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We have studied the transport of electrons through a quantum well within which
a time-modulated potential of amplitude Vz, range a, and frequency w is applied. Our
results show that, as the chemical potential p increases, the dc conductance G exhibits
Fano-structures when p is at mhw above the bound state energy in the well. As Vz
increases, the Fano-structures are broadened, and higher rnfiw processes emerge. These
features are identified as the formation of quasi-bound states. For a fixed but large
potential strength VI = aVz,  the Fano-structures are broadened and are shifted toward
lower electron energies, as a decreases. The dependence of the Fano-structure to the
location of the time-modulated potential is also studied.

PACS. 72.10.-d  - Theory of electronic transport; scattering mechanisms.
PACS. 72.4O.+w  - Photoconduction and photovoltaic effects.
PACS. 73.40.-c - Electronic transport in interface structures.

I .  In t roduct ion

Inelastic scatterings  are very important for the quantum transport in nanostructures
because they give rise to characteristics that reflect the energy spectrum in the structures.
.4 systematic exploration is possible when a time-modulated potential is induced over a
certain region of the structures [l-lo].

The nanostructures we consider consist of a quantum well in the middle of a narrow
constriction (NC) which is acted upon by a time-modulated gate-potential, as shown in
Fig. 1. Similar configurations have been investigated by Tang and Chu [9],  except that the
NC did not consist of a quantum well. Their focus was on the resonance conditions when
the incident electron energies are at mtiw above the threshold energy of a subband  in an
NC. However, the presence of a quantum well opens up discrete levels below the original
threshold energies. How these discrete levels affect the resonance conditions is the issue
we investigate in this work. Recent developments in the split-gate technology have made
possible the fabrication of such gate-controlled quantum point contacts (&PCs)  [ll], and
thus it is possible to investigate the resonance conditions in NC that has discrete levels
below the threshold energies, and is acted upon by a time-modulated potential.
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FIG. 1. Sketch of a quantum well structure with a time-modulated potential in between the edges
of the quantum well.

In reference [9],  the dip structures in the dc conductance G are closely related to the
density of states (DOS) in the NC. The energy levels in the NC are quantized into one-
dimensional subbands  so that the DOS is singular at the subband bottoms. This allows
the quasi-bound-states at energy just below a subband bottom to be induced by the time-
modulated potential. The dip or peak structures in G occur whenever p is of mfLw above
a subband edge. These are the quasi-bound-state features, which is associated with the
situation when the electrons can make transitions, via inelastic processes, to the quasi-
bound-states. It is important to ask whether such quasi-bound-state features in G could

_ persist in the case when discrete levels exist below the subband edges. Such situation can
be realized by adding a quantum well structure in the NC.

In this paper, we extend the work of references [9] and [12] by allowing a time-
modulated potential to act upon the quantum well structure. The abruptness in the profile
of both the quantum well and the time-modulated potential has caused additional multiple
scatterings, which result in harmonic structures in G [9]. In reference [9],  the harmonic
structures in G due to the finite-range time-modulated potential are obvious. But with
the presence of a quantum well, we find that the harmonic structures are dominated by
multiple scatterings between the length of the quantum well.

The finiteness in the range of the time-modulated potential also made possible the
intra-subband and the inter-side-band transitions for the transmitting electrons. This is
due to the breaking of the longitudinal translational invariance in the NC. Furthermore,
we have taken that the lengths of the quantum well and the time-modulated potential are
less than the phase-breaking length 14. By this the entire transmission process through the
structure is coherent. The two reservoirs at both ends of the NC are free from the time-
modulated effects so that the distribution of the incident electrons is well determined. Thus
the description of the quantum transport follows the Landauer-Biittiker-type formalism.

In Sec. II we present the formulation for the scattering and the connection of the
transmission coefficients with the conductance G. In Sec. III we present numerical exam-
ples illustrating the quasi-bound-state features in a finite-range time-modulated potential.
Finally, Sec. IV presents a conclusion.

II. Theory

In this section, the scattering problem is formulated and the equations for the trans-
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mission and reflection coefficients are obtained. The conductance G is then expressed in
terms of these coefficients.

The QPC is modeled by a NC connected adiabatically at each end to a 2DEG such
that the transmission of the electrons into or out of the NC is adiabatic [13]. The time-
modulated potential is within the quantum well and does not affect the reservoirs outside
the quantum well. The NC is taken to have a quadratic transverse confinement, given by
the potential 2mzw,y  .2 2 The potential of the quantum well system takes the form

V(xJ) = -v,e ( 1g - 1x1 + v, cos(wt)8 (x-~)e($-x).

(f2 - f&5/2 - a with -1 5 fr 2 f2 5 1, and z is the transmission direction.
Choosing the energy unit E* = h2kg/2mz,  the length unit a* = l/lc~, the time unit

t* = h/E*, I+ and V2 in units of Eí, the dimensionless Schrodinger equation becomes

I-- v2 +w;y2 + V(x,t)]q5,t)  = i$(ZJ). (2)

Here kF is a typical Fermi wave vector of the reservoir and rn: is the effective electron
mass. The transverse energy levels are quantized, with energy Ed = (2n - l)w, and wave
function &(y), where n is a positive integer excluding zero. The quantum well and the
time-modulated potential are uniform in the transverse direction and do not induce inter-
subband transitions, leaving the subband index n unchanged. Thus for an nth subband
electron incident along 2 and with energy p, the scattering wave function can be written
in the form q$(Z,t) = &(y)$+(~,t) [7,10], where

ei~n,o (Z-t  $)e-ipt
+  CTn,,e -ik,,,(l-+~)e-i(,+m,)t

>
m

5 < - L / 2

C[A~,,e'qn~m(z+$)  + B~,me-iq,,,(r+~)]e-i(~+~~)~,
m

- L / 2  < 2 < fiL/2

~[Jp(VZ/w)e-iPWt]  CIC,,,teiqnlm'z  + D,,m,e-iqî,,f~]e-i(CL+míw)t,
P m’

(3)

fd/2 -c x < f2LJ2

C[A~,,e-iq~~m(z-$)  + B~,meiqî,,(r-~)]e-i(~+~~)~,
m

f2L/2 < 2 < L / 2

C tn,me ik,77t(z-$)e-i(p+mw)t > L/2 < 2,
m

and n,m are the final subband  and side-band indices, respectively. The effective wave
vector for electrons with incident energy E and in the nth subband is given by k,,, =

E - (2n - l)w, + mw, and q12,m = E + VO - (2n - l)w, + mw. The sideband index m
corresponds to the net energy change of mIiw for the outgoing electrons.
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The expressions for the reflection and transmission coefficients can be obtained from
matching at the four edges of the quantum well and the time-modulated potential.
matching conditions are required to hold in all times.

After performing the matching at 2 = &L/2,  we obtain

T 2Ak,mqn,m - 6m,o(qn,m +  kn,m)
n,m  =

- kn,m
7

4n,m

B’  = AL,, (qn,m + k,m)
n,m

4n,m - kn,m ’

t 2-4,m  qn,m
n,m =

4n,m - kn,m'

After performing the matching at z = frL/2, we obtain

Ai,m
eiqn,m(fl+l)$  + e-iqn,,(fl+l)l.4 Qn,m + kn,m) _ 26 kn,me-ìq-(fi+l)$

(Qn,m - kn,m) 1 mío  (qn,m - kn,m)

= c[Cn,níI+dl  c + Dn,n,e-%,rfl $
n’

] Jm-n!(z),

Ah,m
eiqn,m(fl+l)$  _ e-iqn,,(fl+l)T4Qn,m + kn,m> +  26

iqî,m(fl+l)~

- kn,m) 1

m

’(qn2m;  ì1  (V*)

o kn,me-
(Sri,,, - kn,m)

= c E [cn,nteiqn.nrjl+  - Dn,n,e-*qn,n’  17 J,_,, w .
n’  ’

After performing the matching at z = fzL/2, we obtain

-h,m(fi-l)$  + eiqn,m(f2-1),4 4n,m +  kn,m)

n,m - kn,m) 1

=
XI

c+eiqdf2$  +  Dn,n,e-i%,,níf2$ J,_,, 3

n’ (Rj  0w ’

AL,m9n,m -e

[

-iqn,m(.fi-I)$  +  eiqn,m(fz-1)24 4n,m + kn,m)

(Qn,m - kn,m) 1

= xqn,n,  [Cn,n,eiqn,nrf2$  _ Dn,n,e-iqn,nlfz$

n’
] Jm-nl  (z) .

The

(4)

(5)

(6)

(7)

(8)

(9)

(11)

The zero-temperature conductance G is given by
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G = y c e,tn,_,2,
R.7n  1

where n,m include only the propagating modes whose k,,, is real. The factor of 2 is due
to the spin degeneracy.

Solving Eqs. (8)-(ll), we obtain A',,,, A;,,, C,,,, and D,,,. We then obtain T,,,
and t,,, by Eqs. (5) and (7).

We solve the coefficients T~,~ and t,,, exactly, in the numerical sense, by imposing
a large enough cutoff to the side-band index. The correctness of our procedure is checked
by a conservation of current condition, given by

(13)

where m includes again only the propagating modes. We have also checked that G is
converged for our choice of the side-band cutoff.

III. Numerical results

In this section, we present numerical examples for the conductance G as a function
of the chemical potential p. Since each occupied subband contributes independently to G,
it suffices for our purpose here to present the conductance of only one subband, which we
take to be the lowest one.

Besides p, G depends also on L, Vo, a, VZ, w, and the position of the time-modulated
potential. The unperturbed bound state energies are determined by L and Vo; the side-
band separation is w; aV2 is the strength of the time-modulated potential; and its position
(center) (f2 + f1)L/:! determines the shape of the quasi-bound-state structures in G. We
present these G behaviors in five situations. First, G is shown for a NC that do not have
a quantum well (Vo = 0), with a fixed a and w, while varying Vz. Second, G is shown for
fixed L = a, Vz and w, while varying the depth of the quantum well Vo. Third, G is shown
for different frequencies w with fixed Vo, Vz and L = a. The fourth situation is to compare
G for fixed VO, L, w and the strength of the time-modulated potential aV2, while varying
a. Finally, we present G for fixed Vo, VZ, L, a, and w, while varying the position of the
time-modulated potential (j2 + fi)/2.

In our numerical examples, the NC is taken to be that in a high-mobility GaAs-
Al,Gai_,As  with a typical electron density w 2.5 x 10î cmF2 and rnz = O.O67m,.  Cor-
respondingly, we choose an energy unit E' = fL2k~/(2m,") = 9 meV, a length unit a* =
l/kF = 79.6 .&, and a frequency unit w+ = E*/h = 13.6 THz. We also take wy = 0.035,
such that the effective NC width is of the order of lo3 A. In the following, in presenting the
dependence of G on CL, it is more convenient to plot G as a function of X instead, where
X = [(/.&)t 1]/2. The integral value of X is the number of propagating channels.

In Fig. 2, G is plotted against X for a NC structure acted upon by a time-modulated
potential. There is no quantum well, with V, = 0. The time-modulated potential has
a = 12, w = 0.014, and V2 = 0.003, 0.012, and 0.024. The energy interval w corresponds
to an interval AX = w/(2wY)  = 0.2 on the ordinate. At X = 1, the chemical potential
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y is at the subband edge. We note that a major dip structure occurs at X = 1.2, which
corresponds to X - AX = 1. This is a quasi-bound-state feature because the electron with
energy X can make transitions to the quasi-bound-state just beneath the subband edge by
giving up an energy w. In general, for larger Vz, the structures of more photon processes at
X = 1 + mAX are more evident. This is the situation when the electrons can emit energy
of mw and make transitions to the quasi-bound-state beneath the subband edge.

We note here that the structures in G induced by the time-modulated potential do
not always carry the dip structure characteristics. In general, these are cases of Fano-
resonance form [5,14-161.  The origin of the Fano-resonance is due to the existence of a
quasi-bound-state imbedded in a continuum. In fact, this quasi-bound state in a NC can
be shown to have a small negative imaginary part in energy, and is evanescent in space [17].
Detail discussions are presented in the appendix. If there were no inelastic scattering, the
quasi-bound-states would not couple to a continuum. But in the presence of the inelastic
scatterings,  the quasi-bound-state just below the 72th  subband threshold energy Ed can be
coupled to the states E~ + mw, which are certainly embedded within a continuum. Thus it
is not surprising to find Fano-structures in G. The form of these Fano-structures are pairs
of neighboring peak and dip structures. Their detail shape, however, can change gradually,
such as those in Fig. 2, and also in Fig. 4 of reference [15],  where the dip is smeared or is
diminished for larger interaction strength. But in our case here, such as that in Fig. 2 and
in Fig. 6, the Fano-structures exhibit even more drastic change.

The wavelength of the incident electron decreases as X increases. The relation is

given by X = 2=/\/2wy(x--1).  At the energy with subband index n = 1, when X = 1.2,
we have X = 53. Thus, near the first resonance, the range of the time-modulated potential
is short, with a 2: 0.23X.

In Fig. 3, G is plotted against X for L = a = 12, such that the position (center)
of the time-modulated potential is at 2 = 0. Other physical parameters are V, = 0.012,
w = 0.014, and Vo = 0.0077, 0.0153, 0.0230. To understand the correlation of the structures
in G with the bound states in the well, we write down the confining equations for the bound
states with energy Eb (Eb < 0) in the case when Vz = 0. For even parity bound states, the
equation is

and for odd parity bound

tan [~&iijTFj]

m
-Jm=O;

states it is

(14)

where F = Eb/Vo.  Again, because of the inelastic scattering, the unperturbed bound states
in the quantum well are coupled with the states with energies _?$,  + mw > 0. These coupling
are found to give rise to Fano-structures in G and at XL values given by

xi= 1-t
VoF + mw

2w .
Y

(16)
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Conductance G as a function of X for
a NC structure acted upon by a time-
modulated potential. The width of
the time-modulated potential a = 12,
w = 0.014, and V2 = 0.003, 0.012,
and 0.024. The dip structures at
X = 1.2 are due to the situation
when the electrons, after giving away
energy w, make transitions to the
quasi-bound-states below a subband
edge. For larger Vz, the quasi-bound
states are more broadened and many-
photon processes at X = 1 + mAX,
with AX = 0.2, are more evident.
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Conductance G as a function of X
for a quantum well structure acted
upon by a time-modulated potential.
The width of the time-modulated po-
tential a = 12 is equal to the well
width L, Vz = 0.012 and w = 0.014.
The well depth VO are 0.0077, 0.0153,
and 0.0230. The Fano-structures be-
fore X = 1.2 are due to the situa-
tion when the electrons, after giving
away energy w, make a transition to
an originally bound state. The struc-
tures between X = 1.2 and X = 1.4
are due to the situation when the
electrons, after giving away energy
2w, make transitions to the originally
bound state.

The evaluated (Xp , X,ì)  are (1.178, 1.378), (1.128, 1.328),  (1.065, 1.265), for Vo =
0.0077, 0.0153, 0.0230 respectively. The close correspondence between the evaluated Xk
values and the Fano-structures in Fig. 3 demonstrates that the singular DOS at the unper-
turbed bound state energies inside the well does play an important role. In addition, our
other results show that the Xh locations shift to smaller values for larger aV, while the
Fano-structures are broadened. This can be understood as the broadening of the bound
state energies by the strength aVz of the time-modulated potential.

In Fig. 4, G is plotted against X for L = a = 12, such that the position of the
time-modulated potential is at 5 = 0, VZ = 0.012, Vi = 0.0230, with w = (0.014, 0.028,
0.042), respectively. The corresponding Xis are (1.065, 1.265, 1.465),  and they correspond
closely to the Fano-structures. At X,b, the electron wavelength Xs are (93.0, 37.6, 30.7).
Thus, a N (0.13X, 0.31X,  0.39X), in each case.

In Fig. 5, G is plotted against X for 1 2 ,  w  =  aV. =
(fi fi)/2 =  0 ,
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Conductance G as a function of X for
a quantum well structure acted upon
by a time-modulated potential. The
width of the time-modulated poten-
tial a = 12 is equal to the well width
L, Vz = 0.012 and Vo = 0.0230. The
frequencies w are 0.014, 0.028, and
0.042. The energy differences of the
resonant structures are multiples of
0.014.

FIG. 5. Conductance G as a function of X
for a quantum well structure acted
upon by a time-modulated potential.
L = 12, aV2 = 0.144 and VO = 0.0230,
w = 0.014, f2 + fi = 0, such that the
position of the time-modulated po-
tential is at the center of the quan-
tum well. The width of the time-
modulated potential a are 12, 6, and
3. These curves show the same form
of a quasi-bound-state structure with
broadened resonance for thinner a.

coincides with the center of the well. These curves correspond to the same resonance energy
Xt = 1.065 and are of similar Fano-resonance form. As a decreases, the Fano-structures
shift toward lower energies and the structures are more broadened. Our other results show
that for a fixed but smaller a& value, the electrons can not make transitions to the bound
state in the well except when their energies are very close to Eb + hw.

In Fig. 6, G is plotted against X for L = 12, a = 3, w = 0.014, V, = 0 . 0 2 3 0 ,
V, = 0.012, while varying the position (f2 + fi)L/2  of the time-modulated potential inside
the well. These curves show that the resonance form is position dependent and is symmetric
with respect to the position of the quantum well, as is shown by the exact overlap of the
two curves for (f2 + fi)/2 = f0.25.

IV. Conclusion

We have solved nonperturbatively the quantum transport in a NC that consists of a
quantum well and a time-modulated potential. The scattering process is both coherent and
inelastic. We find that the bound states in the well become quasi-bound in the presence of
a time-modulated potential. Besides the broadening of the bound state energies, the bound
state energies are shifted to lower values and more importantly, they are coupled to the
states & + mw > 0 in a continuum. Thus, G exhibits Fano-structures.
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Conductance G as a function of X for a quantum well structure acted upon by a
time-modulated potential. L = 12, a = 3, w = 0.014, well depth Vo =
V-2  = 0.012. The positions of the time-modulated potential corresponding to

(fi + fi)/2 are -0.25, 0, 0.25, 0.5, and 0.75. These curves show that the conductance G,
as a function of the position of the time-modulated potential, is symmetric with respect to
the location of the quantum well.

From the results we have not shown here, we find that in a one-side-band approxima-
tion [12,18],  the G values are, in general, quite different from the exact results, even though
the results satisfy the conservation of current condition quite reasonably. In fact, perturba-
tion method with the one-side-band approximation is valid only when the strength aV.2 is
very small. For most cases of interest, we have to go beyond one-side-band approximation.

For clarity, we have chosen the parameters of the quantum well such that there is
only one unperturbed bound state inside the quantum well. This approach can be easily
generalized to cases that have more bound states, with qualitatively similar results expected.
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A P P E N D I X  : DOS argument about quasi-bound state

The existence of the quasi-bound state in a NC, be they impurity-induced or oscillating-
barrier-induced, is more a characteristics of the NC than the way they are being induced.
Detail discussions have been given by Bagwell and Lake in reference [5]. In the following, we
supplement by presenting a DOS argument as in reference [17], and extend this argument
into a quantum well system. The DOS in a NC is given by p(S; E) = -ImGí(S,  Z; ,3)/n,
Ghereljin  our choice of units, the retarded Greenís function Gí(Z,Zí;  E) = C,[#~~(y)&(yí)/

26, eznnlz-Z  1. Here K n = d=, and n is the subband index. It is clear from the DOS
expression that for E just below EN, the subband N does not contribute to the DOS. I n
addition, the wavefunction for this energy E and in this subband iV is evanescent a long
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the longitudinal direction. However, if we allow E to be analytically continued into the
lower half complex energy plane, such that E = Ed - 6E - iE;, the contribution of the
subband N to the DOS becomes [&(y)/2x][6E2  + E;2]-1/4 sin[(l/a)tan-l(Ei/sE)],  which,
when 6E N E; N 0, can be very large. And the factor e -iEt decays with time. So there is a
locally bound state with lifetime at this energy. This wavefunction will decay and go away
from propagating channels. So the quasi-bound state can happen at the subband bottom
with N > 1 under time-dependent perturbation. And, under coherent inelastic scattering,
the quasi-bound state can also happen at the first subband bottom because there are some
propagating states that couple to this energy.

In the presence of a quantum well, the DOS is still given by p(Z;  E) = -ImGí(Z,  37; E)/
Thyhere,

&
the retarded Greenís function Gí(Z,Zí;  E) = Cn,,l~n,(y)~ny(yí)~mr(2)~mr(2í)/

nY - &mx + v)l + Cn[4ny(~)4ny(~  ) s dMk,(zMk,(~  )l(E - &ny - &k, + +)I. Here,

n is the subband index, m is the index of the bound state in the quantum well and &, is
the scattering state of the quantum well system. It is clear from the DOS expression that,
inside the well, ~(5; E) is singular at E = EN + EM. And the wavefunction for this energy
E is evanescent outside the well. And the factor estEt does not decay with time. So there
is a truly bound state at this energy. And, under coherent inelastic scattering, the bound
state can become quasi-bound because some propagating states, at energies EMU + mw > 0,
will couple to the bound state. Thus, either in the presence of elastic scatterings (such as
induced by impurities) or inelastic scatterings (such as induced by oscillating-barriers), the
singular DOS plays a decisive role in inducing a quasi-bound-state just beneath a subband
bottom, or causing the bound-state to become a quasi-bound-state, respectively. So it is
not unexpected that the state can become a quasi-bound-state.
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