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SUMMARY
The usual practice of judging process capability by evaluating point estimates of some process capability indices
has a flaw that there is no assessment on the error distributions of these estimates. However, the distributions of
these estimates are usually so complicated that it is very difficult to obtain good interval estimates. In this paper
we adopt a Bayesian approach to obtain an interval estimation, particularly for the indexCpm. The posterior
probability p that the process under investigation is capable is derived; then the credible interval, a Bayesian
analogue of the classical confidence interval, can be obtained. We claim that the process is capable if all the
points in the credible interval are greater than the pre-specified capability levelω, say 1.33. To make this Bayesian
procedure very easy for practitioners to implement on manufacturing floors, we tabulate the minimum values of
Ĉpm/ω, for which the posterior probabilityp reaches the desirable level, say 95%. For the special cases where the
process mean equals the target value forCpm and equals the midpoint of the two specification limits forCpk, the
procedure is even simpler; only chi-square tables are needed. Copyright 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Process capability indices (PCIs) are unitless measures
for the capability of a process in meeting specification
limits. These indices have been widely used in
assessing the capability of manufacturing processes
by many companies during the last decade. More
and more efforts have been devoted to studies and
applications of PCIs. For example, Rado [1] presented
how Imprimis Technology, Inc. used the PCIs to
enhance product development, and theCp and Cpk
indices have been used in Japan and in the US
automotive industry such as Ford Motor Company
[2,3]. To incorporate the departure of the process
meanµ from the target valueT , the indexCpm was
proposed [4]. This index has been getting more and
more recognition in industries in recent years.

A capable process is usually defined as a process
with a certain process capability index greater than a
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pre-specified valueω. The usual practice is to estimate
the PCI from process data. If the estimate is greater
than the pre-specified valueω, say 1 or 1.33, then it
is claimed that the process is capable. Of course, the
estimate is not the index itself, so when the estimate
is greater thanω, it does not guarantee that the index
is greater thanω, andvice versa. Thus it is usually
preferable to obtain an interval estimate, for which we
can assert with a reasonable degree of certainty that it
contains the true PCI value. However, the construction
of such an interval estimate is not an easy task, since
the distributions of the commonly used PCI estimators
are usually quite complicated [4–8].

Therefore it is very natural to consider a Bayesian
approach. By a Bayesian approach, it means that we
first specify a prior distribution for the parameter
of interest, obtain the posterior distribution of the
parameter and then infer about the parameter by only
using its posterior distribution given the observations.
The reason why it is natural to consider a Bayesian
approach is that for Bayesian estimation it is always
very easy to obtain the posterior distribution when a
prior distribution is given; and even when the form of
the posterior distribution is complicated, it is still easy
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to use numerical methods or Monte Carlo methods [9]
to obtain an approximate point estimate or interval
estimate. This is a great advantage of the Bayesian
approach over the classical frequentist approach.

More specifically, to assess the process capability,
it is natural to consider the posterior probability
Pr{process is capable|x}. Compared with the usual
practice of just obtaining point estimates of PCIs, this
Bayesian approach has the advantage of providing a
statement on the posterior probability that the process
is capable given the observed process data.

A nice Bayesian procedure for assessing process
capability was proposed in Reference [5] for the index
Cp, also in Reference [4] for the indexCpm under the
assumption that the process meanµ is equal to the
target valueT . In general,Cpm is a better PCI thanCp
[4]. However, the restriction thatµ = T is a notable
shortcoming, since the process mean may be quite
deviated from the target valueT in many industrial
applications.

The main objective of this paper is to provide
a Bayesian procedure for the general situation—no
restriction on the process meanµ. In addition, for
the restricted case in whichµ = T , we provide
a simple procedure for computing the posterior
probability of the process being capable. Instead
of using approximation or numerical integration
as in Reference [4], this posterior probability can
be obtained by simply looking up the commonly
available chi-square tables. A similar Bayesian
procedure was given in Reference [10] for the
restricted case.

Throughout this paper it is assumed that the
process measurements are independent and identically
distributed from a normal distribution. In other words,
the process is under statistical control. We remark
that estimation of PCIs is meaningful only when the
process is under statistical control.

This paper is organized as follows. We give a
brief review on four popular PCIs—Cp, Cpk, Cpm,
and Cpmk—in Section 2. In Section 3 we present
a Bayesian procedure for assessing the process
capability based onCpm. All the derivations are given
in the Appendix. In Section4 we describe a Bayesian
procedure based onCpk, but only for the special case
in which the process mean is equal to the midpoint of
the two specification limits. In Section5 we present
some examples to illustrate the Bayesian procedure,
and compare the results with those obtained from the
procedure given in Reference [4]. Finally we conclude
the paper in Section6.

2. A REVIEW ON SOME POPULAR PCIs

The indexCp is defined as

Cp = USL− LSL

6σ

where USL and LSL denote the upper and lower
specification limits respectively andσ is the process
standard deviation of the quality characteristic of
interest. The process standard deviation is usually
unknown and can be estimated from a sample of
n measurementsx1, x2, . . . , xn. The most common
estimate ofσ is the sample standard deviation

s =
(

1

n− 1

n∑
i=1

(xi − x̄)2
)1/2

where

x̄ = 1

n

n∑
i=1

xi

is the sample mean. This gives an estimate ofCp,

Ĉp = USL− LSL

6s

We remark that other estimates ofσ can be used. For
example, it is very common to use subgroup ranges to
obtain an estimate ofσ to guard against shifting of the
mean in practice, since many processes in the industry
may be just semi-stable.

In order to reflect the impact of the deviation of
the process meanµ from the midpointm of the
specification limits on the process capability, several
indices have been proposed, including

CPU= USL− µ
3σ

CPL= µ− LSL

3σ

and

Cpk = min(CPL, CPU) (1)

Cpk is sometimes defined as

Cpk = (1− k)Cp (2)

where k = 2|m − µ|/(USL−LSL). The above
two definitions ofCpk, (1) and(2), are algebraically
equivalent [2].

These indices are usually estimated respectively by

ĈPU= USL− x̄
3s

ĈPL= x̄ − LSL

3s
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and

Ĉpk = min(ĈPL, ĈPU)

For theCpk defined in(2), it can be estimated by

Ĉpk = (1− k̂)Ĉp

where

k̂ = 2 |m− x̄|
USL− LSL

BothCp andCpk are independent of the target value
T . To account for the impact of the deviation of the
process mean from the target value, another PCI called
Cpm is defined [4] as

Cpm = USL− LSL

6σ ′
(3)

where

σ
′ = [E(X − T )2]1/2
= [σ 2+ (µ− T )2]1/2 (4)

Chanet al. [4] estimatedσ
′
by(

1

n− 1

n∑
i=1

(xi − T )2
)1/2

In this paper, instead of using their estimator, we use

σ̂
′ =

(
1

n

n∑
i=1

(xi − T )2
)1/2

to estimateσ
′
. The reason we use this estimator is that

1

n

n∑
i=1

(xi − T )2

is both an unbiased estimator and the maximum
likelihood estimator forσ ′2. The resulting estimator
of Cpm is

Ĉpm = USL− LSL

6σ̂ ′

From(3) and(4), it is easy to see thatCpm andCp
have the relationship

Cpm = Cp√
1+

∣∣∣T−µσ ∣∣∣2 (5)

and the relationship between̂Cpm andĈp is

Ĉpm = Ĉp√
n−1
n
+
∣∣∣T−xs ∣∣∣2

Thus by(5) it is clear thatCpm = Cp whenµ = T .
Combining the ideas ofCpk andCpm, Pearnet al.

[11] proposed another index calledCpmk defined as

Cpmk = min

{
USL− µ

3
√
σ 2+ (µ− T )2 ,

µ− LSL

3
√
σ 2+ (µ− T )2

}

The estimator̂Cpmk can be obtained by plugging inx
for µ ands for σ . The study of this index is beyond
the scope of this study.

There have been some studies on the distributions
of these PCIs. When the process measurements follow
a normal distribution, bothĈPL and ĈPU have a
probability density function proportional to a non-
central t distribution [4,6]. Chou and Owen [7]
gave the exact distribution ofĈpk, distribution
mean, variance, and mean-squared error. Another
interpretation for the distribution of̂Cpk was given
in Reference [8], where it was shown that the
distribution of Ĉpk is related to the folded normal
distribution. Many properties ofCpm and Ĉpm were
given in Reference [4]. More distributional and
estimation properties for the above PCIs were given
in Reference [11]. These studies indicated that the
statistical distributions associated with these PCI
estimators are quite complicated.

In the next section we derive a Bayesian interval
estimate forCpm and propose accordingly a Bayesian
procedure for process capability assessment. Other
approaches to obtaining interval estimates for PCIs
have been suggested in the literature. For example,
Bittanti et al. [12] suggested a curve-fitting approach
based on the Pearson system of curves for PCI
estimation, followed by application of the bootstrap
to obtain an interval estimate. Their method is
applicable to non-normal processes, but with fairly
high computational cost.

The following two sections are more mathemat-
ically/statistically involved. The proposed Bayesian
procedure is illustrated by examples in Section5.
Readers who are not interested in the derivation of the
procedure may skip to Section5.

3. A BAYESIAN PROCEDURE BASED ONCpm

Cheng and Spiring [5] proposed a Bayesian approach
for assessing process capability by finding a credible
interval for the indexCp. A 100p% credible interval
is the Bayesian analogue of the classical 100p%
confidence interval, wherep is a number between
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0 and 1, say 0.95 for 95% confidence interval. It
covers 100p% of the posterior distribution of the
parameter [13]. Chanet al.[4] used the same approach
to find an exact and an approximate credible interval
for the indexCpm whenµ = T . Without assuming
µ = T , we present a Bayesian procedure based on
Cpm in this section.

Assume that the measurements{Xi , i = 1, . . . , n}
of the quality characteristic obtained from the process
are independent and identically distributed (i.i.d.) from
N(µ, σ 2). Denotex = (x1, x2, . . . , xn)

T , wherexi is
the observed value ofXi, i = 1, . . . , n. Then the
likelihood function forµ andσ is

L(µ, σ |x) = (2πσ 2)−n/2

× exp

(
−
∑n
i=1(xi − µ)2

2σ 2

)
(6)

For the Bayesian approach the first step is to find
an appropriate prior. Usually, when there is little or
no prior information, we use non-informative priors.
When there is only one parameter, one of the most
widely used non-informative priors is the so-called
reference prior, which is a non-informative prior
that maximizes the difference between information
(entropy) on the parameter provided by the prior and
by the posterior. In other words, the reference prior
allows the prior to provide information about the
parameter as little as possible. See Reference [14] for
more details. Also, with the reference prior the 100p%
credible interval has the coverage probability close to
p up to the second order—in contrast to the first order
for any other priors—in the frequentist sense [15].
More specifically, the credible interval obtained from
a non-informative prior has a more precise coverage
probability than that obtained from any other priors.

However, when there is more than one parameter,
it is not always possible to find the reference prior
by maximizing the information difference. For this
reason, Berger and Bernardo [16] suggested a step-
by-step procedure for finding a multiparameter prior.
In this paper we adopt this step-by-step procedure and
the resulting prior is

π(µ, σ) = 1/σ 0< σ <∞, −∞ < µ <∞
(7)

As derived in the Appendix, the posterior probabil-
ity density function (PDF) of(µ, σ) is

f (µ, σ |x) =
( √

2n√
π0(α)βα

)
σ−(n+1)

× exp

(
−
∑n
i=1(xi − µ)2

2σ 2

)
(8)

whereα = (n−1)/2 andβ = [∑n
i=1(xi−x̄)2/2]−1 =

[(n − 1)s2/2]−1. A reparametrized version of(7) and
(8) with σ replaced byσ 2 can be found in Problem 16
of Chap. 4 in Reference [13].

As mentioned before, it is natural to consider the
quantity Pr{process is capable|x} in the Bayesian
approach. Since the indexCpm is our major concern
in this paper, we are interested in finding the posterior
probability p = Pr{Cpm > ω|x} for some fixed
positive numberω. Denoteδ = |T − x̄|/s. It is derived
in the Appendix that

p =
∫ t

0

(
1

0(α)γ αyα+1

)
exp

(
− 1

γy

)
× [8(b1(y)+ b2(y))−8(b1(y)− b2(y))] dy

(9)

where

t = 2

n

(
Ĉpm

ω

)2

γ = 1+ n

n− 1
δ2

b1(y) =
√

2

y

[
δ2
/(

δ2 + n− 1

n

)]1/2

b2(y) = √n
(
t

y
− 1

)1/2

Note that the posterior probabilityp depends onn,
δ, ω and Ĉpm only throughn, δ and Ĉpm/ω. Denote
C∗ = Ĉpm/ω.

From expression(9) we can see that it is very
difficult to computep for any process either on-
line or off-line in practice without serious computer
programming. However, by noticing that there is a
one-to-one correspondence betweenp andC∗ whenn
andδ are given, and by the fact thatĈpm can be easily
calculated from the process data, we find that the
minimum value ofC∗ required to ensure the posterior
probability p reaching a certain desirable level can
be useful in practice to assess the process capability.
Denote this minimum value byC∗(p).

For users’ convenience in applying our Bayesian
procedure in practice, we tabulateC∗(p) (for various
values ofn and δ = |T − x̄| /s) in Tables 1(a)–
1(c) for p = 0.90, 0.95, and 0.99 respectively. More
specifically, the entries in these tables are values of
C∗(p) such that

P

(
Cpm >

Ĉpm

C∗(p)

∣∣∣∣∣ x
)
= p (10)
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Table 1(a). Values ofC∗(p) for p = 0.90

|T − x̄|/s
n 0 0.5 1 1.5 2

5 2.3863 2.1643 1.8222 1.5857 1.4394
10 1.6326 1.5466 1.4068 1.3036 1.2360
15 1.4386 1.3856 1.2954 1.2255 1.1777
20 1.3464 1.3082 1.2406 1.1859 1.1477
25 1.2915 1.2617 1.2070 1.1613 1.1287
30 1.2546 1.2302 1.1838 1.1440 1.1154
35 1.2279 1.2072 1.1667 1.1312 1.1055
40 1.2075 1.1895 1.1534 1.1212 1.0976
45 1.1913 1.1754 1.1427 1.1131 1.0913
50 1.1781 1.1639 1.1339 1.1064 1.0860
55 1.1672 1.1542 1.1265 1.1008 1.0815
60 1.1578 1.1460 1.1201 1.0958 1.0776
65 1.1498 1.1389 1.1145 1.0915 1.0743
70 1.1428 1.1326 1.1097 1.0878 1.0713
75 1.1366 1.1271 1.1054 1.0845 1.0686
80 1.1312 1.1222 1.1015 1.0815 1.0663
85 1.1262 1.1178 1.0981 1.0788 1.0641
90 1.1217 1.1138 1.0949 1.0763 1.0621
95 1.1178 1.1102 1.0920 1.0741 1.0603

100 1.1141 1.1068 1.0894 1.0720 1.0587
110 1.1075 1.1010 1.0846 1.0684 1.0557
120 1.1020 1.0960 1.0806 1.0651 1.0532
130 1.0972 1.0916 1.0771 1.0624 1.0509
140 1.0929 1.0877 1.0739 1.0599 1.0490
150 1.0892 1.0843 1.0712 1.0577 1.0472
160 1.0859 1.0812 1.0687 1.0557 1.0456
170 1.0828 1.0785 1.0664 1.0539 1.0442
180 1.0801 1.0759 1.0644 1.0523 1.0429
190 1.0776 1.0736 1.0625 1.0509 1.0416
200 1.0753 1.0715 1.0608 1.0494 1.0405
210 1.0733 1.0695 1.0592 1.0482 1.0395
220 1.0712 1.0678 1.0577 1.0470 1.0386
230 1.0694 1.0661 1.0563 1.0459 1.0377
240 1.0678 1.0645 1.0550 1.0449 1.0369
250 1.0662 1.0631 1.0538 1.0439 1.0361
260 1.0647 1.0617 1.0527 1.0430 1.0353
270 1.0634 1.0605 1.0516 1.0421 1.0346
280 1.0621 1.0592 1.0507 1.0414 1.0339
290 1.0608 1.0581 1.0497 1.0406 1.0334
300 1.0597 1.0571 1.0488 1.0398 1.0328

Table 1(b). Values ofC∗(p) for p = 0.95

|T − x̄|/s
n 0 0.5 1 1.5 2

5 2.9272 2.6268 2.1584 1.8293 1.6234
10 1.8319 1.7209 1.5389 1.4033 1.3139
15 1.5687 1.5017 1.3862 1.2952 1.2330
20 1.4465 1.3989 1.3127 1.2420 1.1925
25 1.3746 1.3377 1.2682 1.2092 1.1672
30 1.3265 1.2965 1.2377 1.1865 1.1496
35 1.2919 1.2665 1.2153 1.1697 1.1365
40 1.2655 1.2435 1.1979 1.1565 1.1262
45 1.2447 1.2254 1.1840 1.1460 1.1179
50 1.2277 1.2105 1.1726 1.1372 1.1110
55 1.2136 1.1979 1.1629 1.1298 1.1051
60 1.2017 1.1873 1.1547 1.1235 1.1001
65 1.1914 1.1782 1.1475 1.1179 1.0958
70 1.1824 1.1702 1.1412 1.1131 1.0918
75 1.1745 1.1631 1.1356 1.1088 1.0884
80 1.1674 1.1568 1.1306 1.1049 1.0853
85 1.1612 1.1511 1.1261 1.1014 1.0825
90 1.1554 1.1460 1.1221 1.0982 1.0800
95 1.1503 1.1413 1.1183 1.0953 1.0777

100 1.1456 1.1370 1.1149 1.0926 1.0755
110 1.1373 1.1294 1.1089 1.0879 1.0717
120 1.1302 1.1230 1.1036 1.0838 1.0685
130 1.1240 1.1174 1.0990 1.0802 1.0655
140 1.1187 1.1125 1.0950 1.0771 1.0630
150 1.1139 1.1080 1.0914 1.0742 1.0607
160 1.1097 1.1041 1.0882 1.0717 1.0586
170 1.1058 1.1005 1.0853 1.0693 1.0568
180 1.1023 1.0974 1.0827 1.0673 1.0550
190 1.0991 1.0944 1.0802 1.0653 1.0536
200 1.0961 1.0916 1.0781 1.0636 1.0521
210 1.0935 1.0892 1.0760 1.0619 1.0508
220 1.0910 1.0869 1.0741 1.0604 1.0496
230 1.0887 1.0848 1.0723 1.0590 1.0484
240 1.0866 1.0828 1.0706 1.0576 1.0473
250 1.0846 1.0809 1.0691 1.0564 1.0463
260 1.0827 1.0791 1.0677 1.0552 1.0454
270 1.0809 1.0775 1.0663 1.0542 1.0445
280 1.0793 1.0759 1.0650 1.0531 1.0437
290 1.0778 1.0745 1.0638 1.0521 1.0429
300 1.0763 1.0731 1.0627 1.0513 1.0421
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Table 1(c). Values ofC∗(p) for p = 0.99

|T − x̄|/s
n 0 0.5 1 1.5 2

5 4.5430 4.0165 3.1800 2.5761 2.1891
10 2.3203 2.1454 1.8567 1.6404 1.4974
15 1.8678 1.7660 1.5891 1.4496 1.3541
20 1.6689 1.5981 1.4685 1.3618 1.2872
25 1.5550 1.5011 1.3976 1.3096 1.2469
30 1.4804 1.4371 1.3501 1.2741 1.2194
35 1.4272 1.3910 1.3155 1.2482 1.1993
40 1.3871 1.3561 1.2890 1.2281 1.1836
45 1.3557 1.3284 1.2680 1.2122 1.1710
50 1.3303 1.3060 1.2508 1.1991 1.1607
55 1.3092 1.2874 1.2363 1.1879 1.1519
60 1.2914 1.2715 1.2239 1.1785 1.1445
65 1.2762 1.2579 1.2133 1.1703 1.1380
70 1.2629 1.2460 1.2039 1.1630 1.1322
75 1.2513 1.2356 1.1957 1.1567 1.1271
80 1.2409 1.2262 1.1884 1.1510 1.1226
85 1.2317 1.2179 1.1817 1.1459 1.1185
90 1.2233 1.2103 1.1756 1.1412 1.1148
95 1.2158 1.2035 1.1702 1.1369 1.1114

100 1.2089 1.1972 1.1652 1.1330 1.1083
110 1.1969 1.1861 1.1564 1.1260 1.1027
120 1.1865 1.1767 1.1487 1.1201 1.0979
130 1.1775 1.1684 1.1421 1.1148 1.0937
140 1.1697 1.1613 1.1363 1.1102 1.0900
150 1.1628 1.1549 1.1310 1.1061 1.0867
160 1.1566 1.1491 1.1263 1.1025 1.0837
170 1.1511 1.1440 1.1221 1.0990 1.0810
180 1.1460 1.1393 1.1183 1.0960 1.0786
190 1.1414 1.1350 1.1148 1.0933 1.0763
200 1.1372 1.1310 1.1116 1.0907 1.0743
210 1.1334 1.1275 1.1086 1.0883 1.0724
220 1.1298 1.1242 1.1058 1.0862 1.0706
230 1.1265 1.1210 1.1033 1.0841 1.0689
240 1.1234 1.1181 1.1009 1.0822 1.0674
250 1.1205 1.1154 1.0987 1.0804 1.0659
260 1.1178 1.1129 1.0966 1.0788 1.0646
270 1.1153 1.1106 1.0946 1.0772 1.0634
280 1.1129 1.1083 1.0928 1.0757 1.0621
290 1.1106 1.1062 1.0910 1.0743 1.0610
300 1.1085 1.1042 1.0893 1.0730 1.0599

We comment that the computations in creating these
tables are rather involved and quite time-consuming.

According to Definition 3 on p. 102 of Refer-
ence [13], we can see from(10)that [Ĉpm/C

∗(p),∞)
is a 100p% credible interval forCpm, which means
that the posterior probability that the credible interval
containsCpm is p. In our Bayesian approach we say
that the process is capable in a Bayesian sense if all the
points in this credible interval are greater than a pre-
specified value ofω, say 1 or 1.33. When this happens,
we have Pr{process is capable|x}> p. In other words,
to see if a process is capable (with capability level
ω and confidence levelp), we only need to check if
Ĉpm > ωC

∗(p).
From these tables we observe that for each fixedp

and n the value ofC∗(p) decreases asδ increases.
This phenomenon can be explained by the following
argument. For a fixed̂Cpm, since

Ĉpm = (USL− LSL)

/(
6s

√
n− 1

n
+ δ2

)

s becomes smaller whenδ becomes larger, and a
smallers means that it is plausible that the underlying
process is tighter (i.e. with smallerσ ). Since the
estimation is usually more accurate with the data
drawn from a tighter process, it is then plausible that
the estimateĈpm is more accurate with a smaller
s. In this case the required minimum valueC∗(p)
is smaller, since we need only a smallerC∗(p) to
account for the smaller uncertainty in the estimation.
Intuitively, if the estimation error in our estimate is
potentially large, then it is reasonable that we need
a large Ĉpm to be able to claim that the process
is capable, and this means that the corresponding
minimum valueC∗(p) should be large as well. Thus
the value ofC∗(p) decreases asδ increases. Another
observation from the tables is that the value ofC∗(p)
decreases asn increases for fixedδ andp. This can
also be explained by the same reasoning as above,
since a largern implies thatĈpm is more accurate.

4. A BAYESIAN PROCEDURE FORCpk WHEN
µ = m AND Cpm WHENµ = T

Owing to the complication of the distribution of̂Cpk,
we can only discuss the special case in whichµ =
m, wherem is the midpoint of the two specification
limits. In this case, in fact,Cpk is reduced toCp, since
Cpk = (d − |µ − m|)/3σ = d/3σ = Cp, where
d = (USL− LSL)/2. Then we can estimateCpk by
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Ĉpk = (USL−LSL)/6σ̃ , where

σ̃ =
(

1

n

n∑
i=1

(xi −m)2
)1/2

Suppose that the measurements are i.i.d. from
N(m, σ 2). Then the likelihood function forσ is

L(σ |x) = (2πσ 2)−n/2

× exp

(
−
∑n
i=1(xi −m)2

2σ 2

)
Consider the non-informative reference prior

π(σ) = 1/σ 0< σ <∞
Then the posterior distribution ofσ 2 is an inverse
Gamma distribution with the probability density
function

f (σ 2|x) = 1

0(n/2)

(
nσ̃ 2

2

)n/2
(σ 2)−((n/2)+1)

× exp

(
−nσ̃

2

2σ 2

)
0< σ 2 < ∞

We remark that this posterior PDF is exactly the
same as that ofC2

pm whenµ = T , the case considered
in Reference [4]. This is quite obvious, since the
indices in both cases are reduced to the indexCp.
Thus many results in Reference [4] for Cpm when
µ = T are applicable toCpk whenµ = m. Chan
et al. [4] tabulated approximateC∗(p) values forCpm
whenµ = T . These values can be used forCpk when
µ = m with some minor modification. However, there
is a more straightforward Bayesian procedure to assess
the process capability in these two cases.

Let Y = nσ̃ 2/2σ 2. It can be derived easily that
2Y has a chi-square distribution withn degrees of
freedom. Then the posterior probability ofCpk being
greater than a valueω is

p = Pr{Cpk > ω|x} =
∫ a

0
f (σ |x) dσ

=
∫ ∞
b

1

0(n/2)
y(n/2)−1 e−y dy = Pr{2Y > 2b}

wherea = (USL−LSL)/6ω andb = (n/2)(ω/Ĉpk)
2.

Thus, to computep, we can use the commonly
available chi-square tables. Ifp is greater than a
desirable level, say 90% or 95%, then we may claim
that the process is capable in a Bayesian sense with
90% or 95% confidence.

By the same nature, the Bayesian procedure based
onCpm under the assumptionµ = T is similar. Thus

we can summarize our Bayesian procedure for these
two special cases as follows. LetC∗ = P̂CI/ω, where
P̂CI can be either̂Cpm or Ĉpk. Then the process is
capable in a Bayesian sense with 100p% confidence
if Pr{χ2

n > n(1/C∗)2} > p, whereχ2
n is a random

variable following the chi-square distribution withn
degrees of freedom.

Note that ‘the degrees of freedom’ of the posterior
distribution forCpk whenµ = m (or for Cpm when
µ = T ) are one more than those of the posterior
distribution forCp given in Reference [5]. The reason
is thatσ is estimated bys in Ĉp, which uses an extra
degree of freedom to estimateµ by x.

5. EXAMPLES AND DISCUSSION

In Section 3, we have derived a Bayesian process
capability assessment procedure based on the index
Cpm. We have also provided tables (for various values
of sample sizen and off-target quantityδ = |T −
x̄|/s) of the minimum valuesC∗(p) of C∗ = Ĉpm/ω

required to ensure that the posterior probabilityp
of the process being capable (i.e.p = P(Cpm >

ω|Ĉpm)) reaches the desirable confidence levels, such
as 0.90, 0.95 and 0.99. With these tables the procedure
is as simple as comparinĝCpm with ω times the
tabulated valueC∗(p). If Ĉpm > ωC∗(p), then we
claim that the process is capable in a Bayesian sense.

For example, whenp = 0.9, n = 100 andδ = 0.5,
we can findC∗(p) = 1.1068 from Table1(a). Thus,
whenω is given, sayω = 4/3, the minimumĈpm
required for the process to be capable is 1.1068×
4/3 = 1.4757. That is, ifĈpm is greater than 1.4757,
we say that the process is capable in a Bayesian sense.

For the special case in whichµ = T , as described in
Section4, we do not even need to use the tables given
in Section3. We need only look up the commonly
available chi-square tables for the posterior probability
p of the process being capable (i.e.p = Pr{χ2

n >

n(1/C∗)2}, with C∗ = Ĉpm/ω) and then judge
the process capability by comparing this posterior
probability with the desirable confidence level, say
0.95. In this case, ifp > 0.95, then we may claim
that the process is capable in a Bayesian sense with
95% confidence.

We first illustrate our procedure via an example
given in Reference [4], which was first given in
Reference [2]. In this example the measurements were
taken on the radial length of machined holes with
upper and lower specification limits of 20 and−20
units respectively and target valueT = 0.

The results of stages 1–3 of the example are used
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Table 2. Results of machined holes example

Radial Length (×103 inches)
Stage n x̄ s |T − x̄|/s Ĉpm PT P

1 201 4.7 8.7 0.5402 0.67 0.0000 0.0000
2 96 10.4 21.1 0.4929 0.28 0.0000 0.0000
3 316 5.0 5.4 0.9259 0.91 0.0067 0.0032

to illustrate the two Bayesian procedures—the one
proposed in Reference [4] and the Bayesian procedure
proposed in this paper. Takeω = 1, which means that
the process is capable ifCpm > 1. We summarize the
results of this example in Table2, whereP denotes
Pr{Cpm > ω|Ĉpm} given in (9) and PT denotes
the approximate posterior probability obtained in
Reference [4].

From Table2, we see that bothPT and P are
very small for all three stages, indicating that the
process is incapable. Both Bayesian procedures have
the same conclusion as the traditional procedure, since
the values ofĈpm are smaller than 1 in all three stages.
At first glance, it is a little bit surprising to see that
at stage 3,PT andP are so small forω = 1 even
whenĈpm = 0.91. This can be explained by the high
precision of the estimatêCpm resulting from the large
sample sizen = 316. Both posterior probabilities
are too small in this example to show the effect of
δ = |T − x̄| /s onPT andP .

Next we describe some scenarios to illustrate the
effect of δ. Table3 gives two cases that are capable
from the traditional point of view, i.e.̂Cpm > 1. First
we notice that asδ increases,P increases whilePT
remains the same. This is becausePT neglects the
deviation of the process mean from the target value.
From Table3, we observe that for both cases, if we
require the posterior probability of the process being
capable to be greater than 0.90, then the Bayesian
procedure proposed in Reference [4] will claim that
the process is incapable for allδ, while our procedure
will claim that the process is capable whenδ ≥ 1.0.

On the other hand, let us compare the minimum
values ofĈpm in Tables1(a)–1(c)with the minimum
values of Table 2(a) in Reference [4]. For δ = 0 the
Bayesian procedure we proposed has the minimum
values of Ĉpm larger than those values given in
Reference [4], since we do not assume the known
informationµ = T . However, whenδ gets larger, say
δ ≥ 1.0, the minimumĈpm required for our procedure
is less than that of Reference [4], which indicates that
our procedure is more sensitive in claiming the process
is capable.

Table 3. Results of examples in comparingPT andP .

Case n δ Ĉpm PT P

1 100 0.0 1.09 0.8858 0.8555
0.5 0.8858 0.8730
1.0 0.8858 0.9148
1.5 0.8858 0.9550
2.0 0.8858 0.9806

2 300 0.0 1.05 0.8826 0.8655
0.5 0.8826 0.8773
1.0 0.8826 0.9132
1.5 0.8826 0.9519
2.0 0.8826 0.9782

Finally we give a simple example to show how
to use the tables in practice. Suppose a sample of
size n = 50 is collected from a process and the
data give thatĈpm = 1.12 and |T − x̄| /s = 1.
Considerω = 1 andp = 0.95. From Table1(b),
we find thatC∗(p) = 1.1726, which implies that
the minimum value ofĈpm—equal to ωC∗(p)—
is 1.1726. Since 1.12 < 1.1726, we claim that
this process is incapable in a Bayesian sense with
95% confidence. This shows that our procedure can
differentiate processes with differentδ values, which is
definitely a desirable property for a process capability
assessment procedure.

6. CONCLUSION

The indexCpm was proposed to take into account
the departure of the process mean from the target
value as well as the magnitude of the process variation
[4]. However, the statistical distribution associated
with its estimatorĈpm is so complicated that it is
very difficult to obtain an interval estimation ofCpm.
Under a non-informative prior we obtain a simple
Bayesian procedure for process capability assessment
that provides a Bayesian credible interval estimation
for Cpm. Thus this Bayesian procedure can serve as
an alternative to the classical procedures in process
capability assessment.
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APPENDIX

In this appendix we derive(8) and (9) given in
Section3.

Derivation of (8)

From (6) and (7), we have the posterior PDF of
(µ, σ) as

f (µ, σ |x) ∝ L(µ, σ |x)× π(µ, σ)

∝ σ−(n+1) exp

(
−
∑n
i=1(xi − µ)2

2σ 2

)
. (11)

Also∫ ∞
0

∫ ∞
−∞

σ−(n+1) exp

(
−
∑n
i=1(xi − µ)2

2σ 2

)
dµ dσ

=
∫ ∞

0
σ−(n+1) exp

(
− 1

βσ 2

)
×
[ ∫ ∞
−∞

exp

(
−n(µ− x̄)

2

2σ 2

)
dµ

]
dσ

=
√
π

2n
0 (α) βα (12)

whereα = (n−1)/2 andβ = [∑n
i=1(xi−x̄)2/2]−1 =

[(n− 1)s2/2]−1.
Then from(11) and (12) the posterior PDF(8) is

obtained.

Derivation of (9)

Recall thatσ ′2 = σ 2+ (µ− T )2 and observe that

σ̂ ′2 = 1

n

n∑
i=1

(xi − T )2

= 1

n

( n∑
i=1

(xi − x̄)2+ n(x̄ − T )2
)
.

Denotea = (USL−LSL)/6ω andg(σ) = √a2− σ 2.
Then

p = Pr{Cpm > ω|x}
= Pr

{
USL− LSL

6σ ′
> ω

∣∣∣∣ x}
= Pr{σ 2+ (µ− T )2 < a2|x}

=
∫ a

0

∫ T+
√
a2−σ2

T−
√
a2−σ2

f (µ, σ |x) dµ dσ

=
∫ a

0

∫ T+g(σ )

T−g(σ )
2
√
n√

2π0(α)βα
σ−(n+1)

× exp

(
−
∑n
i=1(xi − µ)2

2σ 2

)
dµ dσ

=
∫ a

0

2
√
n√

2π0(α)βα
σ−(n+1) exp

(
− 1

βσ 2

)
×
[ ∫ T+g(σ )

T−g(σ )
exp

(
−n(µ− x̄)

2

2σ 2

)
dµ

]
dσ

=
∫ a

0

2σ−n

0(α)βα
exp

(
− 1

βσ 2

)
×
[
8

(
T − x̄ + g(σ)

σ/
√
n

)
−8

(
T − x̄ − g(σ)

σ/
√
n

)]
dσ (13)

where8 is the cumulative distribution function of the
standard normal distribution.

Letβ ′ = (∑n
i=1(xi−T )2/2)−1 andy = β ′σ 2. Then

T − x̄
σ/
√
n
= 1√

y
(n(T − x̄)2β ′)1/2

= 1√
y

(
2n(T − x̄)2∑n
i=1(xi − T )2

)1/2

=
√

2

y

(
n(T − x̄)2∑n

i=1(xi − x̄)2+ n(T − x̄)2
)1/2

=
√

2

y

[
δ2
/(

δ2+ n− 1

n

)]1/2

and

g(σ)

σ/
√
n
=
(
n(a2− σ 2)

σ 2

)1/2

= √n
(
β ′a2

y
− 1

)1/2

= √n
(
t

y
− 1

)1/2

wheret = β ′a2.
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Let

b1(y) =
√

2

y

[
δ2
/(

δ2+ n− 1

n

)]1/2

b2(y) =
√
n

(
t

y
− 1

)1/2

γ = β

β

′
= 1+ n

n− 1
δ2

Observe that

t = β ′a2 = 2

nσ̂ ′2

(
USL− LSL

6ω

)2

= 2

(
USL− LSL

6σ̂ ′

)2/
nω2 = 2Ĉ2

pm

nω2

Then(13)can be simplified to

p =
∫ t

0

(
1

0(α)γ αyα+1

)
exp

(−1

γy

)
× [8(b1(y)+ b2(y))−8(b1(y)− b2(y))] dy

as given in(9).
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