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SUMMARY

The usual practice of judging process capability by evaluating point estimates of some process capability indices
has a flaw that there is no assessment on the error distributions of these estimates. However, the distributions of
these estimates are usually so complicated that it is very difficult to obtain good interval estimates. In this paper
we adopt a Bayesian approach to obtain an interval estimation, particularly for the dipgexThe posterior
probability p that the process under investigation is capable is derived; then the credible interval, a Bayesian
analogue of the classical confidence interval, can be obtained. We claim that the process is capable if all the
points in the credible interval are greater than the pre-specified capabilitydesay 1.33. To make this Bayesian
procedure very easy for practitioners to implement on manufacturing floors, we tabulate the minimum values of

C‘pm/w, for which the posterior probability reaches the desirable level, say 95%. For the special cases where the
process mean equals the target valueiginh and equals the midpoint of the two specification limits @y, the
procedure is even simpler; only chi-square tables are needed. Copyrig®9 John Wiley & Sons, Ltd.

KEY WORDS: process capability indices; quality; Bayesian approach; confidence interval; credible interval;
prior; posterior

1. INTRODUCTION pre-specified value. The usual practice is to estimate

Process capability indices (PCIs) are unitless measuresthe PCI from process data. If the estimate is greater
P y than the pre-specified value, say 1 or 1.33, then it

f_or_the capablllty Of aprocessin meetln_g speC|f|cat|c_)n is claimed that the process is capable. Of course, the
limits. These indices have been widely used in

. i . estimate is not the index itself, so when the estimate
assessing the capability of manufacturing processes.

. ) is greater tham, it does not guarantee that the index
by many companies during the last decade. More . . I
. is greater thanw, andvice versa Thus it is usually
and more efforts have been devoted to studies and

o preferable to obtain an interval estimate, for which we
applications of PCls. For example, Raddpresented . ) .
L can assert with a reasonable degree of certainty that it
how Imprimis Technology, Inc. used the PCls to

contains the true PCI value. However, the construction
enhance product development, and the and Cpk : : . ;
S . . of such an interval estimate is not an easy task, since
indices have been used in Japan and in the US

automotive industry such as Ford Motor Company the distributions of the commonly used PCI estimators

[2,3]. To incorporate the departure of the process are usually qf’”,e complicated-£]. . )
meany. from the target valug, the indexCpm was Therefore it is very natural to consider a Bayesian
proposed 4]. This index has been getting more and 2PProach. By a Bayesian approach, it means that we
more recognition in industries in recent years. first specify a prior distribution for the parameter
A capable process is usually defined as a processOf interest, obtain the posterior distribution of the
with a certain process capability index greater than a Parameter and then infer about the parameter by only
using its posterior distribution given the observations.
*Correspondence to: J.-J. H. Shiau, Institute of Statistics, National 1N€ reason why it is natural to consider a Bayesian
Chiao Tung University, Hsinchu, Taiwan 300. approach is that for Bayesian estimation it is always

E-mail-jyhjen@stat.nctu.edu.tw. = _ ___ very easy to obtain the posterior distribution when a
Contract/grant sponsor: National Science Council of the Republic of

China; Contract/grant number: NSC87-2118-M-009-003; NSca7- Prior distribution is given; and even when the form of
2118-M-009-004. the posterior distribution is complicated, it is still easy

CCC 0748-8017/99/050369-10%$17.50 Received 10 October 1998
Copyrightt 1999 John Wiley & Sons, Ltd. Revised 14 April 1999



370 J.-J. H. SHIAU, C.-T. CHIANG AND H.-N. HUNG

to use numerical methods or Monte Carlo meth@&is [ 2. AREVIEW ON SOME POPULAR PCls
to obtain an approximate point estimate or interval

estimate. This is a great advantage of the Bayesian
approach over the classical frequentist approach. USL — LSL

The indexCy is defined as

More specifically, to assess the process capability, P 6o
it is natural to consider the posterior probability where USL and LSL denote the upper and lower
Pr{process is capabeg. Compared with the usual specification limits respectively and is the process
practice of just obtaining point estimates of PCls, this standard deviation of the quality characteristic of
Bayesian approach has the advantage of providing ainterest. The process standard deviation is usually
statement on the posterior probability that the process unknown and can be estimated from a sample of
is capable given the observed process data. n measurementsi, xo, ..., x,. The most common

A nice Bayesian procedure for assessing process€Stimate ot is the sample standard deviation

capability was proposed in Referené&gfor the index 1 & 1/2
Cp, also in Reference]] for the indexCpm under the s = (—1 Z(xi - ;)2)
assumption that the process mearns equal to the T

target valuel'. In generalCpm is a better PCI thagy
[4]. However, the restriction that = T is a notable _ n
shortcoming, since the process mean may be quite X = in
deviated from the target valuE in many industrial =1
applications. is the sample mean. This gives an estimat€gf

where

S|

The main objective of this paper is to provide A USL — LSL
a Bayesian procedure for the general situation—no Cp= T 6s
restriction on the process mean In addition, for
the restricted case in which = T, we provide
a simple procedure for computing the posterior
probability of the process being capable. Instead
of using approximation or numerical integration
as in Reference4], this posterior probability can
be obtained by simply looking up the commonly
available chi-square tables. A similar Bayesian
procedure was given in Referenc&(] for the
restricted case.

We remark that other estimates®fcan be used. For
example, it is very common to use subgroup ranges to
obtain an estimate of to guard against shifting of the
mean in practice, since many processes in the industry
may be just semi-stable.

In order to reflect the impact of the deviation of
the process meap from the midpointm of the
specification limits on the process capability, several
indices have been proposed, including

Throughout this paper it is assumed that the CPU= USI‘;“
process measurements are independent and identically 30
distributed from a normal distribution. In other words, cPL= *— LSL
the process is under statistical control. We remark 3o
that estimation of PCls is meaningful only when the and
process is under statistical control.
Cpk = min(CPL, CPU) (2)

This paper is organized as follows. We give a
brief review on four popular PCls€p, Cpk, Cpm, Cpk Is sometimes defined as
and Cpmk—in Section2. In Section3 we present
a Bayesian procedure for assessing the process Cpk = (1= k)Cp @)
capability based od@’pm. All the derivations are given  where k = 2jm — u|/(USL—LSL). The above
in the Appendix. In Sectiod we describe a Bayesian o definitions ofCpk, (1) and (2), are algebraically
procedure based ok, but only for the special case  gquivalent p].

in which the process mean is equal to the midpoint of  These indices are usually estimated respectively by
the two specification limits. In Sectioh we present

some examples to illustrate the Bayesian procedure, CPU= USL — x
and compare the results with those obtained from the 3s
procedure given in Referencg [ Finally we conclude cpL. LSt
the paper in Sectiof. 3s

Copyright 1999 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Intl5: 369—-378 (1999)
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and
Cpk = min(CPL, CPU)
For theCpk defined in(2), it can be estimated by

where
P 2|\m — x|
~ USL-LSL

Both Cp andCpk are independent of the target value
T. To account for the impact of the deviation of the
process mean from the target value, another PCI calle
Cpm is defined fi] as

USL — LSL

Cpm = 60’ 3)
where
o =[E(X — T)4Y?
=[o?+ (u—T)*1? (4)

Chanet al. [4] estimateds’ by

1 n ) 1/2
(n_lzm—T) )
i=1
In this paper, instead of using their estimator, we use
, 1 n 1/2
65 = <; Z(xi — T)2>
i=1
to estimater . The reason we use this estimator is that
1 n
=¥ i —T)?
i3
is both an unbiased estimator and the maximum

likelihood estimator foro’2. The resulting estimator
of Cpmis

.~ USL-LSL
Pm= 66

From(3) and(4), it is easy to see thafpm andCp
have the relationship

o (5)

Cpm ==

T—un 2
o

1+

and the relationship betwe@iym andCp is
Cp

| _12
n—1 T—Xx
n + ’ N

Copyright 1999 John Wiley & Sons, Ltd.
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Thus by(5) it is clear thatCpm = Cp whenu = T.
Combining the ideas ofpk and Cpm, Pearnet al.
[11] proposed another index call€thmk defined as

USL — i
3Vo2+(u—-T)?2"

i —LSL }

Cpmk = min {

3y02+ (u—T)?

The estimatoﬁpmk can be obtained by plugging i
for u ands for o. The study of this index is beyond

dthe scope of this study.

There have been some studies on the distributions
of these PCls. When the process measurements follow
a normal distribution, bothtCPL and CPU have a
probability density function proportional to a non-
central t distribution K,6]. Chou and Owen 7]
gave the exact distribution ofpk, distribution
mean, variance, and mean-squared error. Another
interpretation for the distribution oé“pk was given
in Reference §], where it was shown that the
distribution of Cpi is related to the folded normal
distribution. Many properties of pm and C‘pm were
given in Reference 4]. More distributional and
estimation properties for the above PCls were given
in Reference 11]. These studies indicated that the
statistical distributions associated with these PCI
estimators are quite complicated.

In the next section we derive a Bayesian interval
estimate forCpm and propose accordingly a Bayesian
procedure for process capability assessment. Other
approaches to obtaining interval estimates for PCls
have been suggested in the literature. For example,
Bittanti et al.[12] suggested a curve-fitting approach
based on the Pearson system of curves for PCI
estimation, followed by application of the bootstrap
to obtain an interval estimate. Their method is
applicable to non-normal processes, but with fairly
high computational cost.

The following two sections are more mathemat-
ically/statistically involved. The proposed Bayesian
procedure is illustrated by examples in Sectidn
Readers who are not interested in the derivation of the
procedure may skip to Sectidén

3. ABAYESIAN PROCEDURE BASED ONCpm

Cheng and Spiringg] proposed a Bayesian approach
for assessing process capability by finding a credible
interval for the indexCp. A 100p% credible interval

is the Bayesian analogue of the classical A%0
confidence interval, wherg is a number between

Qual. Reliab. Engng. Intl5: 369—-378 (1999)
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0 and 1, say 0.95 for 95% confidence interval. It wherea = (n—1)/2andg = [/ (xi—%)?/2] "1 =
covers 10p% of the posterior distribution of the [(n — 1)s2/2]~L. A reparametrized version ¢¥) and
parameter]3]. Chanet al.[4] used the same approach (8) with o replaced by2 can be found in Problem 16
to find an exact and an approximate credible interval of Chap. 4 in Referencé f].

for the indexCpm whenp = T. Without assuming As mentioned before, it is natural to consider the

uw = T, we present a Bayesian procedure based on quantity Pfprocess is capaljpg in the Bayesian

Cpm in this section. approach. Since the ind&¥m, is our major concern
Assume that the measuremefi$s,i = 1,...,n} in this paper, we are interested in finding the posterior

of the quality characteristic obtained from the process probability p = Pf{Cpm > wo|x} for some fixed
are independentand identically distributed (i.i.d.) from positive numbew. Denotes = |T —x|/s. Itis derived

N(u, 0?). Denotex = (x1, xo, ..., x,)T, wherex; is in the Appendix that
the observed value okX;,i = 1,...,n. Then the . 1 1
likelihood function forp ando is p= / <7> exp(——)
_ C(a)yoytt vy
L(p,olx) = (2r0®) "2 °
S — x [@(b1(y) + b2(y)) — @ (b1(y) — b2(y))]dy
T (xi —

For the Bayesian approach the first step is to find Where 2
an appropriate prior. Usually, when there is little or - g (@)
no prior information, we use non-informative priors. I )
When there is only one parameter, one of the most
widely used non-informative priors is the so-called y=14 " _¢2
reference prior, which is a non-informative prior n—1
that maximizes the difference between information 5 n— 1\ 7%2
(entropy) on the parameter provided by the prior and b1(y) = \/j [82/ <52 + )}
by the posterior. In other words, the reference prior y n

allows the prior to provide information about the ; 1/2

parameter as little as possible. See Referehdgfpr ba(y) = /n (— — 1)

more details. Also, with the reference prior the 100 Y

credible interval has the coverage probability close to Note that the posterior probability depends om,

p up to the second order—in contrast to the first order §, » and épm only throughn, § and épm/a). Denote

for any other priors—in the frequentist sensen][ C* = épm/a)-

More specifically, the credible interval obtained from From expressior(9) we can see that it is very

a non-informative prior has a more DTECiSE coverage difficult to compute p for any process either on-

probability than that obtained from any other priors.  |ine or off-line in practice without serious computer
However, when there is more than one parameter, programming. However, by noticing that there is a

it is not always possible to find the reference prior pne-to-one correspondence betwgeandC* whenn

by maximizing the information difference. For this gnds are given, and by the fact thébm can be easily

reason, Berger and Bernarddf] suggested a step-  calculated from the process data, we find that the

by-step procedure for finding a multiparameter prior. minimum value ofC* required to ensure the posterior

In this paper we adopt this step-by-step procedure andpropability p reaching a certain desirable level can

the resulting prior is be useful in practice to assess the process capability.
a(u,0)=1/c O0<o <00, —00<p <00 Denote this minimum value bg*(p).
(7) For users’ convenience in applying our Bayesian
As derived in the Appendix, the posterior probabil- procedure in practice, we tat?ulaalif.(p) (for various
ity density function (PDF) ofy. o) is values ofn ands = |T —x|/s) in Taples 1(a)—
’ 1(c)for p = 0.90, 095, and 099 respectively. More
. ~2n —(n+1) specifically, the entries in these tables are values of
flw.olx) = VT (o) B C*(p) such that
Z{l—l(xi - M)Z épm
exp| ——=-————— 8 P|C — X = 10
x P( 552 (8) Pm > () p (10)

Copyright 1999 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Intl5: 369—-378 (1999)
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Table 1(a). Values of *(p) for p = 0.90 Table 1(b). Values o€*(p) for p = 0.95
|T —Xx|/s |T —Xx|/s
n 0 0.5 1 15 2 n 0 0.5 1 15 2

5 23863 21643 1.8222 1.5857 1.4394 5 29272 26268 2.1584 1.8293 1.6234
10 1.6326 1.5466 1.4068 1.3036 1.2360 10 1.8319 1.7209 1.5389 1.4033 1.3139
15 1.4386 1.3856 1.2954 1.2255 1.1777 15 1.5687 1.5017 1.3862 1.2952 1.2330
20 1.3464 1.3082 1.2406 1.1859 1.1477 20 1.4465 1.3989 1.3127 1.2420 1.1925
25 1.2915 1.2617 1.2070 1.1613 1.1287 25 1.3746 1.3377 1.2682 1.2092 1.1672
30 1.2546 1.2302 1.1838 1.1440 1.1154 30 1.3265 1.2965 1.2377 1.1865 1.1496
35 1.2279 1.2072 1.1667 1.1312 1.1055 35 1.2919 1.2665 1.2153 1.1697 1.1365
40 1.2075 1.1895 1.1534 1.1212 1.0976 40 1.2655 1.2435 1.1979 1.1565 1.1262
45 1.1913 1.1754 1.1427 1.1131 1.0913 45 1.2447 1.2254 1.1840 1.1460 1.1179
50 1.1781 1.1639 1.1339 1.1064 1.0860 50 1.2277 1.2105 1.1726 1.1372 1.1110
55 1.1672 1.1542 1.1265 1.1008 1.0815 55 1.2136 1.1979 1.1629 1.1298 1.1051
60 1.1578 1.1460 1.1201 1.0958 1.0776 60 1.2017 1.1873 1.1547 1.1235 1.1001
65 1.1498 1.1389 1.1145 1.0915 1.0743 65 1.1914 1.1782 1.1475 1.1179 1.0958
70 1.1428 1.1326 1.1097 1.0878 1.0713 70 1.1824 1.1702 1.1412 1.1131 1.0918
75 1.1366 1.1271 1.1054 1.0845 1.0686 75 11745 1.1631 1.1356 1.1088 1.0884
80 1.1312 1.1222 1.1015 1.0815 1.0663 80 1.1674 1.1568 1.1306 1.1049 1.0853
85 1.1262 1.1178 1.0981 1.0788 1.0641 85 1.1612 1.1511 1.1261 1.1014 1.0825
90 1.1217 1.1138 1.0949 1.0763 1.0621 90 1.1554 1.1460 1.1221 1.0982 1.0800
95 1.1178 1.1102 1.0920 1.0741 1.0603 95 1.1503 1.1413 1.1183 1.0953 1.0777
100 1.1141 1.1068 1.0894 1.0720 1.0587 100 1.1456 1.1370 1.1149 1.0926 1.0755
110 1.1075 1.1010 1.0846 1.0684 1.0557 110 1.1373 1.1294 1.1089 1.0879 1.0717
120 1.1020 1.0960 1.0806 1.0651 1.0532 120 1.1302 1.1230 1.1036 1.0838 1.0685
130 1.0972 1.0916 1.0771 1.0624 1.0509 130 1.1240 1.1174 1.0990 1.0802 1.0655
140 1.0929 1.0877 1.0739 1.0599 1.0490 140 1.1187 1.1125 1.0950 1.0771 1.0630
150 1.0892 1.0843 1.0712 1.0577 1.0472 150 1.1139 1.1080 1.0914 1.0742 1.0607
160 1.0859 1.0812 1.0687 1.0557 1.0456 160 1.1097 1.1041 1.0882 1.0717 1.0586
170 1.0828 1.0785 1.0664 1.0539 1.0442 170 1.1058 1.1005 1.0853 1.0693 1.0568
180 1.0801 1.0759 1.0644 1.0523 1.0429 180 1.1023 1.0974 1.0827 1.0673 1.0550
190 1.0776 1.0736 1.0625 1.0509 1.0416 190 1.0991 1.0944 1.0802 1.0653 1.0536
200 1.0753 1.0715 1.0608 1.0494 1.0405 200 1.0961 1.0916 1.0781 1.0636 1.0521
210 1.0733 1.0695 1.0592 1.0482 1.0395 210 1.0935 1.0892 1.0760 1.0619 1.0508
220 1.0712 1.0678 1.0577 1.0470 1.0386 220 1.0910 1.0869 1.0741 1.0604 1.0496
230 1.0694 1.0661 1.0563 1.0459 1.0377 230 1.0887 1.0848 1.0723 1.0590 1.0484
240 1.0678 1.0645 1.0550 1.0449 1.0369 240 1.0866 1.0828 1.0706 1.0576 1.0473
250 1.0662 1.0631 1.0538 1.0439 1.0361 250 1.0846 1.0809 1.0691 1.0564 1.0463
260 1.0647 1.0617 1.0527 1.0430 1.0353 260 1.0827 1.0791 1.0677 1.0552 1.0454
270 1.0634 1.0605 1.0516 1.0421 1.0346 270 1.0809 1.0775 1.0663 1.0542 1.0445
280 1.0621 1.0592 1.0507 1.0414 1.0339 280 1.0793 1.0759 1.0650 1.0531 1.0437
290 1.0608 1.0581 1.0497 1.0406 1.0334 290 1.0778 1.0745 1.0638 1.0521 1.0429
300 1.0597 1.0571 1.0488 1.0398 1.0328 300 1.0763 1.0731 1.0627 1.0513 1.0421
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Table 1(c). Values of *(p) for p = 0.99

|T —Xx|/s

n 0

0.5

1

15

5 4.5430
10 2.3203
15 1.8678
20 1.6689
25 1.5550
30 1.4804
35 1.4272
40 1.3871
45 1.3557
50 1.3303
55 1.3092
60 1.2914
65 1.2762
70 1.2629
75 1.2513
80 1.2409
85 1.2317
90 1.2233
95 1.2158

100 1.2089
110 1.1969
120 1.1865
130 1.1775
140 1.1697
150 1.1628
160 1.1566
170 1.1511
180 1.1460
190 1.1414
200 1.1372
210 1.1334
220 1.1298
230 1.1265
240 1.1234
250 1.1205
260 1.1178
270 1.1153
280 1.1129
290 1.1106
300 1.1085

4.0165
2.1454
1.7660
1.5981
1.5011
1.4371
1.3910
1.3561
1.3284
1.3060
1.2874
1.2715
1.2579
1.2460
1.2356
1.2262
1.2179
1.2103
1.2035
1.1972
1.1861
1.1767
1.1684
1.1613
1.1549
1.1491
1.1440
1.1393
1.1350
1.1310
1.1275
1.1242
1.1210
1.1181
1.1154
1.1129
1.1106
1.1083
1.1062
1.1042

3.1800
1.8567
1.5891
1.4685
1.3976
1.3501
1.3155
1.2890
1.2680
1.2508
1.2363
1.2239
1.2133
1.2039
1.1957
1.1884
1.1817
1.1756
1.1702
1.1652
1.1564
1.1487
1.1421
1.1363
1.1310
1.1263
1.1221
1.1183
1.1148
1.1116
1.1086
1.1058
1.1033
1.1009
1.0987
1.0966
1.0946
1.0928
1.0910
1.0893

2.5761
1.6404
1.4496
1.3618
1.3096
1.2741
1.2482
1.2281
1.2122
1.1991
1.1879
1.1785
1.1703
1.1630
1.1567
1.1510
1.1459
1.1412
1.1369
1.1330
1.1260
1.1201
1.1148
1.1102
1.1061
1.1025
1.0990
1.0960
1.0933
1.0907
1.0883
1.0862
1.0841
1.0822
1.0804
1.0788
1.0772
1.0757
1.0743
1.0730

2.1891
1.4974
1.3541
1.2872
1.2469
1.2194
1.1993
1.1836
1.1710
1.1607
1.1519
1.1445
1.1380
1.1322
1.1271
1.1226
1.1185
1.1148
1.1114
1.1083
1.1027
1.0979
1.0937
1.0900
1.0867
1.0837
1.0810
1.0786
1.0763
1.0743
1.0724
1.0706
1.0689
1.0674
1.0659
1.0646
1.0634
1.0621
1.0610
1.0599
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We comment that the computations in creating these
tables are rather involved and quite time-consuming.

According to Definition 3 on p. 102 of Refer-
ence [L3], we can see fronjl0)that [épm/C*(p), 00)
is a 10p% credible interval forCpm, which means
that the posterior probability that the credible interval
containsCpm is p. In our Bayesian approach we say
that the process is capable in a Bayesian sense if all the
points in this credible interval are greater than a pre-
specified value ab, say 1 or 133. When this happens,
we have Pjprocess is capabg> p. In other words,
to see if a process is capable (with capability level
w and confidence levep), we only need to check if
épm > wC*(p).

From these tables we observe that for each fixed
andn the value ofC*(p) decreases as increases.
This phenomenon can be explained by the following
argument. For a fixe&pm, since

A -1
Cpm = (USL — LSL)/ (63\/”_7+52>
n

s becomes smaller whef becomes larger, and a
smallers means that it is plausible that the underlying
process is tighter (i.e. with smaller). Since the
estimation is usually more accurate with the data
drawn from a tighter process, it is then plausible that
the estimateépm is more accurate with a smaller
s. In this case the required minimum vald& (p)

is smaller, since we need only a smalléf(p) to
account for the smaller uncertainty in the estimation.
Intuitively, if the estimation error in our estimate is
potentially large, then it is reasonable that we need
a large Cpm to be able to claim that the process
is capable, and this means that the corresponding
minimum valueC*(p) should be large as well. Thus
the value ofC*(p) decreases asincreases. Another
observation from the tables is that the valueZdi p)
decreases as increases for fixed and p. This can
also be explained by the same reasoning as above,
since a largen implies thaté‘pm is more accurate.

4. A BAYESIAN PROCEDURE FORCpx WHEN
nw=mAND ComWHEN pu =T

Owing to the complication of the distribution OA)‘pk,
we can only discuss the special case in which=
m, wherem is the midpoint of the two specification
limits. In this case, in faciCpy is reduced taCp, since
Cok = (d — | —m|)/30 = d/36 = Cp, where
d = (USL — LSL)/2. Then we can estimai€pk by

Qual. Reliab. Engng. Intl5: 369—-378 (1999)
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Cpk = (USL—LSL)/65, where

i 1 , 1/2
a:(;;(xi—m)>

Suppose that the measurements are i.i.d. from
N (m, o). Then the likelihood function fos is
L(o|X) = 2ro?)~"/?

n L 2
xexp(——Zizl(x' ") )

202
Consider the non-informative reference prior
n(o)=1/c O<o <0

Then the posterior distribution af? is an inverse
Gamma distribution with the probability density

function
/2
1 né? "

21y 2y—((n/2)+1)

X) = -

~2
X exp(—%) 0<o?< o0

o

We remark that this posterior PDF is exactly the
same as that cIfFZ,m whenu = T, the case considered
in Reference 4]. This is quite obvious, since the
indices in both cases are reduced to the indgx
Thus many results in Referencé] [for Cpm when
n T are applicable taCpx whenpu = m. Chan
et al.[4] tabulated approximat€*(p) values forCpm
whenu = T. These values can be used &y when
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we can summarize our Bayesian procedure for these
two special cases as follows. LEt = PCl/w, where
PCI can be eitheCpm or Cpk. Then the process is
capable in a Bayesian sense with p80 confidence
if Pr{x? > n(1/C*?} > p, wherey? is a random
variable following the chi-square distribution with
degrees of freedom.

Note that ‘the degrees of freedom’ of the posterior
distribution for Cpk whenu = m (or for Cpm when
u = T) are one more than those of the posterior
distribution forCp given in Referenceq. The reason
is thato is estimated by in Cp, which uses an extra
degree of freedom to estimateby x.

5. EXAMPLES AND DISCUSSION

In Section3, we have derived a Bayesian process
capability assessment procedure based on the index
Cpm. We have also provided tables (for various values
of sample sizen and off-target quantity = |T —
%|/s) of the minimum value€™*(p) of C* = Cpm/w
required to ensure that the posterior probability
of the process being capable (ig. = P(Cpm >
w|Cpm)) reaches the desirable confidence levels, such
as 090, 095 and 099. With these tables the procedure
is as simple as comparin@pm with o times the
tabulated value*(p). If Com > wC*(p), then we
claim that the process is capable in a Bayesian sense.
For example, whep = 0.9,n = 100 ands = 0.5,
we can findC*(p) = 1.1068 from Tablel(a). Thus,
whenw is given, sayw 4/3, the minimumépm
required for the process to be capable 18068 x

w = m with some minor modification. However, there 4/3 = 1.4757. That is, ifCom is greater than 2757
is a more straightforward Bayesian procedure to assess o say that the process is capable in a Bayesian sense.

the process capability in these two cases.

Let Y = n62/252. It can be derived easily that
2Y has a chi-square distribution with degrees of
freedom. Then the posterior probability Gfk being
greater than a value is

p = Pr{Cpk > w|X} = /u f(o|X) do
0

J
_b

I'(n/2)
wherea = (USL—LSL)/6w andb = (1n/2)(w/Cpr)>.
Thus, to computep, we can use the commonly
available chi-square tables. [f is greater than a
desirable level, say 90% or 95%, then we may claim

y®2-le™dy = Pr{2Y > 2b}

For the special case in whigh= T, as described in
Section4, we do not even need to use the tables given
in Section3. We need only look up the commonly
available chi-square tables for the posterior probability
p of the process being capable (ig.= Pr{x? >
n(1/C*?}, with ¢* = Cpm/w) and then judge
the process capability by comparing this posterior
probability with the desirable confidence level, say
0.95. In this case, ip > 0.95, then we may claim
that the process is capable in a Bayesian sense with
95% confidence.

We first illustrate our procedure via an example
given in Reference 4], which was first given in
Reference?]. In this example the measurements were

that the process is capable in a Bayesian sense withtaken on the radial length of machined holes with

90% or 95% confidence.

upper and lower specification limits of 20 areR0

By the same nature, the Bayesian procedure basedunits respectively and target valiie= 0.

on Cpm under the assumptiogm = T is similar. Thus

Copyright 1999 John Wiley & Sons, Ltd.
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Table 2. Results of machined holes example

Radial Length &10° inches)

Stage n x s IT —%/s  Cpm Pr P
1 201 47 87 05402 0.67 0.0000 0.0000
2 96 104 21.1 04929 0.28 0.0000 0.0000

3 316 5.0 54 0.9259 0.91 0.0067 0.0032

to illustrate the two Bayesian procedures—the one Table 3. Resdilts of examples in comparifig and P.

proposed in Referencé][and the Bayesian procedure

proposed in this paper. Take= 1, which means that Case n B Com Pr P
the process is capabledf_pm > 1. We summarize the 1 100 00 109 08858 0.8555
results of this example in Tabl® where P denotes 05 0.8858 0.8730
P{Cpm > |Cpm} given in (9) and Pr denotes 1.0 0.8858 0.9148
the approximate posterior probability obtained in 15 0.8858  0.9550
Referenced]. 2.0 0.8858 0.9806
From Table2, we see that bothPr and P are 2 300 00 105 08826 0.8655
S 0.5 0.8826 0.8773
very smgll_for all three stages, !ndlcatlng that the 1.0 0.8826 09132
process is incapable. Both Bayesian procedures have 15 0.8826 0.9519
the same conclusion as the traditional procedure, since 2.0 0.8826 0.9782

the values ol pm are smaller than 1 in all three stages.
At first glance, it is a little bit surprising to see that
at stage 3,Pr and P are so small fow = 1 even
whenépm = 0.91. This can be explained by the high Finally we give a simple example to show how
precision of the estimat€pm resulting from the large  to use the tables in practice. Suppose a sample of

sample sizen = 316. Both posterior probabilites sizen = 50 is collected from a process and the
are too small in this example to show the effect of data give thatCpm = 1.12 and|T —x|/s = 1.
8§ =|T —x|/sonPrandP. Considero = 1 andp = 0.95. From Tablel(b),

Next we describe some scenarios to illustrate the W€ find thatC*(p) = 1.1726, which implies that
effect of 5. Table3 gives two cases that are capable 1€ minimum value ofCpm—equal to wC*(p)—
from the traditional point of view, i.eCpm > 1. First is 1.1726. Since 12 < 1.1726, we claim that
we notice that as increasespP increases whilePr this process is incapable in a Bayesian sense with
remains the same. This is becauge neglects the 95% cor_1fidence. This show§ that our procedurg can
deviation of the process mean from the target value. différentiate processes with differefwalues, whichis
From Table3, we observe that for both cases, if we definitely a desirable property for a process capability
require the posterior probability of the process being @SS€ssment procedure.
capable to be greater than 0.90, then the Bayesian
procedure proposed in Refereneg Will claim that
the process is incapable for dllwhile our procedure 6. CONCLUSION

will claim that the process is capable whes 1.0. The index Cpm was proposed to take into account

On the other hand, let us compare the minimum the departure of the process mean from the target
values ofépm in Tables1(a)—1(c)with the minimum value as well as the magnitude of the process variation
values of Table 2(a) in Referencé][Foré = 0 the [4]. However, the statistical distribution associated
Bayesian procedure we proposed has the minimum with its estimatorépm is so complicated that it is
values of C‘pm larger than those values given in very difficult to obtain an interval estimation Gfpm.
Reference 4], since we do not assume the known Under a non-informative prior we obtain a simple
informationu = T. However, wher$ gets larger, say  Bayesian procedure for process capability assessment
§ > 1.0, the minimurrépm required for our procedure  that provides a Bayesian credible interval estimation
is less than that of Referencé [which indicates that ~ for Cpm. Thus this Bayesian procedure can serve as
our procedure is more sensitive in claiming the process an alternative to the classical procedures in process
is capable. capability assessment.

Copyright 1999 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Intl5: 369—-378 (1999)
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APPENDIX

In this appendix we derivé8) and (9) given in
Section3.

Derivation of (8)

From (6) and (7), we have the posterior PDF of
(1,0) as

fu,o|x) o< L(p, o|X) X w(w, o)

n L 2
x o D exp(——zz’ﬂgz2 W ) (11)

Also

/ / —(n+1) exp(
:/ o~ D exp<—
0
X [/00 exp(—
_[rar
=\ 2 () B

whereax = (n—1)/2andg =
[(n — Ds?/217*

Then from(11) and (12) the posterior PDR8) is
obtained.

T — w)?
Z—lzT) dp do

=)
) | o

Bo?
n(u —%)°
> (i —%)%/21 1 =

202

e¢]

(12)

Derivation of (9)

Recall thav’?2 = 62 + (1 — T)? and observe that

n

N 1
6% = - Z(xi —T)?

i=1

1/< —\2 - 2
=—(Z(xi—x> +n@E-T) )
"\

Copyright 1999 John Wiley & Sons, Ltd.
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Va? — o2,

Denoten =
Then

(USL—LSL)/6w andg(o) =
p = Pr{Cpm > w|X}
USL — LSL
_ Pr{ ust —Lst

60’ X}

=PHo? + (u — T)? < a?|x}
f(u, olX)du do

-

/ /T+g(o)
T4 V2T F(a)ﬁ"a

X exp (——Zizlg;iz_ W > du do
a 2\/_

—(n+1) ex (_
o Vol (@p* P

T+g(o) _ 2
X [/ exp —7n('u %)
T—g(0)

202
_/a 207 (1
—Jo P Bo?

[ () B*

> w

2—52

—(n+1)

)
) | o

T —x+4g(o)
<o)

r—x—g)
()] )

where® is the cumulative distribution function of the
standard normal distribution.

Letg’ = (Y'_,(x;i—T)%/2) Landy = g'o2 Then
r—x —\211/2
T —
e [m( 5%8')
_ 1/2
_ 1 2T -7
NG (Z?:l(xi - T)z)
2 n(T — )2 1z
Ty \ X i — 02+ (T — )2
-2 ()]
y n
and
20 (n@®—o?\"
o/Jn o?
a2 12 ; 1/2
= «/—( ) =n <— - 1)
y
wherer = f'a?.
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Let

[ B 1/2
y n

p 1/2
b2(y) = +/n (; - 1)

B’ no .o
=L =1 8
v B + n—1
Observe that
f—pat— 2 (USL—LsL 2

= a =

né'2 6w
_,(UsL—LSL\? / 5 _ 2C2,

66’ nw?

Then(13)can be simplified to

- [} (o) ()
P= Jo \Fayoet) P\ 5,
X [@(b1(y) + b2(y)) — P(b1(y) — ba(y))] dy

as given in(9).
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