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Analysis and Design of the Integrated Controller
for Precise Motion Systems

Syh-Shiuh Yeh and Pau-Lo Hsember, IEEE

Abstract—Recently, feedforward controllers like zero phase er-  y.axis
ror tracking controllers (ZPETC's) and cross-coupled controllers A R
(CCC'’s) have been developed to effectively reduce tracking error
and contouring error, respectively. This paper proposes an inte-
grated controller which combines ZPETC and CCC to achieve
both tracking and contouring accuracy. Furthermore, studies
indicate that ZPETC and CCC can be designed separately in the
present integrated control design. In the provided experimental
setup with a servo table, an optimal ZPETC and a robust CCC
based on the contouring error transfer function (CETF) were
designed to achieve desirable frequency responses and stability.
Experimental results show that the proposed integrated controller
renders significantly improved accuracy in both tracking and
contouring.

R : Reference position

Command P : Cutting tool position
E:x - E, : Axial error

% £’ : Contouring error

I Cutting path

.

X-axis

Index Terms—CCC, contouring error, integrated controller, Fig. 1. Tracking and contouring error.

motion systems, optimal feedforward controller, robust

controllers, tracking error, ZPETC. were later developed to further reduce contouring errors [6],

[22]-[28]. Basically, by applying the position error adjustment
|. INTRODUCTION to each axis, the CCC substantially improves the contouring
N real applications, due to the inherent problems of ser curacy of multiaxis systems. Recently, thgoretical analysis
lag, friction, backlash, and other difficulties, [1] muc y Y.th and Hsu _for CCC systems has achieved guaranteed
effort has recently focused on improving motion accuracgab'“ty and motlorj_accuracy [29]. Note .that aIthoggh the
by using various control strategies [2]-[9]. In multiple-axi cC .has been ver|f|ed.to reduce contouring error, it cannot
%faecnvely reduce tracking error.

motion systems, feedback controllers are usually design industrial licati ¢ , lik
independently for each axis and each axial servomechani rr#n In ustrla} app |cat|o_ns, most manufacturing s_ystems 1K€
%e conputerized numerical control (CNC) machines empha-

tracks input commands to reduce tracking error. In addition ! . hich d ) q i
the control design in a feedback loop, feedforward controllgp%® contouring accuracy which determines product quality.

have been widely studied in motion systems to greatly imprO\I/Qeecently’ In many _nonconventlongl manufactunng Processes
tracking accuracy. For example, the zero phase error tracki h as laser cutting, laser vyeldmg, gnd_ elegtnc (_jlscharge
control (ZPETC) proposed by Tomizuka [10], its modified ver!) chining (E_DM)’ etc., contou_nng velocity in _ur_1|form|ty also
sion [11]-[14], and the optimal ZPETC [15]-[20] effectivelyd'reCtly cont_rlbu_te_s to the_q_uahty of the machining processes.
reduce tracking error. However, due to physical constrairlfs fact: maintaining precision in both the contouring path
and modeling error, such improvements in tracking accurafd ts_velocity cannot be achieved by simply implement-
by applying feedforward controllers are inherently limited. M9 @ single controller. Since both the velocity a_nd position
In addition to tracking accuracy, contouring accuracy g°mmands are generated by the interpolator in a motion
also crucial for a precise motion system as shown in Fig. 9oNtrol system, a good tracking system also guarantees the
Since feedforward controllers, which are mainly designed f@ccuracy of both the contouring velocity and contouring path.
the minimization of tracking error, reduce contouring error th1€refore, both contouring error and tracking error need to
just a certain extent, contouring accuracy in advanced motiBfi Minimized simultaneously in precise motion control. Hsu
systems should be further improved by applying a more appﬁﬁd Houng [30] intuitively |.nt§grated a WeII-Funed CCCand a
priate controller design. The cross-coupled controller (CC&fETC to construct a basic integrated motion control system

was proposed by Koren [21] and several modified ccctbat both the contouring error and the traqking error were
reduced. However, there are unknown coupling effects of the

_ _ _ integrated system between the ZPETC and the CCC; thus,
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B. Contouring Error

X er X E, K. U, >IE Xo gy Orj the other hand, the cpntounng errg&can be further
' obtained from the geometrical relationship as [27]

e = E,C, — E,C,. )
By substituting (1) into (2), the contouring error can be
obtained as

Y, 1

b L el =

% c 1+ PQKPy)(l + Plew)
01+ P EKp )1+ PLK,, (1 — Z1)]
Fig. 2. Motion systems with two independent control axes in a 2-DOF X,
control structure. Cy(L+ PrKpe)[L + PaKy(1 = Z2)]] [Y, } (3)

CCC controllers can be designed independently. Furthermofdlere(C:, C,) are the cross-coupling gains changed accord-
the optimal design for the ZPETC and the robust desighd to the contour path [26], [27]. For linear contours, the
for the CCC in the present integrated controller provide tH#ins(Cz, C,) are determined as
guaranteed frequency responses and stability. Experimental
results on a servo table show that both tracking and contouring C, = sinf (4)
errors are significantly reduced by applying the proposed C, = cosf (5)
integrated controller.
where 6 is the inclination angle of a linear contour with
II. MOTION SYSTEM ERROR ANALYSIS respect to theX-axis. For circular contours, the variable gains

In general, the 1 degree-of-freedom (DOF) control syste?rqw’c‘“) are determined as

structure is used in most motion systems and tracking accuracy

can be improved with a suitable position controller design. Cp =sind — 3R (6)
However, control in the 2-DOF structure usually achieves E
better tracking accuracy [13] and it is considered in some Cy = cosf + ﬁ (7

advanced motion control designs, as shown in Fig. 2.
where R is the circular contour radiugF., £,) are theX-
A. Tracking Error axis andY -axis error signals respectively, afids the traversal

In Fig. 2, (K4, K,y) are position controllers, usually with angle of the circular contour. By defining
proportional gains, for each axisP;, P») are controlled plants K, P,
and(Z,, Z,) are feedforward controllers for each axis. Signals M, = Z; - #,
(X,.,Y,.) and (X,,Y,) are the reference input and output pel
signals of the system, respectivetyX,«,Y,.) are the input e ayjal tracking error and the contouring error can be
signals of each position-controlled loop filtered by apply'npepresented simply as
the feedforward controllersz; , Z»). (E,, E,) are axial errors
for each axis andE.., E.,) are the difference between the L . o
filtered input signals and the measured output sigriéls, U, ) Be =(1=Mo)Xps By = (1= M)V, ©
are the driving signals to each axis. 5 = —Ca(1 = Mp) Xy + Cy(1 = My)Y,.. (10)

In general, the position controller§K,., K,,) stabilize _ .
the control system while the feedforward controllés , Z») Note that(M,,, My) are the transfer functions of the position
achieve improved performance for each axis. To analyze figedback loop with feedforward controllers for the two axes.
tracking and contouring errors of the 2-DOF structured motion Theoretically, by examining (9) and (10), tracking and

KPyPQ

YT L K Py

(8)

control system, the axial errof&,, F,) are derived as contouring accuracy can be achieved by designing suitable po-
sition feedback loop controller&,,., K,,) and feedforward
= [1+ P K,.(1— Z)| X, controllgrs(Zl,Zg). Howgver, in practi(?e, -th(.a improvement
14+ P Ky, of tracking and contouring accuracy is limited because of
L = 1 [+ PoyKpy (1 — Z)]Y,. 1) the .inherent servo lag, stic!< friction, and back[ash in real-
1+ PRK,, motion systems. To further improve the contouring accuracy

of the two-axis motion control systems, the CCC was proposed
by Koren and Lo [21], [27] and applied to the 2-DOF

o — JE2 1 B2 ;tructurgd motion control systems by Houng and Hsu [30]. The
° * y integration of the feedforward controller and cross-coupled

The tracking errore?, is thus
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controller for the two-axis motion control system, as shown
in Fig. 3, achieves significant error reduction in both trackmgX
and contouring [30].

C. Error of the Integrated System

As shown in Fig. 3,(C,, C,) are cross-coupling gains as
described by (4)—(7) wher€' is the CCC. In addition to the
contouring error without the CCC a8, ¢Z, is the contouring
error of the present integrated control system with CCC. The
tracking and contouring errors as shown in Fig. 3 are derived.
The axial error £, E,) of each axis are obtained as

1
E,=—{1+PK,. (172X, PO P, ¥
x 1+P1pr{[ + PLEpe( DX + CelCL P }
(11)
E, = ﬁ{[l + P2 K, (1 — Z9)|Y; — CeLCy Py} Fig. 3. The integrated control system.
28 py
(12)
A. The Independent Design for Two Controllers
Moreover, the contouring erroeg are obtained as Regarding (3) and (13), the important relationship for the
By substituting (8) and (13) into (11) and (12), the axial errof@ntouring errors (subscript™ is without CCC; subscript ¢”
(E.,E,) are is with CCC) is obtained as
With proper feedforward controller&Z;, Z>) and a cross- » 1 » »
coupled controlle”, as in (13) and (14), shown at the bottom T I1rC0K T H-e (15)

of the page, improving integrated control systems with both

improved tracking and contouring accuracy is feasible [30].Where
(14 Kpa P)C,Cy Py + (1 4 Ky Po)C.C Py

(1+prP1)(1+prP2) ’
Ill. INTEGRATED CONTROLLER DESIGN C designed CCC;

K=

The concerns of the controller design for the present inte- H = 1/(1 + C'K) contouring error transfer function
grated system are as follows. (CETF) [29].

1) Since the nonminimum phase system always exists in
the sampling process [31]-[34], a suitable feedforward According to (15), the design procedures of the integrated
controller which gives a desirable bandwidth cannot gePntroller can be simplified as follows.
designed by simply canceling the poles and zeros. 1) The CETF represents the contouring errors between

2) The cross-coupling gains in CCC vary according to  sSystems with and without the couplir@.
different contours [26]' [27] Thus, a sufficient Stabi"ty 2) The CETF is equivalent to the sensitivity function in an
margin of the parameter-varying integrated system is SISO control system, as shown in Fig. 4.
required when different contour commands are executed.Since the tracking error which dominates in (15) can

3) Since the integrated control system is in a multidegrebe individually improved by applying feedforward controllers,
of-freedom and multiloop structure, its controller desigthe present integrated controller can achieve the improve-

procedures are relatively complicated. ment of contouring accuracy. Equation (15) indicates that the
el = 1
© (14 PKy)(1+ PiKy) + (1 + PLK,,)CC,Cy Py + (1 + P, K, )CC,C Py
X,
-Gl PRl P(1 = Z0)] C(1+ P+ Pk (1= 2001 | 13)
E, X1 Xa 1
E, Y. K, P)(1+ K, P)+CC,CyP(14+ Ko P+ CC,C.P(1+ K,y Ps)
(1= M) (1+ Kmel)(l + K, P+ CC,Cy ) CC,C,P(1+ KpyPo)(1 — M,y) X,
CO CyPo(1 + Ky P )(1 — M) (1-M)Q+ K,yP)(1+ Ko P+ CCLCLP) || Y,

(14)
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» » An effective optimal ZPETC design method is summarized
o ﬁf_ & _pl o b K —p»  here [20]. Assume the optimal ZPETE,(»~!) is designed

with a digital prefilter (DPF) as

Azt
Z,(z71) = DPRzY) - 773 (771) (18)
Fig. 4. The equivalent SISO control system. a(z )
where

minimization of the contouring erroe? can be found by

1y _ —1y ~1
designing a suitable frequency response of the CETF as in DPH>"") =DPFy (=) - DPFp(»7) (19)

(15). Moreover, the contouring erref can be directly reduced DPFp(z71) = B’“(Z)Q (20)

by applying the feedforward controller design. Thus, the Bu(1)

feedforward and the cross-coupled controller can be designed . N-r P

separately for the present integrated control systems. DPFy(z" 1) = > - (F +27). (21)
k=0

B. The Optimal Feedforward Controller Design and

Theoretically, to reduce axial errot&,,, E,) and the con- N Order of DPF(z71).
touring error €2, the feedforward controller$Z,, Z,) are P Number of unacceptable zeros in the position feedback
designed so that the transfer functiqdd,, M, ) can keep the loop.
frequency response with a unity gain and zero phase shift. TheThus, the transfer functio®(>—!) of the whole control
ZPETC can be directly obtained and is a practical feedforwaggtstem becomes
controller in motion systems [10]. Basically, the design of the
ZPETC controller directly cancels the stable poles and well- B(z %) = Zy(271) - T(27") = DPRz™") - B, (= 71).
damped zeros in the position feedback loop and compensates 1
for the unstable and lightly damped zeros to achieve both thgrametersy,, k = 0,1,.--, andN — P Of. the D.PE”(Z )
zero phase error and a unity dc gain frequency response. can be solved through the Lagrange optimization method.

Suppose the feedforward controller B,(>=*) and the Define the Lagrange functioli(«, ) as

position feedback loop transfer functid@i{~—1) is represented 1 w2 . .
as )= 5o / |Ge(e™)|? dw + NR(e™)|w=o — 1]
T(1) = Ky (z71) _ 2 4B(z 1) (22)
14+ KpePi(z71) A(z~1) where
B 27 4B,(z ) B, (z7Y) (16)
N A(z—l) Ais the Lagrange Multiplier and
where Ge(e7®) = R(e7*) — 1 (23)
) r N-P
Az YD =14az P apz 2+ 42,2 " R(&Y) = Z ~vi(2 Cos(iw))] [ (2 Cos(kw))]
B(z N =by+biz t+bar b by ™ = k=0
. =~"A. 24
Az Y=o +azt + a2 24+ +az™" T (24)
B(z—l) =14 bzt bz 24 £ bz ™ The optimal parameter vectorr of the digital prefilter
Bo(z™)) = 14002 41822 4o 1020 DPFy (2~ "') is obtained as
a\~ 4 4 q”

polynomials with acceptable zeros

1- YAt AT
amarfag, o DAL o)
Bu(z7)y =141 + 022 4 b2 BTAT'B
polynomials with unacceptable zeros where
the ZPETC is thus obtained as [10] a=[aw a1 - anv_plin_piiyx
7 (-1 B,(z 2 A(z1) 17 p=2 2 - QA’—P][IEA’—P+1)X11
p(z7) = <Bu(1)2> e ) 17) y=lo m - W
The ZPETC is designed directly to achieve the zero-phadgd the matrix shown at the bottom of the following page.
error. However, its frequency response in magnitude is sat- 1 w2
isfactory only in the low-frequency range. To increase the Ay =5 ATy T A dw
bandwidth of the ZPETC controlled system, the modified 1 s
version of ZPETC [11]-[14] and the optimal ZPETC [15]-[20] Ay A dw.

are developed to further improve tracking accuracy. 21 S
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Thus, the optimal ZPETC is obtained as w = w, (rad/s), and the template of the rational function
K is thus shifted according to the design of the robust
. NP . compensator. Therefore, the present robust compenségtor
Zp(z77) = Z o+ (2 +277) can be designed so that the frequency responses of the rational
k=0

. function CK at certain reference frequencies can meet the
B,(z) 24 A(z7h) 26 design specifications.

’ <Bu(1)2> N\ Bz Y (26) By considering the gain response of the CETF, the QFT

design algorithm can be represented on the inverse Nichol's

To reduce the influence of parameter variation and exterrédart. Each point on the same curve on the inverse Nichol's
load perturbation, the adaptive ZPETC [20], [35] can alsehart implies the same magnitudé of the transfer function
be used to compensate for the unknown inputs with simpf& i.e., M = |H| = |1/(1 + CK)|, and each point on the

estimation techniques. Likewise, other feedforward controllétverse Nichol's chart is the magnitude and phase frequency
design algorithms [36]-[41] can also be directly applied ttgsponse of the rational functiafik. Thus, the template of

obtain certain characteristics in the proposed integrated contiff rational functioni’ has to be moved into a suitable region
systems. by applying lead or lag compensators to keep the frequency

response of the rational functiagK with the specified gain
margin, phase margin, and suitable gain response of the CETF.
C. The Robust Cross-Coupled Controller Design Thus, the proposed robust CCC design maintains system
In the past, CCC was generally achieved in a PID forgfability and reduces contouring error even when the cross-
with suitable tuning. The CCC design problem was not solvég@upling gains vary along the contour path or under different
until the CETF was developed by Yeh and Hsu [29]. Noteontour commands.
that in (15), the CETF is similar to the sensitivity function
in a feedback control system. Consequently, the design goBlsStability Analysis for the Integrated Control System
of compensator C in CCC become 1) reducing the contouringrheorem 1:1n internally connected systems, the input sig-

error e¢ an?] 2) St_ar?'“ﬁmg the equwalenft sysTer_n as Showf s genoted as;, are injected into each internal connection
in Fig. 4. Thus, with the present CETF formulation, Var'oﬁ?oint to result in the mixed output signals, denotedsasThe

robust algorit_hms for_controller_(_jesign can be directly e nternally connected systems are internally stable if the set
ployed to achieve desirable stability margins and performan%qe.input signalss; and output signalss; are bounded-input-
Moreover, the compensat@¥ design in the present CCC forbounded-output (BIBO) stable. !

the two-axis servo system can be simplified to a single-loop Proof: See [43]

design problem. o Theorem 2:If the integrated controlled system is designed
Here, the authors adopted the quantitative feedback the-. ot the following requirements.

ory (QFT) design algorithm [42] to achieve a robust CCC pqy with feedforward controllers, the position feedback

design with a desirable stabil_ity margin._ The QFT algqrithrn)op controller(K,., K,,,) achieves internal stability for each
moves the template of the rational functiéhto meet design ,yis ang

specifications by a robust compensatblat certain reference (A2) the equivalent SISO control system, as shown in Fig. 4,
freql_JenC|es_. Thus, the pr_esent integrated controlk_er can r%‘?nains internally stable as the cross-coupling géiiis C,)
applied to different contouring commands under varying cro fe varied, then the designed integrated control system as
coupling gains. The template can be constructed by varying e - iy Fig. 3 is internally stable.

crqss—coupling gains from1 to one accorgiing to (4)~(7). The Proof: The authors can prove this theorem by examining
gain and the phase responses of the rational fun€iiincan o yransfer function between the injected inputand the

be represented as mixed outputw;. Define two rational functionsy and 3, as

CE (™) las =1C(™)as + [K(¢™)las 7)o —(1 4 K, P)(1 + K,y P2)

LICK (e )aegree = £[Ce™" )acgree B=(1+ K, P,)CC,CyPy + (1 + K,y P)CC,C,P,.
+ Z[K(C_]wo )]degree- (28)
Clearly, requirements (A1) and (A2) achieve all stable zeros
The frequency response of is shifted Kyc—7-) is shifted by of the rational functior{«+3). Since the poles of the rational
(L[C(e79% )] degree, |C(e™9)|qp) according to the compen- function (o 4+ 3) contain the poles of the forward path gains
sator frequency responggc—/«-) at the reference frequencybetween each injected bounded inpuaind each mixed output

1 cos(w) cos((n — P)w)

cos(w) L[cos(2w) + 1] o+ Zeos((N — P+ 1)w) 4 cos((N — P — 1)w)]

cos(Pw)  L[cos((P+ Lw) + cos((P = Dyw)] --- Ljcos(Nw) + cos((N — 2P)w)]
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|_{Motor
o Y A
X
W, = 15K, w
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W, =142K,w Servo Driver D/A e
UT-80 Y
Servo Driver D/A L A\

Fig. 5. The experimental setup.

TABLE |
THE SPECIFICATIONS OF THE SERVO SYSTEM
Components Symbols Units
L 47 mH
R 31 Q
N-
DC servo motor K, 021952 m/
J 21756x10™*  Kg-m®
-+ N-m
B 5333x10 ad s~
N,
K, 021952 /m e
Current feedback gain K, 02 %
: pulse
Encoder gain K, 632.62 /m d
; IR 7S
D/A gain Ky 2442x10 A) lse
Pitch of lead screw K 5 m”% ov

wj, the poles of the transfer function for each injected bound&dirthermore, since® represents the contouring errors of an

input v; and each mixed output; of Fig. 3 are thus stable. integrated control system without CCC and can be mainly

Therefore, from Theorem 1, the integrated control system fgduced by applying the feedforward controllers, (15) shows

internally stable. that the contouring errors can be further improved by using
According to the above discussion, the integrated contd@€ C€CC. In summary, the integrated controller can thus be

system which integrates the CCC and the feedforward Coqptamed as in the following procedures.

troller reduces both contouring and tracking errors. Moreover,

analysis and derivation of the integrated controller indicatéesign Procedures

that the design of the feedforward controller and the designStep 1: The tracking error in motion control is reduced by

of the coupled controller design can be mutually independeihplementing a feedforward controller.
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TABLE 1l
EXPERIMENTAL RESULTS FOR CORNER CONTOUR
Measurement Contouring error Tracking error
Performance IAE ISE IAE ISE
W (mm) (mnt*) (mm) (mm?)
Controller
P 84.2830 20.9796 1877.1288 1874.1450
optimal ZPETC 65.7925 3.1877 137.5563 11.6415
robust CCC 38.2333 11.0211 1850.1986 1823.0182
robust CCC+
optimal ZPETC 20.9406 04128 102.1267 8.4517
TABLE Il
EXPERIMENTAL RESULTS FOR CIRCULAR CONTOUR
Measurement Contouring errors Tracking errors
Performance 1AE ISE IAE ISE
Index mm 2 mm 2
@ (mm) (mm™) (mm) (mm”)
P 34.5873 1.3908 452.1091 190.1873
optimal ZPETC 26.9436 0.9972 48.8576 2.6137
robust CCC 15.7742 0.2705 455.0466 192.7584
robust CCC+
optimal ZPETC 13.0707 0.2549 41.0028 1.8184

Magnitude (dB) - Phase (Degree)

50—
M=0.1 .
0 i ————
M=—0—7W—’f/ M= \\- K\
L i
~— M=
a o __________E:h. M 54 4;:-25 2
% Solid Dashed
w=(,3325 w=0.3447
w=100 w=100
150} w=1000 w==1000 i
‘w=2473.6971 w=1583.l§98
2007350 -300 -250 -200 -150 -100 -50 0
Phase (degree)
Fig. 6. The gain-phase plot of the rational functigiik’. (Solid: & = 79.38°,C. = 0.9829, C, = 0.1843.) (Dashed:6 = 13.24°,
C, = 0.2290,C, = 0.9734.)
Step 2: CCC is next implemented to further reduce the IV. EXPERIMENTAL RESULTS

contouring error of the_ system. . The experimental setup for the present study is shown in
Thus, both the tracking accuracy and contouring accuraC}/

for the present integrated control system are obtained. If frjcza.—g' 5 A PC"}SG gen.erated control comma.nds and recorded
quency responses and stability are specified, both the Opti,ﬁ@nals including the input commands for different contours,
ZPETC and the robust CCC can be directly adopted in tiee implementation of a robust variable-gain CCC controller,
present integrated system. the optimal ZPETC controller, and the control inputs to the
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Corner Contour (Time:0.5sec->1.5sec)

24 v
22+
20+
E\ 18 r
et
16
8
2}
> 14+
12
10+
8
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(€Y
1 Contouring Error Ls Tracking Error
051 1 1+ - = ||
g g |
0= Hes 05H 1
i , e
'0'50 0.5 1 15 2 00 0.5 1 15 2
Time (sec) Time (sec)
(b) (©)
1 Following Error (X) Following Error (Y)
T S 1 /@.,‘._,._.l ]
£ {
g o5 ] '
|
P ——
o N,
0 0.5 1 15 2 0 0.5 1 15 2
(d) (e
Fig. 7. Experimental results for corner contour.-------- P;— . —. —. . robust CCC;—m ———— - optimal ZPETC; robust CCGt optimal ZPETC.

velocity loop. A Sanyo UT-80 DC servo driver included an Step 1: The controlled plant$P;, P») of the two axes were
analog current feedback signal, a velocity loop, a currelgentified as

loop, and a PWM output. The computer sent and received 0.002621 + 0.0052~2 + 0.00182—3

the control inputs and position outputs through the interface P 40.00222~% — 0.00032~2 4+ 0.00062~¢

of an AD/DA card at a sampling period of 1 ms. The ' # ) T T 150572 T +0.58042-2 — 0.32223

specifications of the present servo system is provided in +0.309927* +0.17012~° — 0.20702~°
Table | +0.11277 — 00456278
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Step 4: By applying the QFT procedures, the robust CCC
[29] with a gain margin of 50 dB and a phase margin of 90
was designed as

0.5 —1.46252~1 +1.4713272 — 0.55042—2
+0.04172—%
1—1.04507—1 4 0.04572~2 — 0.0007z~3
+3x10762—%

C(z"hH =

The gain-phase plot of the rational functiéii for different
cross-coupling gainéC,, C,) is shown in Fig. 6.

Step 5: By combining the position loop gains in Step 2 with
the optimal ZPETC and robust CCC obtained in Steps 3—4,
respectively, the integrated control system is thus constructed.

Experiments were conducted under two typical motion
commands.

1) The corner command included two linear commands.
The first linear segment was with a 7923®iclination
angle and a 20.3485-mm length at a speed of 1.285
m/min. The second linear command was with a 13.24
inclination angle and a 21.8303-mm length at a speed
of 1.3098 m/min.

2) The circular command was performed with a 1.5-mm
radius at a speed of 0.4712 m/min.

The experimental results for the corner command are shown

in Fig. 7 and summarized in Table Il. Fig. 8 is the bar chart
for the indexes IAE and ISE, the integration of the absolute

Fig. 8. Performance index comparison for corner contour. (a) IAE fasrror and squared error, respectively, normalized with the

contouring errors, (b) IAE for tracking errors.

0.00232~1 +0.00312~2 4+ 0.00152—3
Py ) = -~ 0.0003z~* — 0.00362~5 4 0.0003z ¢
2 1—1.55782"1 +0.34732~2 — 0.194623
+0.31412~* 4 0.19332% — 0.102z ¢
+0.19972~7 — 0.200128.

Step 2: The proportional controller§ k., K,,) used for

the position loop were 0.2800 and 0.2544, respectively. Thus
the control system was stabilized with matched gains for the

two axes [44].

Step 3: By choosing a fourth- and sixth-order DPF for the
X andY axes, respectively, the optimal ZPETC for the two 2)

axes were obtained as [20]

—4.7952° + 49.7172* — 252.26823
+ 848.9222% — 823.0672* + 77.951
— 5.127271 +3.89727% 4+ 216.22323
— 136.2232 % + 31.7832 ° + 8.5762©
— 18.745277 + 5.8362 % — 11.862?
+0.122710
140.091727! +0.521622
—0.1308272 4+ 0.13132*

—33.0527 + 236.9226 — 710.702°
+ 1084.752% — 779.652° 4 423.9822
— 379.3z1 — 94.87 + 414.8271
—302.24272 4+ 272.9527% — 149772~ %
+ 3310275 — 277270 — 41.49277
+43.6227% —19.47279 4+ 3.412710
1 —0.8748z~! + 0.06332~ %

Zl(z_l) =

ZQ(Zil) =

results of the P controller. The experimental results for the
circular command are also shown in Fig. 9 and are summarized
in Table lll. Fig. 10 is the bar chart of IAE and ISE also
normalized with the results of the P controller.

According to the experimental results, the proposed inte-
grated control system renders the best performance in both
the tracking and contouring accuracy. A discussion of the
integrated controller follows.

1) Although tracking accuracy is greatly improved by im-

plementing a ZPETC, reduction of the contouring errors
is limited because of modeling error and nonlinearity in

real mechanical systems.

When the CCC is further appended to the ZPETC to
form the integrated control system, both tracking error
and contouring error significantly decrease.

3) As the motion command changes suddenly, for example,

at the corner, its contouring error increases significantly.

In a general CCC, such increasing contouring error can
be reduced by including a time-delay command at the

corner in practice. In the present integrated system, the
contouring error due to a sudden changing command is
effectively suppressed because the included feedforward
controller greatly reduces the corresponding tracking

error.

In fact, different types of feedforward controllers and CCC'’s
can be employed in the proposed integrated controller. In
this paper, the present control system integrates the optimal
ZPETC [20] and the robust CCC [29] to provide sufficient
frequency responses and gain-phase margin with systematic
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Fig. 9. Experimental results for circular contour.------- - -P;— - — . — . .robust CCC;— - — — — . optimal ZPETC; ——
robust CCC;+ optimal ZPETC.
design procedures. Therefore, the present system can be ap- V. CONCLUSIONS

plied more widely to different commands in real applications. In motion control systems, tracking errors can be reduced

Experimental results also indicate that both contouring errg)r/ applying suitable feedforward control design. Moreover, the

and tracking error of this integrated controller under differ L . .
ent contouring commands are greatly reduced. Note that R}rgsent CETF analysis in (15) indicates that contouring error

present PC-486 is capable of handling all control computatiofi@n P€ reduced by applying CCC. The proposed integrated
with the eighth-order identified plants, the fourth- and sixttfEontroller which combines the ZPETC and the CCC leads
order DPF for optimal ZPETC, and the fourth-order ccdo both tracking and contouring motion precision. Both the
Lower order models can be chosen for those design wiitimal ZPETC design, applying the Lagrange optimization
a tradeoff between control performance and implementatiftethod, and a robust CCC design, applying the QFT method,
cost. In real applications, the design based on a fourth-ordeere employed in this study for the proposed integrated
plant model renders satisfactory results [20]. controller. The present optimal ZPETC with a digital prefilter
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