
The Circular Chromatic
Number of the Mycielskian
of Gd

k

Lingling Huang and Gerard J. Chang∗
DEPARTMENT OF APPLIED MATHEMATICS

NATIONAL CHIAO TUNG UNIVERSITY
HSINCHU 30050, TAIWAN

E-mail: llhuang,gjchang@math.nctu.edu.tw

Received February 2, 1998; revised November 23, 1998

Abstract: In a search for triangle-free graphs with arbitrarily large chromatic
numbers, Mycielski developed a graph transformation that transforms a graph G
into a new graph µ(G), we now call the Mycielskian of G, which has the same
clique number as G and whose chromatic number equals χ(G)+1. Chang, Huang,
and Zhu [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear] have investi-
gated circular chromatic numbers of Mycielskians for several classes of graphs. In
this article, we study circular chromatic numbers of Mycielskians for another class
of graphs Gd

k. The main result is that χc(µ(Gd
k)) = χ(µ(Gd

k)), which settles a prob-
lem raised in [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear, and X. Zhu,
to appear]. As χc(Gd

k) = k
d and χ(Gd

k) = dk
de, consequently, there exist graphs G

such that χc(G) is as close to χ(G) − 1 as you want, but χc(µ(G)) = χ(µ(G)).
c© 1999 John Wiley & Sons, Inc. J Graph Theory 32: 63–71, 1999
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1. INTRODUCTION

In a search for triangle-free graphs with arbitrarily large chromatic numbers,
Mycielski [9] developed an interesting graph transformation as follows. For graph
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G = (V, E) with vertex setV and edge setE, theMycielskianof G is the graph
µ(G) with vertex setV ∪ V ′ ∪ {u}, whereV ′ = {x′ : x ∈ V }, and edge set
E ∪ {xy′ : xy ∈ E} ∪ {y′u : y′ ∈ V ′}. Fork ≥ 2, let µk(G) = µ(µk−1(G)).

Mycielski showed thatχ(µ(G)) = χ(G) + 1 for any graphG, andω(µ(G)) =
ω(G) for any graphG with at least one edge. Hence,µk(K2) is a triangle-free
graph of chromatic numberk + 2. Besides the interesting properties involving
their chromatic numbers and cliques numbers, Mycielski’s graphs also have some
other parameters that behave in a predictable way. For example, it was shown by
Larsen, Propp, and Ullman [8] thatχf (µ(G)) = χf (G) + 1

χf (G) for any graphG,

whereχf (G) is the fractional chromatic number of a graph. Mycielski’s graphs
were also used by Fisher [5] as examples of optimal fractional colorings that have
large denominators. Many interesting properties for circular chromatic numbers of
Mycielski’s graphs were proved by Chang, Huang, and Zhu [4]. Yet more questions
concerning this topic remain open. In this article, we investigate circular chromatic
numbers of Mycielskians of the graphsGd

k, to be defined below, and settle a problem
raised in [4] (also see Problem 7.22 in [12]).

The circular chromatic number of a graph is a natural generalization of the chro-
matic number, introduced by Vince [10] under the name ‘‘star chromatic number.’’
For a good survey, see [12]. Supposek andd are positive integers such thatk ≥ 2d.
A (k, d)-coloringof a graphG = (V, E) is a mappingφ fromV to{0, 1, . . . , k−1}
such thatd ≤ |φ(x) − φ(y)| ≤ k − d for any edgexy in E. In the definition, we
call φ(x) thecolor of x. Thecircular chromatic numberχc(G) of G is the infimum
of the ratiosk

d for which there exists a(k, d)-coloring ofG. Note that Vince [10]
proved that the infimum is attained for somek ≤ |V (G)|.

Note that a(k, 1)-coloring of a graphG is just an ordinaryk-coloring ofG. It
follows thatχc(G) ≤ χ(G) for any graphG. On the other hand, it has been shown [1,
10, 11] thatχ(G)−1 < χc(G). Therefore,χ(G) = dχc(G)e. However, two graphs
with the same chromatic number may have different circular chromatic numbers.
In some sense,χc(G) is a refinement ofχ(G) and it contains more information
about the graph.

It was shown [4] thatχc(µ(G)) = χ(µ(G)) for several classes of graphsG, and
also χc(µ(H)) < χ(µ(H)) for some classes of graphsH. However, it seems
difficult to characterize those graphsG for which χc(µ(G)) = χ(µ(G)). For
two positive integersk andd such thatk ≥ 2d, Gd

k is the graph with vertex set
{0, 1, . . . , k − 1} in which ij is an edge if and only ifd ≤ |i − j| ≤ k − d. It is
easy to see (also [1]) that a graphG is (k, d)-colorable if and only if there exists a
homomorphism fromG to Gd

k. Therefore, in the study of circular chromatic num-
bers, the graphsGd

k play the same role that complete graphsKn do in the study
of chromatic numbers. It was shown in [4] thatχc(µ(Kn)) = χ(µ(Kn)) for any
n ≥ 3. We consider the analogous problem: doesχc(µ(Gd

k)) = χ(µ(Gd
k))?

The main result of this article is to give a positive answer to the above problem.
Also, sinceχc(Gd

k) = k
d andχ(Gd

k) = dk
de (see Vince [10]), a consequence is

that there exist graphsG such thatχc(G) is as close toχ(G) − 1 as you want, but
χc(µ(G)) = χ(µ(G)). Although it is still not known what determinesχc(µ(G)) =
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χ(µ(G)), the result shows that the circular chromatic number of a graphG does
not determine ifχc(µ(G)) = χ(µ(G)).

2. CIRCULAR CHROMATIC NUMBER OF µ(Gd
k)

The main result of this article is the following.

Theorem 1. χc(µ(Gd
k)) = χ(µ(Gd

k)) = dk
de+1 for any positive integerk > 2d.

Note that fork = 2d, we haveGd
k

∼= dK2 andµ(Gd
k) is the graph obtained from

d copies ofC5 by identifying one vertex in each copy. Therefore,χc(µ(Gd
k)) =

2.5 < 3 = χ(µ(Gd
k)).

Also, sinceχc(Gd
k) = k

d andχc(µ(Gd
k)) = χ(µ(Gd

k)) for any positive integers
k > 2d, we also have the following consequence.

Corollary 1. There exists a graphG such thatχc(G) is as close toχ(G) − 1 as
you want, butχc(µ(G)) = χ(µ(G)).

In the remaining of this section, we shall prove Theorem 1. The following lemma
was proved in [4], which takes care of a special case of the main theorem.

Lemma 1. If χ(G) = 3, thenχc(µ(G)) = χ(µ(G)) = 4.
For ann-coloringc : V (G) 7→ {0, 1, . . . , n − 1} of G = (V, E), we denote by

Dc(G) the directed graph with vertex setV such that there exists an arc fromx to
y if and only if xy ∈ E andc(x) + 1 ≡ c(y)(modn). It was shown in [6] that an
n-chromatic graphG satisfiesχc(G) < n if and only if G has ann-coloringc for
whichDc(G) is acyclic. This result was refined [4] to the following lemma, which
is useful for studying circular chromatic numbers of Mycielski’s graphs.

Lemma 2. If χc(µ(G)) < χ(µ(G)) = n, then there exists ann-coloring c
of µ(G) such thatDc(µ(G)) is acyclic, c(u) = 1, and c(x′) 6∈ {0, 1} for all
x′ ∈ V ′. Moreover, for any such coloringc, there is an edgexy ∈ E(G) such that
{c(x), c(y)} = {0, 1} andc(x′) = c(y′).

Write k = dr + i, whered ≥ 2 and 1 ≤ i ≤ d. Note thatµ(Gd
dr+1) is a

subgraph ofµ(Gd
dr+i). If Theorem 1 holds for the special case wheni = 1, then

r + 2 ≤ χc(µ(Gd
dr+1)) ≤ χc(µ(Gd

dr+i)) ≤ χ(µ(Gd
dr+i)) = r + 2 and so the

general case follows. Hence, it remains to prove Theorem 1 for the special case
whenk = dr + 1.

For clarity of notation, we considerGd
dr+1 as the graph with vertex setV =

{x0, x1, . . . , xdr} and edge setE = {xixj : d ≤ |i − j| ≤ (dr + 1) − d};
and the Mycielskianµ(Gd

dr+1) as the graph with vertex setV ∪ V ′ ∪ {u}, where
V ′ = {x′

i : xi ∈ V }, and edge setE ∪ {xix
′
j : xixj ∈ E} ∪ {x′

ju : x′
j ∈ V ′}.

Indices of the verticesxi andx′
i are taken modulodr+1, if arithmetic operations are

performed on them. LetVi,j = {xi, xi+1, . . . , xj} andV ′
i,j = {x′

i, x
′
i+1, . . . , x

′
j}.

Note thatVi,j andV ′
i,j are of sizej − i + 1 for i ≤ j, and of sizedr + 1 + j − i + 1

for i > j.
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It is known thatχc(Gd
dr+1) = r + 1

d (see Vince [10]),χ(Gd
dr+1) = r + 1, and

χ(µ(Gd
dr+1)) = r + 2. We now show the case ofk = dr + 1 for Theorem 1.

Theorem 2. χc(µ(Gd
dr+1)) = χ(µ(Gd

dr+1)) = r + 2 for any positive integer
r ≥ 2.

Proof. Note thatGd
2d+1 is, in fact, the odd cycleC2d+1. According to Lemma

1, the theorem holds forr = 2. So, we may assume thatr ≥ 3. Let G = (V, E) be
the graphGd

dr+1.
Suppose that the theorem does not hold, i.e.,χc(µ(G)) < χ(µ(G)) = r + 2.

Then, by Lemma 2, there exists an(r+2)-coloringc such thatDc(µ(G)) is acyclic,
c(u) = 1, andc(x′

i) 6∈ {0, 1} for all x′
i ∈ V ′. Note that, ifxi is a vertex ofV such that

c(xi) 6∈ {0, 1} andc(xi) 6= c(x′
i), then we can replace the color ofx′

i with c(xi) and
still preserveDc(µ(G)) being acyclic. Hence, we may assume thatc(xi) = c(x′

i)
for eachxi ∈ V with c(xi) 6∈ {0, 1}.

Moreover, by Lemma 2, there exists an edgexaxb ∈ E such that{c(xa), c(xb)} =
{0, 1} andc(x′

a) = c(x′
b) = t 6∈ {0, 1}. It is clear that|Va,b| ≥ d + 1, sincexaxb

is an edge. Without loss of generality, we may assume thatxaxb is chosen to sat-
isfy the property that|Va,b| is minimum and, under this condition,|c(Va,b)| is also
minimum. Finally, we may also assume thatc(xa) = 0 and0 = a < d ≤ b ≤ dr+1

2 .
Let Ai = {xi+dj : 0 ≤ j ≤ r} for 0 ≤ i ≤ dr. It is clear that any two vertices of

Ai, except the pair(xi, xi−1), are adjacent and, hence, have different colors. Note
thatxi−1 = xi+dr.

Claim 1. If xi and xj ∈ Ai \ {xi, xi−1} are vertices such that2 ≤ |c(xi) −
c(xi−1)| ≤ r and2 ≤ |c(xj)− c(x′

j)| ≤ r, thenAi ∪{x′
j} induces a directed cycle

in Dc(µ(G)).

Proof of Claim 1. Sincexj ∈ Ai \ {xi, xi−1}, any two vertices ofAi ∪ {x′
j}

are adjacent, except the two pairs(xi, xi−1) and(xj , x
′
j). Also, c(xi) 6= c(xi−1)

and c(xj) 6= c(x′
j) imply |c(Ai ∪ {x′

j})| = r + 2. Since any two vertices of
Ai ∪{x′

j} with consecutive colors are adjacent,Ai ∪{x′
j} induces a directed cycle

in Dc(µ(G)).
For any colork ∈ c(V ), let Vf(k),e(k) be theVi,j of smallest size including

c−1(k) as a subset. It is clear thatc(xf(k)) = c(xe(k)) = k, butc(xf(k)−1) 6= k and
c(xe(k)+1) 6= k. Also,Vf(k),e(k) has a size at mostd, since any two vertices in it are
nonadjacent. Moreover,V = ∪k∈c(V )Vf(k),e(k) implies thatr+1 ≤ |c(V )| ≤ r+2.

Claim 2. |c(V )| = r + 2.

Proof of Claim 2. Suppose to the contrary that|c(V )| = r + 1, sayp 6∈ c(V )
for somep with 2 ≤ p ≤ r + 1. Let

S = {xi ∈ V : 2 ≤ |c(xi) − c(xi−1)| ≤ r or 2 ≤ |c(xi) − c(xi+1)| ≤ r}.

Suppose thatp−1 6∈ c(S). Then,c(xf(p−1)) = c(xe(p−1)) = p−1 imply xf(p−1) 6∈
S andxe(p−1) 6∈ S. Therefore,c(xf(p−1)−1) andc(xe(p−1)+1) are in{p−2, p−1}.
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However,c(xf(p−1)−1) 6= p − 1 andc(xe(p−1)+1) 6= p − 1 by the definition of
Vf(p−1),e(p−1). Hence,c(xf(p−1)−1) = c(xe(p−1)+1) = p−2, and soVf(p−1),e(p−1)
is a subset ofVf(p−2),e(p−2). Then,V is the union ofr setsVf(k),e(k), each of size
at mostd, for k ∈ {0, 1, . . . , r + 1} \ {p − 1, p}, a contradiction to the fact that
|V | = dr + 1. This proves thatp − 1 ∈ c(S). Similarly,p + 1 ∈ c(S).

We then choose a vertexxi ∈ S such thatc(xi) = 1, whenp = 2 andc(xi) =
p + 1 otherwise. For the case of2 ≤ |c(xi) − c(xi−1)| ≤ r, c(Ai) = c(V ) and
{c(xi), c(xi−1)} 6= {0, 1}. Then, there exists a vertexxj ∈ Ai \{xi, xi−1} of color
0 or 1. Sincex′

j is adjacent to all vertices ofAi \{xj}, the color ofx′
j must bec(xj)

orp. However, a vertex inV ′ cannot be colored by 0 or 1, hence we havec(x′
j) = p.

Recall that2 ≤ p ≤ r + 1 andc(xj) ∈ {0, 1}. If |c(xj) − c(x′
j)| ∈ {0, 1, r + 1},

then eitherc(xj) = 0, p = r + 1, or c(xj) = 1, p = 2. Both cases lead to
c(xj) = c(xi), a contradiction to the fact thatxi and xj are adjacent. Hence,
2 ≤ |c(xj)− c(x′

j)| ≤ r. According to Claim 1,Ai ∪{x′
j} induces a directed cycle

in Dc(µ(G)), a contradiction. Similar arguments also lead to a contradiction for
the case of2 ≤ |c(xi) − c(xi+1)| ≤ r. Therefore,|c(V )| = r + 2.

According to Claim 2,t ∈ c(V ). Sincec(x′
0) = c(x′

b) = t, we haveVf(t),e(t) ⊆
V−d+1,d−1 ∩ Vb−d+1,b+d−1, and sod ≤ b ≤ 2d − 2 andVf(t),e(t) ⊆ Vb−d+1,d−1 ⊂
V0,b. Therefore,{0, 1, t} ⊆ c(V0,b).

Claim 3. For any vertexxj ∈ V0,b colored byt, {c(xj−1), c(xj+1)} ⊆ {0, 1, t}.

Proof of Claim 3. Suppose to the contrary that there exist verticesxi, xi+1 ∈ V0,b

such that{c(xi), c(xi+1)} = {t, q} for someq 6∈ {0, 1, t}. Thenb ≤ i+d; and both
c(x′

i−d) = ` andc(x′
i+1+d) = m are not in{t, q}. If r ≥ 4, we must havè 6= m.

Otherwise, since every vertex ofV is adjacent to at least one ofx′
i−d, x

′
i+1+d,

we would havè 6∈ c(V ), contrary to Claim 2. Hence, none of the vertices of
Vi+1+2d,i−2d can be colored by0, 1, t, q, `, m. This implies that thedr + 1 − 4d
vertices ofVi+1+2d,i−2d must be colored by onlyr − 4 colors, a contradiction (see
Fig. 1). Ifr = 3, then|Vi+1+d,i−d| = dr+1−2d = d+1 and` = m as there are only
five colors to be used. Therefore,c(xi+1+d) = 1, c(xi−d) = 0, andc(Vi+1+d,i−d) =
{0, 1, `}. It follows thatxi+1+dxi−d is an edge with{c(xi+1+d), c(xi−d)} = {0, 1}
andc(x′

i+1+d) = c(x′
i−d), but|Vi+1+d,i−d| = d+1 ≤ |V0,b| and|c(Vi+1+d,i−d)| <

|c(V0,b)|, a contradiction to the choice ofx0xb. Hence, Claim 3 holds.

Claim 4. c(V0,b) = {0, 1, t}.

Proof of Claim 4. Suppose to the contrary that there exists a colorp ∈ c(V0,b) \
{0, 1, t}. Choose anyxj ∈ V0,b such thatc(xj) = t. By Claim 3,c(xj−1) 6= p and
c(xj+1) 6= p. If there exists some vertex inV1,j−2 colored byp, then choose the
largest integeri ≤ j − 1 such thatc(xi) ∈ {0, p} andc(x′

i) = p. We now consider
the following three cases according to the color ofxi+1.

Case 1:. c(xi+1) = 0.
By the choice ofi, we havec(x′

i+1) 6= p. Suppose thatc(xi+1+d) 6= 1. Then
c(xi+1+d) = q for someq 6∈ {0, 1, p, t}, sincexi+1+d is adjacent tox0, x

′
0, andx′

i.
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FIGURE 1. Vertex colors near V0,b (for Claim 3).

If r ≥ 4, thenc(x′
i+1+2d) = m for somem 6∈ {0, 1, p, t, q}. Hence, thedr+1−4d

vertices ofVi+1+3d,i−d are colored byr − 4 colors, a contradiction (see Fig. 2). If
r = 3, thenxi+1+2d = xi−d. Hence,c(xi−d) = 1 andc(x′

i−d) = p. Therefore,
c(xi) = 0 andb > i + 1 + d. Sincet, q 6∈ c(Vi−d,i), we have thatxi−dxi is an
edge with{c(xi−d), c(xi)} = {0, 1} andc(x′

i−d) = c(x′
i), but |Vi−d,i| = d + 1 ≤

|V0,b| and |c(Vi−d,i)| < |c(V0,b)|, a contradiction to the choice ofx0xb. Hence,
c(xi+1+d) = 1.

We now consider the setc(V ′
i+1,i+1+d). If q ∈ c(V ′

i+1,i+1+d) for someq 6∈
{0, 1, p, t}, then thedr + 1 − 3d vertices ofVi+1+2d,i−d are colored byr + 2 −
|{0, 1, p, t, q}| = r − 3 colors, a contradiction. Hence,c(x′

i+1) = c(x′
i+1+d) = t

by Claim 2; and moreover,c(Vi+1,i+1+d) ⊆ {0, 1, t, p}.

FIGURE 2. Vertex colors near V0,b (for the first paragraph of Case 1).
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If p ∈ c(Vi+1,i+1+d), thenp ∈ c(Vj+2,i+1+d), sincei is maximal and since
c(xj+1) 6= p. By the assumption thatp ∈ V1,j−2, we havec(x′

j−d), c(x
′
j+d) 6∈

{0, 1, p, t}, sayc(x′
j−d) = ` andc(x′

j+d) = m. If r ≥ 4, then` 6= m by Claim
2. Therefore, thedr + 1 − (4d − 1) vertices ofVj+2d,j−2d must be colored by
r − 4 colors, a contradiction (see Fig. 3). Ifr = 3, then ` = m by Claim 2
and |Vj+d,j−d| = (dr + 1) − (2d − 1) = d + 2. Since all vertices ofV ′

j+d,j−d
are colored bỳ = m, we have thatc(xj+d) = c(xj+d+1) = 1, c(xj−d) =
c(xj−d−1) = 0, andc(Vj+d,j−d) = {0, 1, l}. Hence,xj+dxj−d−1 is an edge with
{c(xj+d), c(xj−d−1)} = {0, 1} and c(x′

j+d) = c(x′
j−d−1), but |Vj+d,j−d−1| =

d + 1 ≤ |V0,b| and |c(Vj+d,j−d−1)| < |c(V0,b)|, a contradiction to the choice of
x0xb. Therefore,c(Vi+1,i+1+d) = {0, 1, t}, which also implies thatxi+1xi+1+d

is an edge with{c(xi+1), c(xi+1+d)} = {0, 1} and c(x′
i+1) = c(x′

i+1+d), but
|Vi+1,i+1+d| = d + 1 ≤ |V0,b| and|c(Vi+1,i+1+d)| < |c(V0,b)|, again a contradic-
tion to the choice ofx0xb.

Case 2:. c(xi+1) = 1.
If c(xi) = p, thenc(x′

i−d) 6∈ {p, t}, sayc(x′
i−d) = `. Therefore, thedr +1− 3d

vertices ofVi+1+d,i−2d are colored byr + 2 − |{0, 1, p, t, `}| = r − 3 colors, a
contradiction.

If c(xi) = 0, then sincec(x′
i) = p, thedr + 1 − 2d vertices ofVi+1+d,i−d are

colored byr − 2 colors, also a contradiction.

Case 3:. c(xi+1) 6∈ {0, 1, p}.
If c(xi+1) = t, thenc(xi) = 0 andc(x′

i) = p. Since some vertex ofV1,j−2
is colored byp, we havec(x′

i+1+d) 6∈ {p, t}, sayc(x′
i+1+d) = m. Therefore, the

dr + 1 − 3d vertices ofVi+1+2d,i−d are colored byr − 3 colors, a contradiction.
If c(xi+1) = q for someq 6∈ {0, 1, p, t}, thenc(x′

j+d) 6∈ {0, 1, p, q, t}, say
c(x′

j+d) = m. Then we haver ≥ 4. If c(xi) = 0, then, sincec(x′
i) = p, the

vertices ofVj+2d,i−d are colored byr − 4 colors, a contradiction to|Vj+2d,i−d| =

FIGURE 3. Vertex colors near V0,b (for the last paragraph of Case 1).
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dr + 1 − 3d − (j − i − 1) > dr + 1 − 4d. If c(xi) = p, thenc(x′
i−d) cannot be

colored by0, 1, p, q, t, sayc(x′
i−d) = `. Note that0 > j − d > i − d, b < j + d,

and j < d. If r ≥ 5, then |Vj+2d,i−2d| > dr + 1 − 5d and ` 6= m, i.e., at
leastdr + 1 − 5d vertices ofV are colored byr − 5 colors, a contradiction (see
Fig. 4). If r = 4, then` = m and|Vj+d,i−d| > dr + 1 − 3d = d + 1. It is clear that
c(xi−d) = 0. Sincexi−2d ∈ Vj+d,i−d, we have thatc(xi−2d) = 1 andc(Vj+d,i−d) =
{0, 1, `}. Therefore,xi−2dxi−d is an edge with{c(xi−2d), c(xi−d)} = {0, 1} and
c(x′

i−2d) = c(x′
i−d), but|Vi−2d,i−d| = d+1 ≤ |V0,b| and|c(Vi−2d,i−d)| < |c(V0,b)|,

a contradiction to the choice ofx0xb.
By the three cases above, we conclude that no vertex ofV1,j−2 can be colored

by p. A similar argument shows that no vertex ofVj+2,b−1 can be colored byp.
Hence,c(V0,b) = {0, 1, t}. This completes the proof of Claim 4.

Having proved the claims, we are now ready to prove the theorem. Suppose
3 ≤ t ≤ r. Sincet 6∈ c(V \V0,b), there exists an integeri such thatc(xi), c(xi−1) 6∈
{0, 1, t} and2 ≤ |c(xi) − c(xi−1)| ≤ r. Sincec(Ai) = r + 1, there must be some
vertexxj ∈ Ai \ {xi, xi−1} such thatc(xj) ∈ {0, 1}. Assume thatc(xj) = 0 (the
case ofc(xj) = 1 is similar). Since the color ofx′

j sayq, cannot belong toc(Ai),
i.e.,q is the only color not inc(Ai) andq 6∈ {0, 1}. Hence,1 ∈ c(Ai), some vertex
xj′ ∈ Ai \ {xi, xi−1, xj} is colored by 1, andc(x′

j′) = q is clear. It follows that
either2 ≤ |c(xj) − c(x′

j)| ≤ r or 2 ≤ |c(xj′) − c(x′
j′)| ≤ r. By Claim 1, there is

a directed cycle inDc(µ(G)), a contradiction. Therefore,t ∈ {2, r + 1}.
Assume thatt = 2 (the case oft = r + 1 is similar). Let i be the smallest

integer such thatc(xi) = 2; and letj be the largest integer such thatc(xj) = 1
and i ≤ j ≤ i + d. Such aj exists. In fact, one may takej = b if there is no
larger value.

For the case ofj = i + d, c(xi+d) = 1 impliesc(xi−1) 6= 1. By the definition
of xi, c(xi−1) 6= 2. Hence, by Claim 4,c(xi−1) = 0. Also, c(xi) = 2 implies

FIGURE 4. Vertex colors near V0,b (for Case 3).
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c(x′
i+d) 6= 2. By Claim 1,Ai ∪ {x′

i+d} induces a directed cycle ofDc(µ(G)), a
contradiction.

For the case ofj < i+d, c(xj+1) 6= 1 by the choice ofxj ; andc(xj+1) 6∈ {0, 2},
sincej +1 > b andc(x0) = 0 andc(x′

0) = 2. According to0 ≤ b−d ≤ j −d < i,
we havec(xj−d) 6= 2 by the choice ofxi, andc(xj−d) 6= 1 asc(xj) = 1. Hence, by
Claim 4,c(xj−d) = 0. We conclude thatc(x′

j−d) = 2. By Claim 1,Aj+1 ∪{x′
j−d}

induces a directed cycle ofDc(µ(G)), a contradiction.
Therefore,χc(µ(Gd

dr+1)) = χ(µ(Gd
dr+1)) = r +2. This completes the proof of

the theorem.
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