In addition, most of these methods can only treat the problem with
crisp coe�cients instead of imprecise coe�cients. Some disadvantages of current FMP methods are discussed
below:
(i) These methods lack a clear and simple way to present a general piecewise membership function �i(zi).

Most methods use complicated expressions to present a quasiconcave membership function.
(ii) These methods can only solve a FMP problem in (1.1) where bij and ci are certain constants. They

cannot treat a FMP′ problem in (1.2) where b̃ij and c̃i are fuzzy numbers.
(iii) Narasimham’s method [12] and Hannan’s method [2] can only solve FMP problems where all �i(zi) are

concave functions.
(iv) Nakamura’s method [11] needs to divide the original quasiconcave FMP problem into 2

∑n
i=1mi sub-

problems, where mi is the number of intersections between concave functions and convex functions in
�i(zi), then uses linear programming to solve these sub-problems repeatedly.

(v) Yang et al.’s method [16] requires to add
∑n

i=1 mi zero–one variables in their model for solving the
quasiconcave FMP problem, where mi represents the number of intersections between concave and convex
functions in �i(zi).

(vi) Inuiguchi et al.’s method [4] involves tedious process of transforming all original membership functions
into new concave membership functions.

This study proposes two algorithms to solve fuzzy programs. Algorithm 1 is applied to solve the program
with quasiconcave membership functions and crisp constraints in (1.1). Algorithm 2, which is the extension of
Algorithm 1, is used to solve the program with quasiconcave membership functions and imprecise constraints
in (1.2).
The features of the proposed algorithms are:
(i) It uses a more convenient and clear way to express general piecewise membership functions such as

quasiconcave type.
(ii) It can directly solve a quasiconcave FMP problem without adding any zero–one variables, dividing the

problem into several sub-problems, or transforming all original membership functions into new functions.
(iii) It could be extended to treat a fuzzy program with fuzzy coe�cients.
Section 2 reviewed current FMP models of treating fuzzy multi-objective linear problems. Some propositions

regarding the proposed algorithms are introduced in Section 3. The proposed algorithm of solving (1.1) is
formulated in Section 4. Section 5 describes the algorithm of solving (1.2).

2. Review of current FMP models

This section brie
y reviews Yang et al. method [16], Nakamura method [11], and Inuiguchi et al. method
[4]; which are three commonly used approaches for solving a FMP problem in (1.1). First, consider the
following example:

Example 1 (Slightly modi�ed from Inuiguchi et al. [4]).

Maximize �

subject to �6�1(z1); �6�2(z2);

z1 =−x1 + 2x2; z2 = 2x1 + x2;
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− x1 + 3x2621; x1 + 3x2627;

4x1 + 3x2645; 3x1 + x2630;

x1; x2¿0;

�1(z1)=




0; z16− 3;
0:04z1; −36z162;
0:08z1 + 0:2; 26z1612;
1; z1 = 12;
−0:1z1 + 2:2; 126z1617;
−0:05z1 + 0:5; 176z1627;
0; z1¿27;

�2(z2)=




0; z267;
0:06z2; 76z2617;
0:1z2 + 0:6; 176z2621;
1; z2 = 21;
−0:033z2 + 1:7; 216z2627;
−0:1z2 + 0:8; 276z2630;
−0:25z2 + 0:5; 306z2632;
0; z2¿32;

where �1(z1) and �2(z2) are speci�ed in Fig. 2(a) and (b).
Yang et al.’s method could formulate Example 1 as following zero–one programming model (as depicted

in Fig. 3(a) and (b)):

FMP Model 1 (Yang et al.’s method for Example 1)

Maximize �

subject to �61− b5 − z1
d1

+M (1− �1) +M�2;

�61− b4 − z1
d2

+M�1 +M�2;

�61− b6 − z1
d3

+M�1 +M�2;

�61− b7 − z1
d4

+M (1− �2) +M�1;

�61− b11 − z2
d5

+M (1− �3);

�61− b10 − z2
d5

+M�3; �61− b16 − z2
d7

+M�3;

�61− b15 − z2
d8

+M�3; �61− b14 − z2
d9

+M�3;

z1 =−x1 + 2x2; z2 = 2x1 + x2;

− x1 + 3x2621; x1 + 3x2627;

4x1 + 3x2645; 3x1 + x2630;

x1; x2¿0;

(2.1)

where M is a big number, and �1; �2; �3 are 0–1 variables.

A major disadvantage in Yang et al.’s method is that it involves too many zero–one variables for
treating non-concave functions. The number of zero–one variables equals the number of intersections between
convex functions and concave functions. Take Example 1, for instance, �1(z1) contains two convex–concave
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Fig. 2. (a) Membership function �1(z1) in Example 1. (b) Membership function �2(z2) in Example 1.

intersections and �2(z2) contains one convex–concave intersection. Therefore, three zero–one variables (i.e.,
�1; �2; �3) are required in the solution process. A detailed discussion is given in Li and Yu [9].
Nakamura [11] develops a method to expressing a general piecewise membership function �i(zi) in (1.1).

Take Example 1, for instance, Nakamura expresses �1(z1) and �2(z2) as follows:

�1(z1)= [{�1(z1) ∨ �2(z1)} ∧ {�1(z1)} ∧ {�3(z1) ∨ �4(z1)} ∧ 1] ∨ 0;

�2(z2)= [{�5(z2) ∨ �6(z2)} ∧ �2(z2) ∧ �7(z2) ∧ �8(z2) ∧ �9(z2) ∧ 1] ∨ 0;

where ∨ stands for maximum or disjunction operator, ∧ stands for minimum or conjunction operator, {�1(z1)∨
�2(z1)}; {�3(z1) ∨ �4(z1)} and {�5(z2) ∨ �6(z2)} are the sets of the convex parts, as graphed in Fig. 4(a)
and (b).
Nakamura’s method then divides Example 1 into eight subproblems. Some of these subproblems are

expressed as follows:
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Fig. 3. (a) �1(z1) in Yang et al.’s method. (b) �2(z2) in Yang et al.’s method.

FMP Model 2 (Nakamura Method for Example 1)
Subproblem 1

Maximize �
subject to �6�1(zi) ∧ �1(z1) ∧ �3(z1);

�6�5(z2) ∧ �2(z2) ∧ �7(z2) ∧ �8(z2) ∧ �9(z2):
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Fig. 4. (a) �1(z1) in Nakamura’s method. (b) �2(z2) in Nakamura’s method.

Subproblem 2

Maximize �

subject to �6�2(zi) ∧ �1(z1) ∧ �3(z1);
�6�5(z2) ∧ �2(z2) ∧ �7(z2) ∧ �8(z2) ∧ �9(z2):

:
:

Subproblem 6

Maximize �

subject to �6�2(zi) ∧ �1(z1) ∧ �3(z1);
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�6�5(z2) ∧ �2(z2) ∧ �7(z2) ∧ �8(z2) ∧ �9(z2):
:
:

(2.2)

Nakamura’s method encounters two di�culties:
(i) Expression of piecewise membership functions is intricate, it requires repetitive use of LP computation

for solving a FMP problem.
(ii) Nakamura’s method has to divide a FMP problem into large subproblems, then solve it by LP computation

repeatedly. Take Example 1, for instance, Nakamura’s method involves eight subproblems and �nds the
optimal solution in Subproblem 6 after using LP computation repeatedly.
For tackling a FMP problem in (1.1), Inuiguchi et al. [4] developed an approach of transforming quasi-

concave functions into concave functions. For instance, Inuiguchi et al. approach could transform Example 1
into the following linear program:

FMP Model 3 (Inuiguchi et al.’s method for Example 1)

Maximize �′

subject to �′6�′1(z1); �′6�′2(z2);

z1 =−x1 + 2x2; z2 = 2x1 + x2;

−x1 + 3x2621; x1 + 3x2627;

4x1 + 3x2645; 3x1 + x2630;

x1; x2¿0;

(2.3)

where

�′1(z1)=




0; z16−3;
min( 113 z1 +

3
13 ;

3
65 z1 +

29
65 ); −36z1612;

1; z1 = 12;
− 1
15 z1 +

9
5 ; 126z1627;

0 z1¿27;

and

�′2(z2)=




0; z267;
min( 326 z2 − 21

26 ;
3
52 z2 − 11

52 ); 76z2621;
1; z2 = 21;
min(− 1

5 z2 +
32
3 ;− 1

15 z2 +
8
3 ;− 1

45 z2 +
53
45 ); 216z2632;

0 z2¿32;

where original quasiconcave functions �1(z1) and �2(z2) are transformed into concave functions �′1(z1) and
�′2(z2); respectively, as shown in Fig. 5(a) and (b).

Although Inuiguchi et al.’s idea is very useful in formulating quasiconcave functions into concave functions,
there are two major shortcomings in Inuiguchi et al.’s model as described below:
(i) Since the converted membership functions are quite di�erent from the original membership functions, a

decision maker has di�culty of imaging the relationship between these functions. For instance, a decision
maker is hard to realize the mapping from �1(z1) and �2(z2) (Fig. 2(a) and (b)) to �′1(z1) and �

′
2(z2)

(Fig. 5(a) and (b)).



H.-L. Li, C.-S. Yu / Fuzzy Sets and Systems 109 (2000) 59–81 67

Fig. 5. (a) �′1(z1) in Inuiguchi et al.’s method. (b) �
′
2(z2) in Inuiguchi et al.’s method.

(ii) If the number of break points in the membership functions is large, then it causes tedious computational
burden to convert these membership functions into concave functions.

Take Example 1 for instance, �ve break points are required to do transforming computing. Suppose there
are n objective functions and each of these functions have mi break points then the number of transform-
ing computing is

∑n
i=1 mi: The situation would become more complicated for treating problems with fuzzy

coe�cients.
To improve the above FMP methods, this paper �rst proposes a convenient way of expressing a piecewise

linear function. The proposed expression is simpler than Nakamura’s method [11]. Then we develop Algo-
rithm 1 that can solve the FMP problem in (1.1) where �i(zi) could be quasiconcave membership functions.
The proposed Algorithm 1 could solve the problem e�ectively without adding any zero–one variables, dividing
the problem into several subproblems, or calculating every break point to transforming original functions into
new functions. The extension of Algorithm 1 named Algorithm 2 is then studied to solve the quasiconcave
FMP program with fuzzy coe�cients in (1:2):
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Fig. 6. A general piecewise linear membership function.

3. Preliminaries

Some propositions of linearizing a quasiconcave membership function �i(zi) are described as follows:

Proposition 1. Let �i(zi) be a piecewise linear membership function of zi(X ); as depicted in Fig. 6; where
ak ; k =1; 2; : : : ; m are the break points of �i(zi); sk ; k =1; 2; : : : ; m−1; are the slopes of line segments between
ak and ak+1; and

sk =
�i(ak+1)− �i(ak)

ak+1 − ak :

�i(zi) can then be expressed as:

�i(zi)= �i(a1) + s1(zi(X )− a1) +
m−1∑
k=2

sk − sk−1
2

(|zi(X )− ak |+ zi(X )− ak); (3.1)

where |o| is the absolute value of o.
This proposition can be examined as follows:
(i) If zi(X )6a2 then

�i(zi)= �i(a1) +
zi(a2)− zi(a1)
a2 − a1 (zi(X )− a1)= a1 + s1(zi(X )− a1):
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(ii) If zi(X )6a3 then

�i(zi) = �i(a1) + s1(a2 − a1) + s2(zi(X )− a2)
= �i(a1) + s1(zi(X )− a1) + s2 − s12

(|zi(X )− a2|+ zi(X )− a2):

(iii) If zi(X )6ak′ then

m−1∑
k¿k′

(|zi(X )− ak |+ zi(X )− ak)= 0

and �i(zi) becomes

�i(a1) + s1(zi(X )− a1) +
k′−1∑
k=2

sk − sk−1
2

(|zi(X )− ak |+ zi(X )− ak):

Take �1(z1) and �2(z2) in Example 1 (Fig. 2(a) and (b)) for instances, �1(z1) and �2(z2) can be represented
by Proposition 1 as

�1(z1) = 0:04(z1 + 3) +
0:08− 0:04

2
(|z1 − 2|+ z1 − 2) + −0:1− 0:08

2
(|z1 − 12|+ z1 − 12)

+
−0:05 + 0:1

2
(|z1 − 17|+ z1 − 17): (3.2)

�2(z2) = 0:06(z2 − 7) + 0:1− 0:062
(|z2 − 17|+ z2 − 17) + −0:033− 0:1

2
(|z2 − 21|+ z2 − 21)

+
−0:1 + 0:033

2
(|z2 − 27|+ z2 − 27) + −0:25 + 0:1

2
(|z2 − 30|+ z2 − 30): (3.3)

An advantage of expressing a quasiconcave membership function by (3.1) is the convenience of knowing
the intervals of convexity and concavity for �i(zi); as described below:

Remark 1. For a �i(zi) expressed by (3.1) if sk+1¿sk then �i(zi) is a convex function for ak−16zi(X )
6ak+1; and ak is called a convex-type break point of zi; if sk+1¡sk then �i(zi) is a concave function for
ak−16zi(X )6ak+1:

Take Expression (3.2), for instance, it is convenient to check that �1(z1) is concave when 26z1(X )617
and �1(z1) is convex when −36z1(X )612 and 126z1(X )627: The point z1(X )= 2 and 17 are convex-
type break points of zi: Similarly for Expression (3.2), �2(z2) is convex for 76z2(X )621 and concave for
176z2(X )632: z2(X )= 17 is a convex-type break point of z2:

Proposition 2. Consider the following fuzzy program (P1):

P1: Max �

s:t: �6�i(zi(X )); i=1; 2; : : : ; m;

X ∈F (F is a feasible set):
Suppose the decrease of any �i(zi(X )) will cause the increase of �j(zj(X )) for all j 6= i; then at the optimal

solution X ∗; �= �i(zi(X ∗)) for i=1; 2; : : : ; m:
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Fig. 7. (a) A concave function �1(z1). (b) A convex function �2(z2).

Proof. Problem (P1) is to �nd X ∗ such that �=MaxMin(�i(zi(X ∗))) for i=1; 2; : : : ; m: Suppose there is a
solution X 0 satisfying the following conditions:
�0 =MaxMin(�i(zi(X 0)));
�0 = �i(zi(X 0)) for all i=1; 2; : : : ; k; i 6= k;
�0¡�k(zk(X 0)):
Since the decrease of �k(zk(X 0)) will cause the increase of �i(zi(X 0)) which �nally improves the objective

value, there should exist another solution X� in which �¡��= �k(zk(X�))¡�k(zk(X 0)); ��= �i(zi(X�));
i∈ (1; 2; : : : ; m); and i 6= k:
Since ��¿�0; �0 is not the optimal solution. Therefore the optimal solution X ∗ should satisfy �= �i(zi(X ∗))

for i=1; 2; : : : ; m:

Consider two piecewise linear membership functions �1(z1) and �2(z2) as depicted in Fig. 7(a) and (b),
where
(i) �1 is a concave function within the interval ai6z16ai+1; ai and ai+1 are starting and ending points of

that interval,
(ii) �2 is a convex function within the interval bj−16z26bj+1 and bj is a convex-type break point.
(iii) �1(ai)= �2(bj−1) and �1(ai+1)= �2(bj+1).

Remark 2. For �1(z1) and �2(z2) in Fig. 7(a) and (b), we can �nd a corresponding point of bj in z1 which
has the same value of membership functions as bj: Such a point is called a mapping point of bj; denoted as
ai[bj]; which is mapped from z2 to z1, as follows:

ai[bj] = �−11 (�2(bj)):

By using bj and ai[bj]; we can divide z1 and z2 into two pairs of segments as follows:
1st pair segments: (ai; ai[bj]); (bj−1; bj);
2nd pair segments: (ai[bj]; ai+1); (bj; bj+1):

By utilizing the above concept, we can divide �1(z1) and �2(z2) in Fig. 2(a) and (b) of Example 1 into
�ve pairs of segments below:
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Table 1
Five pairs of segments

�1(z1) = �2(z2) 0 0.2 0.6 1 0.5 0

Z1 −3 2 �−11 (�2(17))= 7 12 17 27
Z2 7 �−12 (�1(2))= 10:333 17 21 �−12 (�1(17))= 30 32

Segment number −−−−−−−→1←−−−−−−−⊥−−−−−−−→2←−−−−−−−⊥−−−−−−−→3←−−−−−−−⊥−−−−−−−→4←−−−−−−−⊥−−−−−−−→5←−−−−−−−

Where the mapping points of z1 = 2; z1 = 17 and z2 = 17 are computed as �−12 (�1(2))= �
−1
2 (0:2)=10:333;

�−12 (�1(17))= �
−1
2 (0:5)=30; and �

−1
1 (�2(17))= �

−1
1 (0:6)=7:

By referring to Proposition 2, we can �nd the optimal solution of Example 1. At �rst, we check the
feasibility of each segment.

Segment 1: (z1; z2) between (−3; 7) and (2; 10:333).
Segment 2: (z1; z2) between (2; 10:333) and (7; 17).

Segment 3: (z1; z2) between (7; 17) and (12; 21).

Segment 4: (z1; z2) between (12; 21) and (17; 30).

Segment 5: (z1; z2) between (17; 30) and (27; 32).

Since (7, 17) are feasible and (12, 21) is infeasible, the optimal solution should fall into segment 3. That
means 76z1(X ∗)6 12 and 176 z2(X ∗)6 21. �1(z1) and �2(z2) in (3.2) and (3.3) can then be rewritten as
�1(z1)= 0:08z1 + 0:04 and �2(z2)= 0:1z2 − 1:1. Example 1 is reformulated as the following LP model:

Maximize �

subject to �6�1(z1)= 0:08z1 + 0:04;

�6�2(z2)= 0:1z2 − 1:1;
z1 =−x1 + 2x2; z2 = 2x1 + x2;

−x1 + 3x2621; x1 + 3x2627;

4x1 + 3x2645; 3x1 + x2630; x1; x2¿0:

(3.4)

After computing on the LINDO [13], the obtained solution is (x1 = 5:6; x2 = 7:133; �=0:733) which is the
same as found by the Nakamura’s and Yang et al.’s models.
Suppose a membership function within a given segment is not linear but concave, then we need to solve

it by goal programming techniques [7]. Consider the following proposition:

Proposition 5. By referring to Proposition 1; consider a FMP problem below:

Maximize �

subject to �6�i(zi); X ∈F (a feasible set);
where

�i(zi)= �i(a1) + s1(zi(X )− a1) +
m−1∑
k=2

sk − sk−1
2

(|zi(X )− ak |+ zi(X )− ak)

is a concave function (i.e.; sk − sk−1¡0 for k =2; 3; : : : ; m− 1).
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This FMP problem can then be reformulated as follows:

Maximize �

subject to �6�i(zi)

�i(zi)= �i(a1) + s1(zi(X )− a1) +
m−1∑
k=2

(sk − sk−1)
(
zi(X )− ak +

k−1∑
l=1

dl

)
;

zi(X )− am−1 +
m−1∑
l=2

dl−1¿0;

06dl−16al − al−1 for all l; l=2; 3; : : : ; m− 1;
X ∈ F (a feasible set):

(3.5)

Proof. By referring to Li [7], a goal programming problem {Maximize w= ∑m−1
k=2 (|zi(X )−ak |+ zi(X )−ak),

subject to: zi(X )¿0 and 0¡a2¡a3¡ · · ·¡am−1} is equivalent to
{
Maximize w=2

m−1∑
k=2

(zi(X )− ak + rk−1); subject to: zi(X )− ak + rk−1¿0 for k =2; 3; : : : ; m− 1;

rk−1¿0; xi¿0; where rk−1 are deviation variables:

}
(3.6)

Expression (3.6) implies if zi(X )¡ak then at optimal solution rk−1 = ak−zi(X ); if zi(X )¿ak then at optimal
solution rk−1 = 0: Substitute rk−1 by

∑k−1
l=1 dl, where dl is within the bounds as 06dl6al+1 − al, (3.6) then

becomes

Maximize w=2
m−1∑
k=2

(
zi(X )− ak +

k−1∑
l=1

dl

)

Subject to zi(X ) + d1 ¿a2;

zi(X ) + d1 + d2 ¿a3;

...
...

zi(X ) + d1 + d2 + · · ·+ dm−2¿am−1;
06dl6al+1 − al for l=1; 2; : : : ; m− 2;
zi(X )¿0:

(3.7)

Since al+1 − al¿dl for all l, it is clear that

zi(X )¿am−1 −
m−2∑
l=1

dl¿am−2 −
m−3∑
l=1

dl¿ · · ·¿a3 − d1 − d2¿a2 − d1¿0:

The �rst (m − 3) constraints in Model (3.7) therefore are covered by the (m − 2)th constraint in (3.7).
Proposition 5 is then proven.
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4. Algorithm for quasiconcave FMP problems

From above discussion, an algorithm of solving a FMP problem in (1.1) where �i(zi) are quasiconcave
functions is formulated below:

Algorithm 1
Step 1: Express �i(zi) as

�i(zi)= �i(ai1) + si1(zi(X )− ai1) +
M (i)−1∑
k=2

sik − sik−1
2

(|zi(X )− aik |+ zi(X )− aik) for i=1; 2; : : : ; n:

Step 2: Put {�i(aik) | i=1; 2; : : : ; m and si; k+1¿si; k for k =1; 2; : : : ; m(i)− 1}, which is the set of convex-type
break points, in an ascending order. Let n be its cardinality. Name the elements rg (g=1; 2; : : : ; n)
in order of value. As shown in Table 2. Let g=1:

Step 3: Compute the corresponding mapping points of rg. Find tig for each i where �i(tig)= �(rg).
Step 4: Check the feasibility of rg.

Suppose there is an X satisfying

Zi(X )= tig; (4.1)

m∑
j=1

bijxj + ci¿0 for all i; (4.2)

then rg is feasible to the problem.
If rg is infeasible, then let g= g+ 1 and reiterate Step 3.
Otherwise, rg is feasible, go to Step 5.

Step 5: The optimal solution is located between rg−1 and rg, which is obtained by solving the following
linear program:

Maximize �

subject to �6ui(zi(X ))= ui(aik) + sik(zi − aik) +
N (i)−1∑
k¿2

(sik − si; k−1)(zi − aik + dk)

X ∈F;
where aik = tip and ai;N (i) = ti;p+1.

Table 2
Mapping point table

Element r1 r2 ............. rg ................... rn

Value order Highest Lowest
06u61 u(r1) = 1 .................. �(rg) ............. u(rn)= 0

Z1(X ) t11 t12 ............. t1g ............. t1n
Z2(X ) t21 t22 ............. t2g ............. t2n
. : : : :
. : : : :
. : : : :
Zn(X ) tn1 tn2 ............. tng ............. tnn
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Consider the following example:

Example 2.

Maximize �

Subject to �6�i(zi); i=1; 2; 3;

z1 =−2:2x1 + x2 + 2x3; z2 = 3:2x1 + 3:2x2 − x3; z3 = 3x1 − 2x2 + 3:5x3;
−x1 + 3x2 + x3650; x1 + 3x2 − x3640; 3x1 − x2 + 2x3680;
x1 + x2620; x1 + x3620; x1; x2; x3¿0;

where �1(z1), �2(z2), and �3(z3) are depicted in Fig. 8(a)–(c), respectively.

Now, we take Example 2 for instance to demonstrate the solution process of Algorithm 1.

Step 1: By referring to Proposition 1, the �1(z1); �2(z2), and �3(z3) can be expressed below:

�1(z1) = 0:05z1 − 0:03
2
(|z1 − 10|+ z1 − 10)− 0:01

2
(|z1 − 20|+ z1 − 20)

−0:0067
2

(|z1 − 40|+ z1 − 40); (4.3)

�2(z2) = 0:03z2 − 0:01
2
(|z2 − 10|+ z2 − 10)− 0:01

2
(|z2 − 20|+ z2 − 20)

−0:005
2
(|z2 − 40|+ z2 − 40) + 0:0152 (|z2 − 60|+ z2 − 60); (4.4)

�3(z3)= 0:01z3 +
0:05
2
(|z3 − 30|+ z3 − 30)− 0:05

2
(|z2 − 40|+ z2 − 40): (4.5)

Fig. 8. (a) u1(z1) in Example 2. (b) u2(z2) in Example 2. (c) u3(z3) in Example 2.
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Table 3
Corresponding elements

Element r1 r2 r3 r4

� value 1 0.8 0.2 0
z1 70 t12 t13 0
z2 70 60 t23 0
z3 60 t32 30 10

Step 2: The convex-type break points with “positive” slope in this example are z2 = 60 and z3 = 30 where
�2(z2 = 60)=0:8 and �3(z3 = 30)=0:2. The corresponding rg elements are listed in Table 3.

Step 3: Since (z1 = 70; z2 = 70; z3 = 60) is infeasible to Example 2, we compute t12 and t32 as t12 =
�−11 (�2(60))= �

−1
1 (0:8)=30 and t32 = �

−1
3 (�2(60))= �

−1
3 (0:8)=40.

Step 4: Since (z1 = 30; z2 = 60; z3 = 40) is infeasible to Example 3, we reiterate Step 3.
[Step 3] Compute t13 and t23 as t13 = �−11 (�3(30))= �

−1
1 (0:2)=4 and t23 = �

−1
2 (�3(30))= �

−1
2 (0:2)

=6:67.
[Step 4] Since (z1 = 4; z2 = 6:67; z3 = 10) is feasible to Example 2, we go to Step 5.

Step 5: Since (z1 = 4; z2 = 6:67; z3 = 10) is feasible and (z1 = 30; z2 = 60; z3 = 40) is infeasible, the op-
timal solution should fall into the segment between r2 and r3. Therefore, referring to Proposition
5, �1(z1); �2(z2) and �3(z3) can be expressed as �1(z1)= 0:01z1 − 0:04d1 − 0:01d2 + 0:5 where
z1 +d1 +d2¿20; �2(z2)= 0:005z2− 0:025d3− 0:015d4− 0:005d5 + 0:5 where z2 +d3 +d4 +d5¿40,
and �3(z3)= 0:06z3 − 1:5:

Example 2 is then reformulated as the LP model below:

Maximize �

subject to �6�1(z1) = 0:01z1 − 0:04d1 − 0:01d2 + 0:5; z1 + d1 + d2¿20;

�6�2(z2)= 0:005z2 − 0:025d3 − 0:015d4 − 0:005d5 + 0:5; z2 + d3 + d4 + d5¿40;
�6�3(z3)= 0:06z3 − 1:5;
z1 =−2:2x1 + x2 + 2x3; z2 = 3:2x1 + 3:2x2 − x3; z3 = 3x1 − 2x2 + 3:5x3;
−x1 + 3x2 + x3650; x1 + 3x2 − x3640; 3x1 − x2 + 2x3680;
x1 + x2620; x1 + x3620; x1; x2; x3¿0:

Solving by LINDO [13], the obtained solution is �=0:755; z1 = 25:497; z2 = 50:993; z3 = 37:583; x1=6:412;
x2 = 13:588, and x3 = 13:007.

The comparison of Algorithm 1 with current FMP methods for solving Examples 1 and 2 are summarized
in Tables 4 and 5.
Tables 4 and 5 reveal that
(i) Nakamura’s method needs to divide Example 1 into eight subproblems and to �nd the optimal solution

by linear programming computation repeatedly, while the proposed method only uses linear programming
computation one time for solving Example 1.
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Table 4
Comparison of di�erent methods for solving Example 1

Number of Number of divided Number of extra
LP subproblems extra constraints zero–one variables

Nakamura’s model 8 9 0
Yang et al.’s model 1 9 3
The proposed model 1 2 0

Table 5
Comparison of di�erent methods for solving Example 2

Number of computed break points

Inuiguchi et al.’s model 12
The proposed model 4

(ii) Yang et al.’s method requires adding three extra zero–one variables in their method while none of
zero–one variables is needed in the proposed method.

(iii) The proposed method uses less number of constraints than other methods. (i.e., proposed method uses two
constraints only, whereas both Yang et al.’s method and Nakamura’s method uses nine extra constraints
in treating fuzzy objective functions in Example 1).

(iv) Inuiguchi et al.’s method requires to compute the mapping points of all break points, while the proposed
method only needs to compute the mapping points of the convex-type break points.

5. Extension to quasiconcave FMP problems with fuzzy values in coe�cients

Algorithm 1 can be extended to solve a FMP′ program in (1.2) where the constraints may have fuzzy
coe�cients. Suppose the fuzzy coe�cients b̃ij and uncertain resources c̃i in (1.2) are symmetric triangular
distribution where (bi1; bi2; : : : ; bim; ci) are the most possible values (central values) and (pi1; pi2; : : : ; pim; qi)
are the most possible deviations from the central values as shown in Fig. 9.
Let

yi=
m∑
j=1

b̃ij xj + c̃i :

By referring to [14, 15], the triangular membership function could be expressed as

∏
i

(yi)= 1−
|yi −

∑m
j=1 bij xj − ci|∑m

j=1 pij xj + qi
:
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Fig. 9. Possibility distribution.

Denote h as h=
∏
i(yi). Since 06

∏
i(yi)61, we have

h=1− �+i + �
−
i∑m

j=1 pij xj + qi

where yi −
∑m

j=1 bij xj − ci= �+i − �−i , �+i ¿0, �−i ¿0, 06h61.
Utilizing the Max–Min operator [6, 17] FMP′ problem in (1.2) can then be converted into the following

program:

Maximize � (5.1)

subject to �6�i(zi(X )); (5.2)

�6wh; (5.3)

h


 m∑

j=1

pij xj + qj


=


 m∑

j=1

pij xj + qi


− �+i − �−i for i=1; 2; : : : ; I; (5.4)

zi(X )−
m∑
j=1

bij xj − ci= �+i − �−i for i=1; 2; : : : ; n; (5.5)

yi −
m∑
j=1

bij xj − ci= �+i − �−i for i= n+ 1; n+ 2; : : : ; I; (5.6)

�+i ¿0; �−i ¿0; 06h61; (5.7)

where w is the weight between the degree of preference for membership functions and the degree of possibility
for possibility distribution.
The upper and lower bounds of w value could be computed by referring to the scaling algorithm recently

developed by Biswal [1]. His algorithm is very helpful for a decision maker to specify w based on the
information of the upper values of �i(zi(X )) and h. Suppose w is given, then Tanaka and Asia’s method
[14, 15] and Leung’s method [6] could be applied to solve Problem (5.1)–(5.7). Their methods, however,
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could only �nd locally optimal solution of this problem. Hereby, we propose a method that could �nd a
solution which is as close as possible to a global optimum.
A major di�culty of solving this program is that the constraint (5.4) contains product terms hxj. In order

to approximately linearize the product term hxj, the following proposition is introduced, referring to Li and
Chang [8].

Proposition 6. A product term hxj where 06h61 and xj¿0 can be approximately linearized as vj
:= hxj.

The relationships among h; xj; and vj are expressed as

vj
:=

1∑K
k=1 2

k−1

[
K∑
k=1

(2k−1�jk)

]
(K is an integer speci�ed by the user); (5.8)

h :=
1∑K

k=1 2
k−1

[
K∑
k=1

(2k−1�jk)

]
; (5.9)

M (�jk − 1) + xj6�jk61− �jk + xj; k =1; 2; : : : ; K; (5.10)

06�jk6M�k; �jk6xj; k =1; 2; : : : ; K; (5.11)

where �jk are 0–1 variables, �jk are continuous variables and M is the upper bound of xj. That is
M =Max{xj ∀j}.

Proof. Since 06h61, there exists a set of 0–1 variables �jk such that (5.9) is true. We then have

vj = hxj
:=

1∑K
k=1 2

k−1

[
K∑
k=1

(2k−1�jk xj)

]
:

Replace the product term �jk xj by new variables �jk , we obtain (5.8). Expressions (5.10) and (5.11) ensure
that if �jk =1 then �jk = xj, and if �jk =0 then �jk =0.

Notably that K in the above expressions means the number of 0–1 variables used to express a product term.
The larger the K is, the less the linearizing error becomes. For instance, for linearizing a product term hx
where 06h61 and 06x610. Suppose the maximal tolerable error is 1

15 , then v= hx can be approximately
linearized as follows:

v= 1
15 (�1 + 2�2 + 4�3 + 8�4); h= 1

15 (�1 + 2�2 + 4�3 + 8�4);

M (�i − 1) + x6�i61− �i + x; i=1; 2; 3; 4;

06�i6M�i; �i6x; i=1; 2; 3; 4; and M is the upper bound of x:

Algorithm 2. The algorithm of solving Quasiconcave FMP problems with fuzzy coe�cients is formulated
below:
Step 0: Ask the decision maker to specify w in (5.1), 06w61.
Step 1 through Step 3 are the same as in Algorithm 1.
Step 4: Check whether rg satis�es the following linear equalities

zi(X )= tig for i=1; 2; : : : ; n;
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h=1− �+i + �
−
i∑m

j=1 pij xj + qi
for i= n+ 1; n+ 2; : : : ; I;

yi −
m∑
j=1

bij xj − ci= �+i − �−i for i= n+ 1; n+ 2; : : : ; I;

where h=(1=w)�(rg).
If rg is infeasible then let g= g+ 1 and reiterate Step 3. Otherwise, go to Step 5.

Step 5: Solve the following linear mixed 0–1 program:

Maximize �
subject to �6�i(zi(X )); (5:3)–(5:11):

Consider the following example which is slightly modi�ed from Example 1 by adding fuzzy coe�cients.

Example 3.

Maximize �
subject to �6�1(z1); �6�2(z2);

z1 =−x1 + 2̃x2; z2 = 2x1 + x2;
−x1 + 3x2621; x1 + 3x2627;
4̃x1 + 3x2645̃; 3x1 + x2630;
x1; x2¿0;

where 06x1611:25, 06x2615, 2̃ = (1; 2; 3), 4̃ = (3; 4; 5), 45̃= (43; 45; 47), and �1 and �2 are the same as in
Example 1.

Step 0: Ask the decision maker to specify w. (Suppose w=0:3; 0:5; 0:7; 0:75; 0:8 and 1.0 for illustration)
Steps 1–3: From the basis of Algorithm 1, Example 3 can be reformulated below (referring to (3.4)):

Maximize �

subject to �6�1(z̃1)= 0:08z̃1 + 0:04; �6�2(z2)= 0:1z2 − 1:1;
z̃1 =−x1 + 2̃x2; z2 = 2x1 + x2;

−x1 + 3x2621; x1 + 3x2627;

4̃x1 + 3x2645̃; 3x1 + x2630; x1; x2¿0;

Step 4: Fuzzy inequality 4̃x1 + 3x2645̃ can be expressed as

h=1− �+1 + �
−
1

x1 + 2
; (5.12)

y1 − (45− 4x1 − 3x2)= �+1 − �+1 ; (5.13)

�+1¿0; �−1 ¿0; 06h61: (5.14)

Suppose the maximal tolerable error is 1
15 and from the basis of Proposition 6, (5.12) can be replaced

by the following:

v1 + 2h− x1 − 2=−�+1 − �−1 ; (5.15)
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Table 6
Solution table subject to w value

w � h �1 �2 z1 z2 x1 x2

0.3 0.3 1 0.3 0.886 3.25 19.864 7.295 5.273
0.5 0.5 1 0.5 0.841 5.75 19.409 6.614 6.182
0.7 0.7 1 0.7 0.775 8.25 18.75 5.85 7.05
0.75 0.733 1 0.733 0.733 8.667 18.333 5.6 7.13
0.8 0.746 0.933 0.746 0.746 8.83 18.644 5.786 7.071
1.0 0.755 0.933 0.755 0.755 8.931 18.544 5.727 7.091

v1 = 1
15 (�11 + 2�12 + 4�13 + 8�14); (5.16)

h= 1
15 (�11 + 2�12 + 4�13 + 8�14); (5.17)

M (�1j − 1) + x16�1j61− �1j + x1; 06�1j6M�1j; �1j6x1; j=1; 2; 3; 4; (5.18)

where �1j are 0–1 variables, �1j are continuous variables and M is the upper bound of max{x1; x2}.
Similarly, z1 =−x1 + 2̃x2 is solved by

h=1− �+2 + �
−
2

x2
; (5.19)

z1 − (−x1 + 2x2)= �+2 − �−2 ; (5.20)

�+2¿0; �−2 ¿0; 06h61; (5.21)

Eq. (5.15) can be replaced by the following:

v2 − x2 =−�+2 − �−2 ; (5.22)

v2 = 1
15 (�21 + 2�22 + 4�23 + 8�24); (5.23)

h= 1
15 (�21 + 2�22 + 4�23 + 8�24); (5.24)

M (�2j − 1) + x26�2j61− �2j + x2; 06�2j6M�2j; �2j6x2; j=1; 2; 3; 4; (5.25)

where �2j are 0–1 variables, �2j are continuous variables, and M is the upper bound of max{x1; x2}.
Step 5: Reformulate Example 3 as following linear mixed 0–1 program:

Maximize �
subject to �6�1(z1)= 0:08z1 + 0:04; �6�2(z2)= 0:1z2 − 1:1; �6wh;

z2 = 2x1 + x2; −x1 + 3x2621; x1 + 3x2627; 3x1 + x2630;

(5.12)–(5.18), (5.19)–(5.25); x1; x2¿0

Solve the program by LINDO [13], the obtained solution is listed in Table 6. From Table 6, the deci-
sion maker could choose a suitable w which is a compromise value between the degree of preference for
membership functions and the degree of possibility for possibility distribution.
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6. Concluding remarks

Two algorithms are proposed for treating FMP problems with quasiconcave functions. Algorithm 1 is applied
to treat the programs with crisp coe�cients and Algorithm 2 could solve the programs with fuzzy coe�cients.
By comparing with current FMP models [4, 11, 16] three advantages of Algorithm 1 are: �rst, it uses a more
convenient way to express quasiconcave functions. Second, it could directly solve the quasiconcave FMP
problem without adding zero–one variables, dividing the problem into several subproblems, or converting the
original membership functions into new functions. Third, it could be extended to treat a quasiconcave FMP
problem with fuzzy coe�cients. By comparing with current models [6, 14, 15] of treating fuzzy coe�cients,
the advantage of Algorithm 2 is that it could �nd an approximate solution closing to a global optimum.
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