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Fig. 6. Array outputs (20) versus. Conventional beamformer is compared [16] W. R. Remley, “Correlation of signals having a linear delay,Acoust.
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with the conventional and robust & 1) HT algorithms. The outputs (20) were Soc. Amey.vol. 35, p. 65, 1963. _ 3

additionally averaged over the snapshot intlex [17] B. J. Uscinski and D. E. Reeve, “The effect of ocean inhomogeneities
on array output,'J. Acoust. Soc. Amerol. 87, no. 6, pp. 2527-2534,
1990.

VI. CONCLUSION

Several basic adaptive beamforming algorithms have been compared
using experimental shallow sea sonar data with a horizontal ULA of 15
hydrophones and moving interfering sources originated from shipping
noise. Our results show the relationship between the practical perfor- . . . . .
mances of adaptive and nonadaptive techniques in terms of the outdﬁppllcatlons ofa Varlab!e Step S_'Ze Algorithm to QCEE
SINR or the related measure given by the noncompensated postbeam- Adaptive IIR Filters
forming interference power. They demonstrate performance improve-
ments that can be achieved using several robust adaptive algorithms
relative to traditional adaptive beamforming techniques operating in a

Pau-Lo Hsu, Tsung-Yu Tsai, and Fu-Ching Lee

real sonar environment. Abstract—The quadratic constraint equation error (QCEE) method was
proposed by Ho and Chan to achieve bias removal for the equation error
ACKNOWLEDGMENT adaptive IR filters. However, this approach is limited to slow convergence

in estimation when a small step size is used; large step sizes lead to sig-
The authors would like to thank M. Siegel, STN Atlas Elektroniknificant misadjustment. This correspondence presents a variable step size
Bremen, Germany, for providing them with the experimental record§YSS) technique to greatly improve the QCEE under its quadratic con-
straint to achieve both fast convergence and reduced misadjustment for
adaptive IIR filters.
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/' wherea; andb; are adaptive parameters, aid is the delayith sam-
x(k) pling time. Moreover

—| B9 Raa = E[D(K)D" (k)] @)
e, (k) ¥ Rux = E[X(k)Xz(k)] (5)
Rae = E[D(k)X " (k)] 6)

(k) N whereX andD are in i i

Nt put and output signal vectors, respectively. The
Ak, q) > oal=1 covariance matrixR is defined as

@)

i=0 Rdd _Rd.r
R =
\ |:_Rd.r R.r.r
The equation errat.and MSE can be represented as
N-1

ec(k) = Z aid(k — 1) — Z bje(k —J) (8)

1=0

Fig. 1. Structure of QCEE adaptive IIR filters with white noise.

and
measurement noise, the EE approach tends to obtain biased estima- MSE:E[ei(k)]

tion results, as reported in [1] and [3]-[5]. With a quadratic constraint N et 21
(Z ay(k—i)— > bu(k— j)) J

AT A = 1 on the feedback coefficients in the QCEE, the noise con- _r
1=0 3=

1

tributes a constant term to the mean square error (MSE) only. Thus, —
the QCEE achieves desirable estimation results without bias for the N_ .
IIR adaptive filter. However, when the step size is larger in the QCEE 102 Z 2 )
method, the convergence speed increases, but the estimation misadjust- " po I

ment increases as well. Conversely, when the step size is smaller, the . ) o N—1 2

misadjustment decreases, but the convergence slows as well. ThEFQm (_9)’ if _the q“‘"ﬁ“_’fa“c consFralﬁt:i:O_ a; = 1onthe fee(_jback
fore, using a variable step size (VSS) algorithm to enhance the QCE(Eeffluents is specified, the n0|se_ contributes to _the MSE with a co_n-
adaptive filter to achieve both fast convergence and suppressed mis%ﬁ'—1t termonly. As aresult, the noise componentin t_h_e MSE onl_y shifts
justment is desirable. up the error surface but does not affect the global minimal location. An

Several VSS methods have been employed in different applicatioHQ.biased solution can thus be obtaine_d by minimizing the MSE. )
Harris et al. used two consecutive sign changes of the gradient to!" the QCEE adaptation, the updating rules for the LMS adaptive

. . T _ . .
change the step size [6]. Park added an exponential term in the LmthOd with the constraint” A = 1 ateach adaptive step is as follows

adaptive algorithm [7]. Kwong and Johnston’s step size dependEI]J: N

on the variation in the mean-square error [8]. However, because A(k + 1) = A(k) = 2pa(In — A(K)AT (k))e.(k)D(k) (10)
the A" A = 1 constraint is required in the QCEE, those reported Ak +1)

VSS methods cannot be directly employed. In this correspondence, Alk+1) = m (1)
the projection length 06MSE/9A on the spafiLA) space, which gnd

corresponds to the closeness between the estimated parameter and

its optimal solution, is derived to determine the varied step size of B(k+1) = B(k) + 2ppec(k) X (k) (12)
the VSS-QCEE. Consequently, when the estimated result is far frorglereua and i, are the step size for the FIR filtet(, ¢—! and

its optimal solution, the VSS automatically increases its step size¥

—1 . .
accelerate the convergence speed. Moreover, when the estimaﬁgﬁéeq is %,l]re[ipl);ectlvely. Moreover, the condition to ensure conver-

result gets close to its optimal solution, the step size is automaticall

reduced to suppress the misadjustment. Simulation results have provep « ;.. u, < i, i=1,2,---, N+ M, A£0  (13)
the effectiveness and accuracy of the proposed VSS-QCEE. Ai
where); are the eigenvalues of the matiixin (7).
Il. THE QCEE ALGORITHM l1l. PERFORMANCE OF THEOPTIMAL SOLUTION ON THE A A = 1
CONSTRAINT

Without loss of generality, the relationship between the input and

T T T
output signals for an IIR filter can be written as The QCEE method searches the solutor= [A" (k) B (k)]

for the minimum poin#* on the MSE surface with tha”4 = 1
1 =, R . constraint [9]. Supposd* andB* are optimal solutions and that they
y(k) = ag \ 2 alvlk—i)+ ; bye(k = J) D ust satisfy the necessary conditions as given below.
Lemma—Necessary Conditions for First-Order Equality Con-
straints [10]: Let 6" be a regular point of the constraint
h(§) = ATA —1 = 0 and a local extreme point (either min-
imum z € E™ or maximum) of MSE is subject to this constraint.
Then, all that satisfy

=1

where z(k) is the input signaly(k) is the desired output signal,
Zfi‘ll a$2 = 1 andag # 0 [1]. Suppose that the output noisék)
is a white noise signal with power> andd(k) = y(k) + n(k); then,
the QCEE adaptive IIR filter shown in Fig. 1is

N-1

Ak, g7 = ) ailk)g™ @ Veg(8")z =0 (14)
1:/1__1 must also satisfy

Bk, 7'y =Y bi(k)g™ ®

= VoMSE(#*)z = 0. (15)
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In (14) and (15); can be any vector on the tangent plané ‘gfand H,(k)
VeMSE(6*) must be orthogonal to the tangent plangdfLet A €
EV=%Ra, Be EM=NRp, 0 ENTY = R, Ry = Rars P

andz € Ratm, wherez = [z 27 |7, z1 € Ra,andz € Ry is
one vector of the tangent plane 6h=[A* B* |7, and

Veh(6) =[4" 0] (16)
From (14), the vector = [z{ =2 ]T on the tangent plane must sat- .
isfy min
> PA(k)
* w L w L PAmin PAmax
Voh(8%)z= A" 21 40-Za=A" -zi=0.  (17)

Fig. 2 Determination of the VSB. (k) by the calculated projectioR.4x).
Thus, the vector of tangent plage € spafLA*) andz: € Rz,

where spafiL A*) refers to the space spanned by all vectors that are
orthogonal to the optimat*. Moreover, (15) indicates that pra(k) < fimax based oPagx). Note thatu,(k) must be less than the

VeMSE(8%) - z = [QMSET aMSET} {Zl —0. inverse of the maximal eigenvalue of the covariance matrix as in (13)
A 9B |4+ pops L72 [1], [11]. Thus, the step size of the VSS-QCEE algorithm can be simply
set as
Equations (17) and (18) indicate that the optinsdl at the minimum Wrin, if Pagky < PAmin
point on theR g space is a general FIR adaptive filter as Gmax, if Pagky > PAmax
OMSE T — ua(k) = . Hmax — Hmin (26)
—aB — = 0. (19) Umln + PAmaX — PA_mln
ThereforepMSE/9A* -z, = 0 and (17)~(19) indicate that under the (Pagky = PAmin),  otherwise

constraintA” A = 1, IMSE/d A-spariLA) = 0 atthe optimal*.In  WherePAmax > PAmin > 0. As shown in Fig. 2, a linear method
the present VSS-QCEE algorithm, the projection lengthMBE/9.4  Was used to defing..(k). Generally speaking, the closaris to 1,
onthe spafil4) can be used as the estimation of the closeness betwdBf more precise the[j.a(x)] can be estimated, and a smalleA min

the parameted and its optimal solutios *. However, the projection Can be set to achieve smaller misadjustment. Alternatively, whem the
length in the estimation procedure may vanishtifs near an eigen- iS far less than 1 in real applications, a largefm.x would be more
vector corresponding to a saddle point of the MSE. appropriate. The proposed algorithm is summarized in the Appendix.

IV. THE VSS-QCEE AAPTIVE ALGORITHM V. SIMULATION RESULTS

The step size in the QCEE adaptive algorithm is fixed [1]. In the To verify the present VSS-QCEE adaptive filtering, examples are

present VSS-QCEE algorithm, we will apply the proposed VSS tecprovided with simulation results. Suppose we have an unknown system
nique to theA(k, q_l) FIR filter under a quadratic constraint. On the 0.5 —01z""

other hand, a fixed step size method is still applicable foltie, ¢ ') H(z) = T _14-13049:2
FIR filter. By employing the LMS adaptive algorithm, the gradient of ' 0.9795 _ 0.0599 RBO
MSEVMSE(0) = [gh(x ghx " Witho =[AT(k) BT (k)]" : — G

: : 5 = 05590 — 0782621 + 0.2739z-2  A0(z)
are estimated g5 11] such that
oy G111 where the second term &f(z) is the normalization from the first term

gace) = 2ee(k) D(k) C satisfy the constraim” A = 1. The corresponding coefficients are
Ik = —2e(k) X (k). (21) 41 = —1.4, az = 0.49, bo = 0.5, by = —0.1, a§ = 0.5590, af =
For this unbiased estimation method, we obtain —0.7826, a5 = 0.2739, b§ = 0.2795, andb] = —0.0599. The initial
Bl ace] =9tk (22) Parameters are set af0) = [1 0 _O]T, B(0) = [0 0]% in the
. simulation. Moreover, we define the index MSD to indicate the state of
Elgsim] =98k (23)

convergence as

In th t VSS-QCEE algorithm, the fixed st izeén (10)i
n the presen Q algorithm, the fixed step gizen (10)is MSD = MSD(A) + MSD(B)

changed to the variable step sjzg(k) and is varied according to the

projection length ofE[j.4(x)] on the space spanA(k)). Moreover, =20log(AT(k)A(k) + BT (k) B(k)) (27)
(k) €an be determined to approximatj 4x)] as whereA(k) = A(k) — A°, B(k) = B(k) — B°.
Tagres1) = aFace—1y + (1 —a)gacw) (24) Example 1—The VSS-QCEE Algorithrim this example, its input

wheren is the forgetting factor, anal < 1. When the adaptive parame-Signal was white noise with power 1, and the output signal was con-
tersf — 6", thenja(r41) = §ax) andgsr41) = §B(x)- « is chosen taminated by uncorrelated white noise with power 0.01. We set the

as 099’ an@'A 5 is thus close tCE‘[gA(k)] The projecnonPA(k) of pal’ame’[el’s in the VSS'QCEE algorlthmlﬂ&n = 0001, Hmax —

7 () ON the space of span A(k)) can be calculated as 0.02, pp = 0.001, o = 0.99, PAmax = 0.2, and P Awin = 0.03.
— P—— > Simulation results in Fig. 3(a) indicate that the misadjustment of the
Pagry = \/”gA(k)” - (gA(k) - A(k))?. (25) present VSS-QCEE was similar to the results of the QCEE with a very

Note that since the projection length will also vanish near an eigesmall step sizex = 0.001. Moreover, Fig. 3(b) indicates that the
vector corresponding to a saddle point of the MSE and a large VSS witlesent VSS-QCEE leads to a fast convergence speed, and the result
cause unstable estimation, determination of the upper bound andithsimilar to that of a very large step size= 0.02 in the QCEE. In
lower bound for the VSS is thus required in the present VSS-QCEE aldition, the present method achieves greatly attenuated MSD results,
gorithm. Practicallyp. (%) can be determined withinthe ranggi» < as shown in Fig. 3(b). In addition, because(k) is variable in the



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 1, JANUARY 2000 253

A B A B
1 1 1
8 go4 2 8
5 5 [ g0 5 05
80 £0.2 [ 8
£ & £ E o
b @ 0 < = ”‘_“"1/'
-1 -2 -0.5
0 500 1000 0 500 1000 0 500 0 500
iteration*100 iteration*100 iteration*100 iteration*100
MSD u 0 MSD
o] 0.02
o 50 % -50
2 z
~ = [a}
a 5001 2-100
=-100
-150
0 500 1000 0l) 500 1000 ; : S00
iteration*100 teration*100 iteration™100
(a)
A B
1 1
2 3
S0 5 05 -
g g
B I'E 0
= = e
<t 1]
.2 -0.5
0 500 4] 500
iteratior*100 iteration*100
MSD
0 500 1000 0
iteration*100 ~
©) g 0
a
. . . 2-100
Fig. 3. (a) Estimation results of the VSS-QCEE and (b) MSD with the
VSS-QCEE algorithm (solid, 1), QCEE algorithm with the fixed step size .1500 =00
= 0.02 (dashed, Il) and: = 0.001 (dash-dot, IlI). N
o ( ) and: ( ) iteration*100
(b)

present QCEE method, (10) can be processed as the same formﬁdr\ 4. Estimation results aefi, a2, b1, andb, asa, changes from-1.4 to

(12) to render similar results in real applications. -0.3. (a) QCEE algorithm. (b) VSS-QCEE algorithm.
Example 2—Applications of VSS-QCEE to Estimate Parameter Vari-

ation: System parameters may vary, or faults may occur in the system,
sensors, or actuators in real applications. In this simulation, when gaHse response and autocorrelation matching properties [9], [12]. For
rametere; was suddenly changed froni.4 to-0.3, Fig. 4(a) shows color noise contamination in real applications, further studies of the
the trajectories of the QCEE algorithm with a fixed step size= present VSS-QCEE are promising in future research.
0.001, and Fig. 4(b) shows the results of the present VSS-QCEE al-
gorithm. Apparently, the tracking performance of the present method APPENDIX
is much better than the QCEE method, and a prompt indication of the VSS-QCEE AGORITHM
parameter variation can thus be successfully set.
Provided with
a) the input vectoX and the noisy output vectadp;
b) the given values Qimin, tmax, PAmin, PAmax;

Although the QCEE algorithm achieves the bias removal, its fixed ¢) the initial valuesofA = [1 0 0 -], B=1[0 0 -,
step size in the estimation brings disadvantages as either a slower con- (0} = jiuin, 74(0) = 0, k = 0.
verging speed or the misadjustment. This correspondence calculateﬁieration Procedures:
the projection length c§MSE/d A on the spaflLA) space to deter-
mine the varied step size of the present VSS-QCEE under the constrai
AT A = 1. Therefore, the step size of the present approach is indepen
dent of input or output variables and is directly determined by the esti-
mated projection lengtk 4(x) as the closeness to the optimal solution. Step5) Obtain the VSa (k) from (26).

The proposed VSS-QCEE algorithm appropriately provides auto- . -
matic adjustment for the step size in the adaptive estimation. Com-Step 6()110)bta|n the estimated parametd(¢ + 1) from (10) and

d twith the QCEE Its indicate that th d VSS-QCE
pared twi eQ , FESUTS Indicate that the propose Q r%tep 7) Obtain the estimated parame®(& + 1) from (12).

method satisfactorily achieves both a fast convergence speed and -tep 8) Go to Step 1).

VI. CONCLUSIONS

tep 1) Obtain the equation erras(k) from (8).
Step 2) Obtain the directly calculated gradigntx) from (20).
Step 3) Obtain the estimated gradimgk) from (24).
Step 4) Obtain the estimated projection length ) from (25).

duced misadjustment. Moreover, in monitoring the variation of system
parameters, results from the present VSS-QCEE indicate that this new
method provides better tracking performance. In the present modeling, REFERENCES
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1. SUBBAND ADAPTIVE FILTERING WITH CROSSFILTERS

We considerM -band (4 > L) adaptive filtering, as depicted in
Spectral Analysis of Subband Adaptive Digital Filters Fig. 1, with least mean-squared (LMS) algorithm for adaptation. We
assume that all of the signals are real and that the infut and the
additive noisew(n) are (wide-sense) stationary processes with zero
mean. The additive noise is assumed to be uncorrelated with the input
o i ) signal. We express thetransform of a sequence denoted by a small
Abstract—Subband adaptive digital filters at stationary points are ana-

lyzed in the frequency domain. Approximate expressions for the optimal letter by the corresponding Capltgl Iettgr. .
subband filters are presented, and then, a spectral representation of the ~ 10 analyze subband adaptive filtering, we use polyphase
error variance is derived. These are expressed in the frequency domain and, matrices [11]. The polyphase matrix of analysis filters

Shuichi Ohno and Hideaki Sakai

hence, enable us to see the aliasing effects in subband adaptive filtering. {Ho(2), Hi(2), ---, Hu—1(2)} is defined as
Index Terms—Aliasing effect, error variance, subband adaptive filtering. [Hp(2)]a = Z hi(Ln + l)z—n
foro<:<M-1and0<I<L-1 Q)
I. INTRODUCTION . i o
S _ _ o where[-];; denotes thgi, [)th element of a matrix. Similarly, the
Adaptive filtering is now widely used for various applications suchyolyphase matrix of synthesis filtef&/o (z), G1(z), - -+, Gar—1(z)}

as adaptive system identification, adaptive equalization, and acougfigiefined as
echo cancellation [1]. However, some applications that need adaptive o ‘ —n
filters with a large number of taps suffer from its heavy computational [Gp(2)]—1-ts = Z gi(Ln +1)7" )

n

burden and slow convergence [2]. To overcome these problems, sulyy sing the polyphase matrices and block version of signals [11]
band adaptive filtering has been proposed [3], [4].

Fig. 1 shows a schematic diagram/df-band subband adaptive fil- i(n) =w(Ln —1). wiln) = w(ln—1)
tering, wherer(n) is the input of the unknown systef(z), d(n) is fore=0,.--, L -1 3)
the output of the system corrupted by a naige ), and| Z andl L, re-  the system in Fig. 1 can be express as that in Fig. 2, whge) is the
spectively, denote thé-fold decimation and thé-fold interpolation. pseudo-circulant matrix constructed from the polyphase components

The input signat () and the desired signé(n) are splitinto subband of the unknown systenf’(z) = lL=_01 Fi(zh)z"as
Fo(z) Fi(z) - Froa(z)
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