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Fig. 6. Array outputs (20) versusN . Conventional beamformer is compared
with the conventional and robust (p = 1) HT algorithms. The outputs (20) were
additionally averaged over the snapshot indext.

VI. CONCLUSION

Several basic adaptive beamforming algorithms have been compared
using experimental shallow sea sonar data with a horizontal ULA of 15
hydrophones and moving interfering sources originated from shipping
noise. Our results show the relationship between the practical perfor-
mances of adaptive and nonadaptive techniques in terms of the output
SINR or the related measure given by the noncompensated postbeam-
forming interference power. They demonstrate performance improve-
ments that can be achieved using several robust adaptive algorithms
relative to traditional adaptive beamforming techniques operating in a
real sonar environment.
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Applications of a Variable Step Size Algorithm to QCEE
Adaptive IIR Filters

Pau-Lo Hsu, Tsung-Yu Tsai, and Fu-Ching Lee

Abstract—The quadratic constraint equation error (QCEE) method was
proposed by Ho and Chan to achieve bias removal for the equation error
adaptive IIR filters. However, this approach is limited to slow convergence
in estimation when a small step size is used; large step sizes lead to sig-
nificant misadjustment. This correspondence presents a variable step size
(VSS) technique to greatly improve the QCEE under its quadratic con-
straint to achieve both fast convergence and reduced misadjustment for
adaptive IIR filters.

Index Terms—Adaptive IIR filter, estimation, quadratic constraint, step
size.

I. INTRODUCTION

In adaptive IIR filters, the output error method is updated directly
by minimizing its mean square error function. However, its error sur-
face is not quadratic, and its gradient search algorithm may fail to reach
the global minimum if initial points are not suitably chosen [2]. On the
other hand, the equation error (EE) method separates an IIR filter into
two FIR filters, and thus, global convergence can always be achieved
because of the quadratic error surface. However, in the presence of
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Fig. 1. Structure of QCEE adaptive IIR filters with white noise.

measurement noise, the EE approach tends to obtain biased estima-
tion results, as reported in [1] and [3]–[5]. With a quadratic constraint
ATA = 1 on the feedback coefficients in the QCEE, the noise con-
tributes a constant term to the mean square error (MSE) only. Thus,
the QCEE achieves desirable estimation results without bias for the
IIR adaptive filter. However, when the step size is larger in the QCEE
method, the convergence speed increases, but the estimation misadjust-
ment increases as well. Conversely, when the step size is smaller, the
misadjustment decreases, but the convergence slows as well. There-
fore, using a variable step size (VSS) algorithm to enhance the QCEE
adaptive filter to achieve both fast convergence and suppressed misad-
justment is desirable.

Several VSS methods have been employed in different applications.
Harris et al. used two consecutive sign changes of the gradient to
change the step size [6]. Park added an exponential term in the LMS
adaptive algorithm [7]. Kwong and Johnston’s step size depended
on the variation in the mean-square error [8]. However, because
the ATA = 1 constraint is required in the QCEE, those reported
VSS methods cannot be directly employed. In this correspondence,
the projection length of@MSE=@A on the span(?A) space, which
corresponds to the closeness between the estimated parameter and
its optimal solution, is derived to determine the varied step size of
the VSS-QCEE. Consequently, when the estimated result is far from
its optimal solution, the VSS automatically increases its step size to
accelerate the convergence speed. Moreover, when the estimation
result gets close to its optimal solution, the step size is automatically
reduced to suppress the misadjustment. Simulation results have proven
the effectiveness and accuracy of the proposed VSS-QCEE.

II. THE QCEE ALGORITHM

Without loss of generality, the relationship between the input and
output signals for an IIR filter can be written as

y(k) =
1

ao
0

 
�

N�1X
i=1

aoi y(k � i) +
M�1X
j=0

bojx(k � j)

!
(1)

where x(k) is the input signal,y(k) is the desired output signal,PN�1

i=1
ao

2

i = 1 andao0 6= 0 [1]. Suppose that the output noisen(k)
is a white noise signal with power�2n andd(k) = y(k) + n(k); then,
the QCEE adaptive IIR filter shown in Fig. 1 is

A(k; q�1) =
N�1X
i=0

ai(k)q
�i (2)

B(k; q�1) =
M�1X
j=0

bj(k)q
�j (3)

whereai andbj are adaptive parameters, andq�i is the delayith sam-
pling time. Moreover

Rdd =E[D(k)DT (k)] (4)

Rxx =E[X(k)XT (k)] (5)

Rdx =E[D(k)XT (k)] (6)

whereX andD are input and output signal vectors, respectively. The
covariance matrixR is defined as

R =

�
Rdd �Rdx

�Rdx Rxx

�
: (7)

The equation erroreeand MSE can be represented as

ee(k) =
N�1X
i=0

aid(k � i)�
M�1X
j=0

bjx(k � j) (8)

and
MSE=E[e2e(k)]

=E

2
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N�1X
i=0

aiy(k � i) �
M�1X
j=0

bjx(k � j)

!2
3
5

+ �2n

N�1X
i=0

a2i : (9)

From (9), if the quadratic constraint
PN�1

i=0 a2i = 1 on the feedback
coefficients is specified, the noise contributes to the MSE with a con-
stant term only. As a result, the noise component in the MSE only shifts
up the error surface but does not affect the global minimal location. An
unbiased solution can thus be obtained by minimizing the MSE.

In the QCEE adaptation, the updating rules for the LMS adaptive
method with the constraintATA = 1 at each adaptive step is as follows
[1]:

Â(k + 1) =A(k)� 2�a(IN �A(k)AT (k))ee(k)D(k) (10)

A(k + 1) =
Â(k + 1)

kÂ(k + 1)k
(11)

and

B(k + 1) = B(k) + 2�bee(k)X(k) (12)

where�a and�b are the step size for the FIR filterA(k; q�1 and
B(k; q�1), respectively. Moreover, the condition to ensure conver-
gence is [1], [11]

0 < �a; �b <
1

�i
; i = 1; 2; � � � ; N +M; � 6= 0 (13)

where�i are the eigenvalues of the matrixR in (7).

III. PERFORMANCE OF THEOPTIMAL SOLUTION ON THEATA = 1
CONSTRAINT

The QCEE method searches the solution� = [AT (k) BT (k)]T

for the minimum point�� on the MSE surface with theATA = 1
constraint [9]. SupposeA� andB� are optimal solutions and that they
must satisfy the necessary conditions as given below.

Lemma—Necessary Conditions for First-Order Equality Con-
straints [10]: Let �� be a regular point of the constraint
h(�) = ATA � 1 = 0 and a local extreme point (either min-
imum z 2 En or maximum) of MSE is subject to this constraint.
Then, all that satisfy

r�g(�
�)z = 0 (14)

must also satisfy

r�MSE(��)z = 0: (15)
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In (14) and (15),z can be any vector on the tangent plane of��, and
r�MSE(��) must be orthogonal to the tangent plane of��. LetA 2
EN = RA; B 2 EM = RB; � 2 EN+M = RA �RB = RA+B

andz 2 RA+B , wherez = [ zT1 zT2 ]T ; z1 2 RA, andz2 2 RB is
one vector of the tangent plane on�� = [A�

T

B�
T

]T , and

r�h(�
�) = [A�

T

0 ]
T : (16)

From (14), the vectorz = [ zT1 zT2 ]T on the tangent plane must sat-
isfy

r�h(�
�)z = A�

T

� z1 + 0 � Z2 = A�
T

� z1 = 0: (17)

Thus, the vector of tangent planez1 2 span(?A�) andz2 2 RB ,
where span(?A�) refers to the space spanned by all vectors that are
orthogonal to the optimalA�. Moreover, (15) indicates that

r�MSE(��) � z =

�
@MSET

@A

@MSET

@B

�
A=A� ; B=B�

�
z1
z2

�
= 0:

(18)
Equations (17) and (18) indicate that the optimalB� at the minimum
point on theRB space is a general FIR adaptive filter as

@MSE

@B

����
T

B=B�

=
*

0 : (19)

Therefore,@MSE=@A�
T

�z1 = 0 and (17)–(19) indicate that under the
constraintATA = 1; @MSE=@A�span(?A) = 0 at the optimalA�. In
the present VSS-QCEE algorithm, the projection length of@MSE=@A
on the span(?A) can be used as the estimation of the closeness between
the parameterA and its optimal solutionA�. However, the projection
length in the estimation procedure may vanish ifA is near an eigen-
vector corresponding to a saddle point of the MSE.

IV. THE VSS-QCEE ADAPTIVE ALGORITHM

The step size in the QCEE adaptive algorithm is fixed [1]. In the
present VSS-QCEE algorithm, we will apply the proposed VSS tech-
nique to theA(k; q�1) FIR filter under a quadratic constraint. On the
other hand, a fixed step size method is still applicable for theB(k; q�1)
FIR filter. By employing the LMS adaptive algorithm, the gradient of
MSEr�MSE(�) = [ gTA(k) gTB(k) ]

T with � = [AT (k) BT (k) ]T

are estimated as[ ĝTa(k) ĝTB(k) ]
T [11] such that

ĝA(k) =2ee(k)D(k) (20)

ĝB(k) =�2ee(k)X(k): (21)

For this unbiased estimation method, we obtain

E[ĝA(k)] = gA(k) (22)

E[ĝB(k)] = gB(k): (23)

In the present VSS-QCEE algorithm, the fixed step size�a in (10) is
changed to the variable step size�a(k) and is varied according to the
projection length ofE[ĝA(k)] on the space span(?A(k)). Moreover,
gA(k) can be determined to approximateE[ĝA(k)] as

gA(k+1) = �gA(k�1) + (1 � �)ĝA(k) (24)

where� is the forgetting factor, and� < 1. When the adaptive parame-
ters� ! ��, thenĝA(k+1) � ĝA(k) andĝB(k+1) � ĝB(k). � is chosen
as 0.99, andgA(k) is thus close toE[ĝA(k)]. The projectionPA(k) of
gA(k) on the space of span(?A(k)) can be calculated as

PA(k) =
q
kgA(k)k

2 � (gTA(k) �A(k))
2: (25)

Note that since the projection length will also vanish near an eigen-
vector corresponding to a saddle point of the MSE and a large VSS will
cause unstable estimation, determination of the upper bound and the
lower bound for the VSS is thus required in the present VSS-QCEE al-
gorithm. Practically,�a(k) can be determined within the range�min �

Fig. 2 Determination of the VSS�a(k) by the calculated projectionPA(k).

�a(k) � �max based onPA(k). Note that�a(k) must be less than the
inverse of the maximal eigenvalue of the covariance matrix as in (13)
[1], [11]. Thus, the step size of the VSS-QCEE algorithm can be simply
set as

�a(k) =

8>>>><
>>>>:

�min; if PA(k) < PAmin

�max; if PA(k) > PAmax

�min +
�max � �min

PAmax � PAmin

�(PA(k) � PAmin); otherwise

(26)

wherePAmax > PAmin > 0. As shown in Fig. 2, a linear method
was used to define�a(k). Generally speaking, the closer� is to 1,
the more precise theE[ĝA(k)] can be estimated, and a smallerPAmin

can be set to achieve smaller misadjustment. Alternatively, when the�

is far less than 1 in real applications, a largerPAmax would be more
appropriate. The proposed algorithm is summarized in the Appendix.

V. SIMULATION RESULTS

To verify the present VSS-QCEE adaptive filtering, examples are
provided with simulation results. Suppose we have an unknown system

H(z) =
0:5 � 0:1z�1

1 � 1:4z�1 + 0:49z�2

=
0:2795 � 0:0599z�1

0:5590 � 0:7826z�1 + 0:2739z�2
=

B0(z)

A0(z)

where the second term ofH(z) is the normalization from the first term
to satisfy the constraintATA = 1. The corresponding coefficients are
a1 = �1:4; a2 = 0:49; b0 = 0:5; b1 = �0:1; ao0 = 0:5590; ao1 =
�0:7826; ao2 = 0:2739; bo0 = 0:2795; andbo1 = �0:0599. The initial
parameters are set asA(0) = [ 1 0 0 ]T ; B(0) = [ 0 0 ]T in the
simulation. Moreover, we define the index MSD to indicate the state of
convergence as

MSD =MSD(A) + MSD(B)

=20 log( ~AT (k) ~A(k) + ~BT (k) ~B(k)) (27)

where ~A(k) = A(k) � A0; ~B(k) = B(k) � B0.
Example 1—The VSS-QCEE Algorithm:In this example, its input

signal was white noise with power 1, and the output signal was con-
taminated by uncorrelated white noise with power 0.01. We set the
parameters in the VSS-QCEE algorithm as�min = 0:001; �max =
0:02; �b = 0:001; � = 0:99; PAmax = 0:2; andPAmin = 0:03.
Simulation results in Fig. 3(a) indicate that the misadjustment of the
present VSS-QCEE was similar to the results of the QCEE with a very
small step size� = 0:001. Moreover, Fig. 3(b) indicates that the
present VSS-QCEE leads to a fast convergence speed, and the result
is similar to that of a very large step size� = 0:02 in the QCEE. In
addition, the present method achieves greatly attenuated MSD results,
as shown in Fig. 3(b). In addition, because�a(k) is variable in the
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(a)

(b)

Fig. 3. (a) Estimation results of the VSS-QCEE and (b) MSD with the
VSS-QCEE algorithm (solid, I), QCEE algorithm with the fixed step size
� = 0:02 (dashed, II) and� = 0:001 (dash-dot, III).

present QCEE method, (10) can be processed as the same format in
(12) to render similar results in real applications.

Example 2—Applications of VSS-QCEE to Estimate Parameter Vari-
ation: System parameters may vary, or faults may occur in the system,
sensors, or actuators in real applications. In this simulation, when pa-
rametera1 was suddenly changed from−1.4 to−0.3, Fig. 4(a) shows
the trajectories of the QCEE algorithm with a fixed step size� =
0:001, and Fig. 4(b) shows the results of the present VSS-QCEE al-
gorithm. Apparently, the tracking performance of the present method
is much better than the QCEE method, and a prompt indication of the
parameter variation can thus be successfully set.

VI. CONCLUSIONS

Although the QCEE algorithm achieves the bias removal, its fixed
step size in the estimation brings disadvantages as either a slower con-
verging speed or the misadjustment. This correspondence calculated
the projection length of@MSE=@A on the span(?A) space to deter-
mine the varied step size of the present VSS-QCEE under the constraint
ATA = 1. Therefore, the step size of the present approach is indepen-
dent of input or output variables and is directly determined by the esti-
mated projection lengthPA(k) as the closeness to the optimal solution.

The proposed VSS-QCEE algorithm appropriately provides auto-
matic adjustment for the step size in the adaptive estimation. Com-
pared twith the QCEE, results indicate that the proposed VSS-QCEE
method satisfactorily achieves both a fast convergence speed and re-
duced misadjustment. Moreover, in monitoring the variation of system
parameters, results from the present VSS-QCEE indicate that this new
method provides better tracking performance. In the present modeling,
the order of the model is known, and the noise is white. For undermod-
eled cases, the unit-norm method converges to a model having nice im-

(a)

(b)

Fig. 4. Estimation results ofa1; a2; b1, andb2 asa1 changes from−1.4 to
−0.3. (a) QCEE algorithm. (b) VSS-QCEE algorithm.

pulse response and autocorrelation matching properties [9], [12]. For
color noise contamination in real applications, further studies of the
present VSS-QCEE are promising in future research.

APPENDIX

VSS-QCEE ALGORITHM

Provided with

a) the input vectorX and the noisy output vectorD;
b) the given values of�min; �max; PAmin; PAmax;
c) the initial values ofA = [1 0 0 � � �]; B = [0 0 � � �],

�a(0) = �min; gA(0) = 0; k = 0:

Iteration Procedures:

Step 1) Obtain the equation erroree(k) from (8).
Step 2) Obtain the directly calculated gradientĝA(k) from (20).
Step 3) Obtain the estimated gradientg

A(k) from (24).
Step 4) Obtain the estimated projection lengthPA(k) from (25).
Step 5) Obtain the VSS�a(k) from (26).
Step 6) Obtain the estimated parametersA(k + 1) from (10) and

(11).
Step 7) Obtain the estimated parametersB(k + 1) from (12).
Step 8) Go to Step 1).
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Spectral Analysis of Subband Adaptive Digital Filters

Shuichi Ohno and Hideaki Sakai

Abstract—Subband adaptive digital filters at stationary points are ana-
lyzed in the frequency domain. Approximate expressions for the optimal
subband filters are presented, and then, a spectral representation of the
error variance is derived. These are expressed in the frequency domain and,
hence, enable us to see the aliasing effects in subband adaptive filtering.

Index Terms—Aliasing effect, error variance, subband adaptive filtering.

I. INTRODUCTION

Adaptive filtering is now widely used for various applications such
as adaptive system identification, adaptive equalization, and acoustic
echo cancellation [1]. However, some applications that need adaptive
filters with a large number of taps suffer from its heavy computational
burden and slow convergence [2]. To overcome these problems, sub-
band adaptive filtering has been proposed [3], [4].

Fig. 1 shows a schematic diagram ofM -band subband adaptive fil-
tering, wherex(n) is the input of the unknown systemF (z), d(n) is
the output of the system corrupted by a noisew(n), and#L and"L, re-
spectively, denote theL-fold decimation and theL-fold interpolation.
The input signalx(n) and the desired signald(n) are split into subband
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input signalsvi(n) and subband desired signalsdi(n). Since adaptive
digital filters (ADF’s) are adapted in each subband, the computational
complexity per input sample is reduced by a factor of the decimation
rate [3]–[5]. It is also said that the subband ADF has a better conver-
gence property since the condition numbers of correlation matrices of
subband input signals are smaller than that for the fullband case [5],
[6].

One of disadvantages of subband ADF is the error due to the aliasing
of nonideal filters of filter banks. Gilloire and Vetterli [5] gave the-
oretical results on the aliasing effects for deterministic input signals
and presented the subband ADF with cross filters to compensate the
aliasing effects. However, the convergence speed of the subband ADF
with cross filters is slow [5]. Other subband techniques avoiding the
aliasing effects have been developed [7]–[10]. However, there are no
simple expressions for the optimal subband filters and the error vari-
ance for stochastic input signals in the frequency domain.

In this correspondence, we give approximate expressions of the op-
timal subband adaptive filters by using the subband ADF with cross
filters. Then, we present a spectral representation of the error variance
when paraunitary filter banks are used. These representations enable us
to see the aliasing effects in the conventional subband ADF. A numer-
ical example is included to confirm our approximate expressions.

II. SUBBAND ADAPTIVE FILTERING WITH CROSSFILTERS

We considerM -band (M � L) adaptive filtering, as depicted in
Fig. 1, with least mean-squared (LMS) algorithm for adaptation. We
assume that all of the signals are real and that the inputx(n) and the
additive noisew(n) are (wide-sense) stationary processes with zero
mean. The additive noise is assumed to be uncorrelated with the input
signal. We express thez-transform of a sequence denoted by a small
letter by the corresponding capital letter.

To analyze subband adaptive filtering, we use polyphase
matrices [11]. The polyphase matrix of analysis filters
fH0(z); H1(z); � � � ; HM�1(z)g is defined as

[Hp(z)]il =
X
n

hi(Ln + l)z�n

for 0 � i � M � 1 and 0 � l � L� 1 (1)

where [�]il denotes the(i; l)th element of a matrix. Similarly, the
polyphase matrix of synthesis filtersfG0(z); G1(z); � � � ; GM�1(z)g
is defined as

[Gp(z)]L�1�l; i =
X
n

gi(Ln + l)z�n: (2)

By using the polyphase matrices and block version of signals [11]

xi(n) =x(Ln� i); wi(n) = w(Ln� i)

for i = 0; � � � ; L � 1 (3)

the system in Fig. 1 can be express as that in Fig. 2, whereFp(z) is the
pseudo-circulant matrix constructed from the polyphase components
of the unknown systemF (z) =

PL�1

l=0 Fl(z
L)z�l as

Fp(z) =

2
6664

F0(z) F1(z) � � � FL�1(z)

z�1FL�1(z) F0(z) � � � FL�2(z)
...

...
.. .

...
z�1F1(z) z�1F2(z) � � � F0(z)

3
7775 : (4)

Let us suppose the subband adaptive filtering with cross filters
among subbands [5], in which the ADFC(z) is a matrix filter. We
remark that the following results for deterministic signals forL = M
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