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Abstract: In a search for triangle-free graphs with arbitrarily large chromatic
numbers, Mycielski developed a graph transformation that transforms a graph G
into a new graph u(G), we now call the Mycielskian of G, which has the same
clique number as G and whose chromatic number equals x(G) -+ 1. Chang, Huang,
and Zhu [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear] have investi-
gated circular chromatic numbers of Mycielskians for several classes of graphs. In
this article, we study circular chromatic numbers of Mycielskians for another class
of graphs G¢. The main resultis that x.(1(G$)) = x(1(GY)), which settles a prob-
lemraisedin [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear, and X. Zhu,
to appear]. As XC(Gz) = § and X(Gg) = [%} consequently, there exist graphs G
such that x.(G) is as close to x(G) — 1 as you want, but x.(u(G)) = x(u(G)).
© 1999 John Wiley & Sons, Inc. J Graph Theory 32:-838, 1999

Keywords:chromatic number; circular chromatic number; color; Mycielskian; triangle; clique
number

1. INTRODUCTION

In a search for triangle-free graphs with arbitrarily large chromatic numbers,
Mycielski [9] developed an interesting graph transformation as follows. For graph
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G = (V, E) with vertex setl” and edge sekE, the Mycielskianof G is the graph
wu(G) with vertex setV U V' U {u}, whereV’' = {2/ : z € V}, and edge set
Eu{zy :axy € EYU{yu:y € V'}.Fork > 2, letu*(G) = u(p*~1(Q)).

Mycielski showed thak (1.(G)) = x(G) + 1 for any graphG, andw(u(G)) =
w(@) for any graphG with at least one edge. Hence! (K>) is a triangle-free
graph of chromatic numbek + 2. Besides the interesting properties involving
their chromatic numbers and cliqgues numbers, Mycielski's graphs also have some
other parameters that behave in a predictable way. For example, it was shown by
Larsen, Propp, and Ullman [8] that:(u(G)) = x¢(G) + ﬁ for any graphG,
where x ¢(G) is the fractional chromatic number of a graph. Mycielski's graphs
were also used by Fisher [5] as examples of optimal fractional colorings that have
large denominators. Many interesting properties for circular chromatic numbers of
Mycielski’s graphs were proved by Chang, Huang, and Zhu [4]. Yet more questions
concerning this topic remain open. In this article, we investigate circular chromatic
numbers of Mycielskians of the grapfi§, to be defined below, and settle a problem
raised in [4] (also see Problem 7.22 in [12]).

The circular chromatic number of a graph is a natural generalization of the chro-
matic number, introduced by Vince [10] under the name “star chromatic number.”
For a good survey, see [12]. Suppésandd are positive integers such that> 2d.

A (k, d)-coloringofagraph = (V, E) isamapping fromV to {0, 1,... ,k—1}
such thatl < |¢(z) — ¢(y)| < k — d for any edgery in E. In the definition, we
call ¢(z) thecolor of z. Thecircular chromatic numbex.(G) of G is the infimum
of the ratios% for which there exists &k, d)-coloring of G. Note that Vince [10]
proved that the infimum is attained for sorhe< |V (G)|.

Note that &k, 1)-coloring of a graphG is just an ordinarys-coloring of G. It
follows thaty.(G) < x(G) forany graphG. Onthe other hand, it has been shown [1,
10, 11]thaty(G) — 1 < x.(G). Thereforex(G) = [x.(G)]. However, two graphs
with the same chromatic number may have different circular chromatic numbers.
In some sensey.(G) is a refinement ofy(G) and it contains more information
about the graph.

It was shown [4] thak.(u(G)) = x(n(G)) for several classes of grapis and
also x.(u(H)) < x(u(H)) for some classes of graptf$. However, it seems
difficult to characterize those graphs for which x.(u(G)) = x(u(Q)). For
two positive integerd andd such thatc > 2d, G¢ is the graph with vertex set
{0,1,...,k — 1} in whichij is an edge ifand only ifl < |i — j| < k —d. Itis
easy to see (also [1]) that a gra@hs (k, d)-colorable if and only if there exists a
homomorphism frontz to G{. Therefore, in the study of circular chromatic num-
bers, the graph&{ play the same role that complete gragkis do in the study
of chromatic numbers. It was shown in [4] that(u(K,)) = x(u(K,)) for any
n > 3. We consider the analogous problem: dge§:(G¢)) = x(u(G4))?

The main result of this article is to give a positive answer to the above problem.
Also, sincey.(G¢) = g and x(G9{) = [%1 (see Vince [10]), a consequence is
that there exist graphs such thaty.(G) is as close to¢(G) — 1 as you want, but
Xe(u(G)) = x(1(G)). Although it is still not known what determings (1(G)) =
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x(u(@)), the result shows that the circular chromatic number of a gtaploes
not determine ify.(u(G)) = x(u(G)).

2. CIRCULAR CHROMATIC NUMBER OF p(GY¢)
The main result of this article is the following.

Theorem 1. x.(u(G$)) = x(1(G%)) = [£]+1forany positive integet > 2d.
Note that fork = 2d, we haveG{ = dK, andu(GY) is the graph obtained from
d copies ofC; by identifying one vertex in each copy. Therefoxe(u(GY)) =
2.5 < 3 =x(u(GY)).
Also, sincex.(G$) = & andx.(u(G$)) = x(u(G)) for any positive integers
k > 2d, we also have the following consequence.

Corollary 1. There exists a grapti' such thaty.(G) is as close to¢(G) — 1 as
you want but x.(1(G)) = x(1(G)).

In the remaining of this section, we shall prove Theorem 1. The following lemma
was proved in [4], which takes care of a special case of the main theorem.

Lemmal. |If x(G) =3, thenx.(u(G)) = x(1(G)) = 4.

For ann-coloringc : V(G) — {0,1,...,n— 1} of G = (V, E), we denote by
D.(G) the directed graph with vertex sitsuch that there exists an arc franto
yifandonly ifzy € F ande(x) + 1 = ¢(y)(modn). It was shown in [6] that an
n-chromatic graplt satisfiesy.(G) < n if and only if G has am-coloring ¢ for
which D.(G) is acyclic. This result was refined [4] to the following lemma, which
is useful for studying circular chromatic numbers of Mycielski’s graphs.

Lemma2. If x.(u(G)) < x(u(G)) = n, then there exists an-coloring ¢
of u(G) such thatD.(u(G)) is acyclic ¢c(u) = 1, and ¢(z’) ¢ {0,1} for all
2’ € V'. Moreover for any such coloring, there is an edgey € F(G) such that
{e(z), e(y)} = {0,1} andc(x’) = c(y).

Write k = dr + i, whered > 2 and1 < i < d. Note thatu(G9,,,) is a
subgraph ofu(Gng). If Theorem 1 holds for the special case whies 1, then
P42 < xe((Ghi)) < xe(u(GY,4,) < x(u(GY,..;)) = r+ 2 and so the
general case follows. Hence, it remains to prove Theorem 1 for the special case
whenk = dr + 1.

For clarity of notation, we consid@ﬁrﬂ as the graph with vertex sét =
{zo,21,...,24-} and edge setl = {z;z; : d < |i — j| < (dr + 1) — d};
and the Mycielskian(G4, . ;) as the graph with vertex sétU V' U {u}, where
V' = {z}: z; € V}, and edge sekt' U {z;2} : z;x; € B} U{zju : 2} € V'}.
Indices of the vertices; andz) are taken moduldr+1, if arithmetic operations are
performed on them. L&V, ; = {z;, ziq1,...,2;} andVl-’J = {zj, 2] ,,... ,:c;}.
Note thatV; ; andV;’J areofsizej —i+ 1fori < j,andofsizelr + 1+j—i+1
fori > j.
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It is known thaty.(GY%,,,) = r + 4 (see Vince [10])x(GY,,,) = r + 1, and
x(u(G4, 1)) = + 2. We now show the case &f= dr + 1 for Theorem 1.

Theorem 2. x.(u(G%41)) = x(1(G4,.1)) = r + 2 for any positive integer
r> 2.

Proof. Note thatngJrl is, in fact, the odd cycl€’s; 1. According to Lemma
1, the theorem holds for = 2. So, we may assume that> 3. LetG = (V, F) be
the graphzd, _ ;.

Suppose that the theorem does not hold, ke(x(G)) < x(u(G)) = r + 2.
Then, by Lemma 2, there exists @nt 2)-coloringe such thatD.(u(G)) is acyclic,
c(u) = 1,ande(z}) & {0,1}forallz; € V'. Note that, ifz; is a vertex oV such that
c(z;) ¢ {0,1} ande(x;) # (), then we can replace the colorgfwith ¢(x;) and
still preserveD.(u(G)) being acyclic. Hence, we may assume that) = c(z})
for eachz; € V with ¢(z;) ¢ {0,1}.

Moreover, by Lemma 2, there exists an edge;, € F suchthafc(x,), c(xy)} =
{0,1} ande(z),) = c(z}) =t ¢ {0,1}. Itis clear thatV, ,| > d + 1, sincezqzy,
is an edge. Without loss of generality, we may assumeathaj is chosen to sat-
isfy the property thatV/, ;| is minimum and, under this conditiofx,(V )| is also
minimum. Finally, we may also assume that,) = 0and0 =a < d < b < %.

LetA; = {zij1q : 0 < j < r}for0 < i < dr. ltisclear that any two vertices of
A;, except the paifz;, z;—1 ), are adjacent and, hence, have different colors. Note
thata:i_l = Titdr-

Claim1. If z; andz; € A; \ {z;,z;,—1} are vertices such th& < |c(x;) —
c(zi—1)| < rand2 < |e(z;) —c(z})| < r, thenA; U {2} induces a directed cycle
in De(u(@)).

Proof of Claim 1. Sincex; € A; \ {x;,z;—1}, any two vertices o4; U {ac;}
are adjacent, except the two pajfrs, z;—1) and(xz;, 2}). Also, c(x;) # c(wi-1)
andc(z;) # c(z}) imply |c(A4; U {z})| = r + 2. Since any two vertices of
A; U{’;} with consecutive colors are adjacent,u {z’; } induces a directed cycle

in De(u(G)). .
For any colork € c(V), let Vi, ) be theV; ; of smallest size including
¢ (k) as asubset. Itis clear thaltr ¢ (1)) = (k) = k, bute(z p)—1) # k and
c(Te(k)+1) # k- AlSO, Vi (k) has a size at mog since any two vertices in it are
nonadjacent. Moreover; = Ucqv)Vi(k),e(k) implies that+1 < [c(V)] < r+2.

Claim2. |c(V)|=r+2.
Proof of Claim 2. Suppose to the contrary tha{V')| = r + 1, sayp & ¢(V)
for somep with 2 < p < r + 1. Let
S={z; €V :2< e(x;) —e(zim1)| <ror2 <le(x;) —c(xitr)] < r}.

Supposethat—1 ¢ c(S). Thenc(x 1)) = c(Tep—1)) = p—1imply z¢,_1) &
Sandz.,_1) ¢ S. Thereforeg(z s(,—1)—1) andc(xp—1y41) arein{p—2,p—1}.
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However,c(z—1)-1) # p — 1 ande(zep—1y4+1) # p — 1 by the definition of
Vip-1).e0-1): HENCeL(2 5p_1) 1) = c(Tep-1)41) = p—2,and sV y(p1) c(p-1)
is @ subset oV (,_) o(p—2)- Then,V is the union ofr setsV; ) (), €ach of size
at mostd, for k € {0,1,...,» + 1} \ {p — 1, p}, a contradiction to the fact that
|V| = dr + 1. This proves thap — 1 € ¢(.S). Similarly,p + 1 € ¢(5).

We then choose a vertex € S such that(x;) = 1, whenp = 2 ande(z;) =
p + 1 otherwise. For the case @f < |c(x;) — c(zi—1)| < r,¢(4;) = (V) and
{c(xs), c(xi—1)} # {0,1}. Then, there exists a vertex € A; \ {z;,z;,—1} of color
Oor 1. Sincer} is adjacent to all vertices of; \ {z;}, the color ofr’; must bec(z;)
or p. However, a vertex ifY’ cannot be colored by 0 or 1, hence we haié ) = p.
Recall tha < p < r + 1 andc(z;) € {0,1}. If [e(x;) — c(z})] € {0,1,7 + 1},
then eitherc(z;) = 0,p = r + 1, or ¢(z;) = 1,p = 2. Both cases lead to
c(xzj) = c(x;), a contradiction to the fact that; and z; are adjacent. Hence,
2 < e(x)) —c(2f)] < r. According to Claim 14; U {2’} induces a directed cycle
in D.(u(G)), a contradiction. Similar arguments also lead to a contradiction for
the case of < |c(z;) — ¢(xi41)| < r. Therefore|c(V)| = r + 2. 1

According to Claim 2¢ € ¢(V'). Sincec(zg) = c(x;,) = t, we haveVy ) ) C
Vogi1,a-1 N Veayipra—1,and sod < b < 2d —2andVi ey € Vo-dr1,a-1 C
Vop. Therefore{0,1,t} C e(Vop).

Claim 3. For any vertexz; € V;; colored byt, {c(z;-1), c(z;+1)} C {0, 1,t}.

Proofof Claim 3. Suppose to the contrary thatthere existvertices; ,; € Vo,
suchthafc(xz;), c(zi+1)} = {t, q} forsomeg & {0, 1,¢}. Thenb < i+d; and both
c(x;_y4) = Landc(z), ,, 4) = m are notin{t, q}. If r > 4, we must havé # m.
Otherwise, since every vertex of is adjacent to at least one of_;, =, 4,
we would havel ¢ ¢(V'), contrary to Claim 2. Hence, none of the vertices of
Vit1+2d,i—24 €an be colored by, 1,¢, ¢, ¢, m. This implies that thelr + 1 — 4d
vertices ofV;1424,i—24 Must be colored by only — 4 colors, a contradiction (see
Fig. 1).Ifr = 3,then|V;11+4—4| = dr+1—2d = d+1andl = masthere are only
five colors to be used. Therefor€y;11q4) = 1, c(xi—q) = 0,ande(Vit14d,i—a) =
{0,1, ¢}. Itfollows thatz; 1+ 4x;—q is an edge witH c(z;4+144), c(zi—a)} = {0, 1}
ande(z 1 4) = c(z;_g), BUt|Vit14q,-a] = d+1 < [Voplandle(Vit14a,i-a)] <
lc(Vo,p)|, @ contradiction to the choice afx;. Hence, Claim 3 holds. 1

Claim4. (Vo) = {0,1,t}.

Proof of Claim 4. Suppose to the contrary that there exists a gplerc(Vy ;) \
{0,1,¢}. Choose any; € V};, such that(x;) = t. By Claim 3,¢(x;_1) # p and
c(xj41) # p. If there exists some vertex ivi ;_, colored byp, then choose the
largest integet < j — 1 such that(z;) € {0,p} andc(z}) = p. We now consider
the following three cases according to the colorpf;.

Case 1.. ¢(zi+1) = 0.
By the choice ofi, we havec(z;, ;) # p. Suppose that(z;;144) # 1. Then
c(xit14+4) = q forsomeg & {0, 1, p, t}, sincer; ;14 is adjacent tag, xf,, andz;.
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Ti-2d

Li-d

0 — o)
tandgq i
- Tit1

1 — Xy
Lit1+d ®

Tit142d

FIGURE 1. Vertex colors near vy, (for Claim 3).

If r > 4, thenc(z] , ,4) = mforsomem & {0, 1,p,t,q}. Hence, thelr + 1 —4d
vertices ofV; 1 134—q are colored by — 4 colors, a contradiction (see Fig. 2). If
r = 3, thenz; 11194 = x;_q. Hencec(z;—q) = 1 andc(x)_,;) = p. Therefore,
c(x;) = 0andb > i+ 1+ d. Sincet,q & c(Vi_q;), we have thatr;_qx; is an
edge with{c(z;_q), c(x;)} = {0,1} ande(z]_,) = c(x}), but|Vi_g | = d +1 <
Vol and|e(Vi—ai)| < |e(Vop)], @ contradiction to the choice afz,. Hence,
(Tiv14a) = 1.

We now consider the se{V;,, ;., ). If ¢ € e(V/\;;1,4) for someq ¢
{0,1,p,t}, then thedr + 1 — 3d vertices ofV;1124;—q are colored by + 2 —
1{0,1,p,t,q}| = r — 3 colors, a contradiction. Hence(z;, ) = c(zj,,,4) =t
by Claim 2; and moreovet( V41 ;+1+4) C {0,1,%,p}.

Ti-d o

00— xpe . Iy — t
Qorp —  z; z — p

0 = Zi41 Tiiq

T — Z;

g 2 Tit1+d * T 1iq

7
Tit142d° Tipi424 €M
Ti+1+3d

FIGURE 2. Vertex colors near V; ,, (for the first paragraph of Case 1).
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If p € ¢(Vig1it14+4), thenp € ¢(Vjya,it1144), Since: is maximal and since
c(zjy+1) # p. By the assumption that € V1 ;_», we havec(z)_,), c(2’ ;) ¢
{0,1,p,t}, saye(a);_,) = £ andc(z), ) = m. If r > 4, then? # m by Claim
2. Therefore, thelr + 1 — (4d — 1) vertices ofVj 24 j_24 Must be colored by
r — 4 colors, a contradiction (see Fig. 3). #f = 3, then?/ = m by Claim 2
and|Vjiqj-d| = (dr +1) — (2d — 1) = d + 2. Since all vertices oV}, ; ,
are colored byl = m, we have that(z;,q) = c(zjta+1) = 1,c(zj_q) =
c(rj—g-1) = 0, andc(Vjiqj—a) = {0,1,1}. Hencexjqx;_q—1 is an edge with
{c(@jra), c(xj—a—1)} = {0,1} and ez ) = e(@)_q4), BUt|Vjig;-g1] =
d+1 < [Vou| and|e(Vita,j—a—1)| < [c(Vop)|, @ contradiction to the choice of
zoxp. Therefore,c(Viy1it144) = {0,1,t}, which also implies that; 124144
is an edge with{c(x;t1), c(zi144)} = {0,1} andc(x}, ) = c(zj,,,q), but
Vittit14al = d+1 < [Vou| @and|c(Vis1,iv1+4)| < le(Vop)|, again a contradic-
tion to the choice okgxy.

Case 2.. ¢(zj+1) = 1.

If c(z;) = p, thenc(z}_,) & {p,t}, sayc(x}_,) = ¢. Therefore, thelr + 1 — 3d
vertices ofV;; 114,24 are colored by + 2 — [{0,1,p,t,¢}| = r — 3 colors, a
contradiction.

If ¢(x;) = 0, then sincex(x) = p, thedr + 1 — 2d vertices ofV; 14,4 are
colored byr — 2 colors, also a contradiction.

Case 3. ¢(zi+1) € {0, 1, p}.

If ¢(xit1) = t, thenc(x;) = 0 ande(z;) = p. Since some vertex of; ;2
is colored byp, we havec(z], . ) € {p,t}, sayc(zj,,,4) = m. Therefore, the
dr 4+ 1 — 3d vertices ofV; 1,24,,—q are colored by — 3 colors, a contradiction.

If c(zi+1) = ¢ for someg ¢ {0,1,p,t}, thenc(a?, ;) & {0,1,p,q,t}, say
(2}, 4) = m. Then we haver > 4. If c(z;) = 0, then, sincec(z;) = p, the
vertices ofV;_ 94 ;4 are colored by — 4 colors, a contradiction t0/; 124 —a| =

Tj-2d
Tj-d — £
0 — Ty
p —
T — Z;
1,p —
Tj+d —m

Lj+2d

FIGURE 3. Vertex colors near V;,, (for the last paragraph of Case 1).
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dr+1—-3d—(j—i—1) >dr+1—4d. If ¢(x;) = p, thenc(z}_,) cannot be
colored by0, 1, p, ¢, t, sayc(z}_,;) = ¢. Note thatd > j —d > i —d,b < j +d,
andj < d.If r > 5, then|Vj 24,24 > dr +1 — 5d and? # m, i.e., at
leastdr 4+ 1 — 5d vertices ofl are colored by — 5 colors, a contradiction (see
Fig. 4). Ifr = 4, thenl/ = m and|V} q4;_q4| > dr +1—3d = d + 1. Itis clear that
c(xi_q) = 0.Sincer;_o4 € Vjtd,i—d, We have that(z;_o4) =1 andc(X/j+d7Z~_d) =
{0,1,¢}. Thereforez;_o4z;—q is an edge with{c(x;—24), c(zi—q)} = {0,1} and
(Ti_9q) = c(zi_q), BUt|Vi_24;_a| = d+1 < [Voplandle(Vi—aai—a)| < |c(Vos)l,

a contradiction to the choice afyxy. n

By the three cases above, we conclude that no vertéx pf, can be colored
by p. A similar argument shows that no vertexdf, , ,_; can be colored by.
Hencec(Vy5) = {0, 1,t}. This completes the proof of Claim 4.

Having proved the claims, we are now ready to prove the theorem. Suppose
3 <t <r.Sincet € c(V\ Vo), there exists an integésuch that(z;), c(xi—1) ¢
{0,1,¢t} and2 < |e(x;) — e(zi—1)| < r. Sincec(4;) = r + 1, there must be some
vertexz; € A; \ {z;, z;—1} such that(z;) € {0,1}. Assume that(x;) = 0 (the
case ofe(x;) = 1 is similar). Since the color of’; sayq, cannot belong te(A;),
i.e.,q is the only color notire(A;) andg ¢ {0,1}. Hence,l € ¢(4;), some vertex
zj € A; \ {zi,v;—1,2;} is colored by 1, and(z’,) = ¢ is clear. It follows that
either2 < [c(z;) — c(2})| < ror2 < |e(xy) — c(z))| < r. By Claim 1, there is
a directed cycle iD.(x(G)), a contradiction. Therefore,c {2, + 1}.

Assume that = 2 (the case of = r + 1 is similar). Let: be the smallest
integer such that(x;) = 2; and letj be the largest integer such thdt:;) = 1
and: < j < i+ d. Such aj exists. In fact, one may takg = b if there is no
larger value.

For the case of = i + d, c(z;i+q) = 1 impliesc(z;—1) # 1. By the definition
of z;,c(zi—1) # 2. Hence, by Claim 4¢(z;—1) = 0. Also, ¢(z;) = 2 implies

'
Zi—2d Li—2d
Tig x4, 4
0 — Zo
Oorp — z; z; — p
q — Ti+1
t — Zj
1 — Ty
!
Tjtd Tipg €M

/
Lj+ad * Lj+2d

FIGURE 4. Vertex colors near V; ,, (for Case 3).
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c(xj,4) # 2. By Claim 1, 4; U {z}_,} induces a directed cycle db.(u(G)), a
contradiction.

Forthe case of < i+d, c(x;+1) # 1 by the choice of;; andc(zj11) € {0, 2},
sincej +1 > bandc(zp) = 0 ande(xp) = 2. Accordingtod < b—d < j—d < i,
we havec(z;_4) # 2 by the choice of;, andc(z;—q) # 1asc(z;) = 1. Hence, by
Claim 4,c(z;_q) = 0. We conclude that(z’;_,;) = 2. By Claim 1,4;, U{_,}
induces a directed cycle @.(1.(G)), a contradiction.

Thereforex.(1u(G4, 1)) = x(1(GY4, 1)) = r + 2. This completes the proof of
the theorem. n
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