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Theory and Applications of 
tlie Robust Cross-Coupled 
Control Design 
The cross-coupled control (CCC) has been recognized as an efficient motion controller 
that reduces contouring errors, but theoretical analysis of it is lacking, and there is no 
systematic design approach for obtaining a CCC system with guaranteed control perfor­
mance. Consequently, the compensators C in CCC are commonly implemented in a PID 
structure and their contouring accuracy is usually degraded in real applications under 
different operating conditions. In an attempt to overcome the CCC design limitations 
described above, this paper introduces a robust CCC design based on a novel formula­
tion: the contouring error transfer function (CETFj, leading to an equivalent formulation 
as in the feedback control design problem. Then, methods in robust control design can be 
readily employed to achieve robust CCC with specified stability margins and guaranteed 
contouring performance. Furthermore, the proposed design has been verified as being 
internally stable. All provided experimental results indicate that the proposed robust CCC 
design consistently renders satisfactory contouring accuracy under different operating 
conditions. 

I Introduction 

In motion control, feedback controllers for multiple-axis sys­
tems are usually designed independently such that each axial 
servomechanism can track input commands accurately to reduce 
tracking errors. However, such control structures can not further 
reduce tracking or contouring errors because of inherent servo lag, 
stick friction, or backlash constraints. Zero phase error tracking 
control (ZPETC) was proposed by Tomizuka (1987) to reduce 
effectively tracking errors. To reduce contouring errors, Koren 
(1980) proposed the cross-coupled controller (CCC) which sub­
stantially improves the contouring accuracy of multiple-axis sys­
tems by applying position error adjustment to each axis. Moreover, 
other CCCs of various types have been reported since Koren's 
original publication to achieve desirable contouring performance. 
For example, adaptive CCC was proposed by Chuang and Liu 
(1991, 1992), optimal CCC design method was proposed by 
Kulkami and Srinivasan (1989, 1990), and fuzzy logic controlled 
CCC was proposed by Koren and Jee (1995). In general, the 
structure of CCC includes (1) cross-coupling gains {C^, C,) and 
(2) a compensator C. Recently, a variable-gain CCC was proposed 
(Koren and Lo, 1991), in which the gains (C^, C,) are adjusted in 
real time according to the contour geometry to further improve 
contouring accuracy. 

Variable-gain CCC control systems process different contouring 
commands as parameter-varying systems. Moreover, motion con­
trol systems are usually operated under varied external loading. 
Therefore, the main objective that enable the compensator C 
design in a CCC to cope with different operating conditions in 
practice are 

(1) effective reduction of contouring errors under differing 
contour conditions and loading, and 

(2) guaranteeing that the CCC system will be stable under 
different operating conditions. 

To meet these requirements, the compensator C must be de­
signed with sufficient stability and guaranteed contouring per­

formance. However, available CCC controllers have not been 
systematically analyzed yet, and PID-type compensators C that 
do not guarantee stability and performance are commonly 
adopted. 

This paper presents a robust CCC design method by introducing 
a novel formulation, the contouring error transfer function (CETF) 
that describes the dynamic relationship between contouring errors 
produced by coupled-control systems and those produced by 
uncoupled-control systems. By this formulation, the CCC design 
can be simply represented in a feedback control design problem. 
Thus, robustness theories and analysis of control design can be 
directly employed in CCC design to achieve desirable stability 
margins and performance. In this paper, we use the quantitative 
feedback theory (QFT) design algorithm (Horowitz and Sidi, 
1972) to achieve robust CCC with specified 50 dB gain margin and 
90 deg phase margin. Furthermore, analysis indicates that the 
present robust CCC design is internally stable. Under different 
commands and loading conditions, experimental results indicate 
that the present robust CCC design consistently renders satisfac­
tory contouring accuracy. 

II CCC System Contouring Errors 
A two-axis cross-coupled motion-control system is repre­

sented in Fig. 1. This CCC motion-control system has three 
degrees of freedom, two position loop controllers {Kj,^, K,,y) and 
a compensator C. Figure 1 can be further simplified, as shown 
in Fig. 2. In general, if the position loop proportional gains 
(Kp:,, Kpy) are set too small, the system response becomes 
sluggish, however large gains setting may cause system oscil­
lation. Practically, the damping ratio of each position feedback 
loop is expected to be larger than 0.707 to avoid oscillatory 
motion. 

Variable Gains in CCC. In the variable-gain CCC design, the 
cross-coupling gains (C;̂ , C,) are directly determined according to 
the contouring commands (Koren and Lo, 1991). For linear con­
tours, the gains (C,, C,) are determined by 
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Ĉ  = sin 6 

C„ = cos 

(1) 

(2) 
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Fig. 1 Two-axis cross-coupied motion-control system 

where d is the inclination angle of a linear contour with respect to 
X-axis. For circular contours, the variable gains (C,, C,) are 
determined by 

sin 6 

C, = cos e -I-

2R 

EL 
2R 

(3) 

(4) 

Fig. 2 Block diagram of the coupled motion-control system 

1 -1- P^K^y 1 + P,K^, 

1 

where R is the circular contour radius, (£,, E,) are X-axis and 
Y-axis error signals, respectively; Q is the circular contour traversal 
angle input command. As shown in Eqs. (l)-(4), the cross-
coupling gains are determined by the orientation in linear motions 
and by the traversal angle in circular motions. Therefore, the CCC 
control system which combines the CCC controller and the plant is 
a parameter-varying system. If the axial errors are much smaller 
than the circular motion circle radius (Koren and Lo, 1991), the 
cross-coupling gains {C,, C,,) in Eqs. (l)-(4) can be reasonably 
confined in the range of [—1, 1] in the CCC design. The template 
used for the QFT design algorithm can be thus constructed for 
further robust design. 

Uncoupled Systems. To analyze an uncoupled system, let C = 
0 and e„ be the uncoupled motion-control system contouring error, 
where the subscript "o" represents the open cross-coupling con­
nection. The corresponding variables shown in Fig. 2 are repre­
sented as 

(1 +P2K„){1 +P,K,J 

X[-(l +P,KJCAI +P,KJCA (10) 

Cross-Coupled Systems. Define e^ as the contouring error of a 
coupled motion-control system, where the subscript "c" means 
"coupled system". As shown in Fig. 2, if C 7̂  0 the variables are 
represented as 

6 o t^y^y i^X^X 

UX ~~ l^px^xy ^y ^ ".py^y 

X„ = P,U,; Y.^P^Uy 

From Eqs. (6)-(8), the axial errors (£„ Ey) are 

1 1 
Ex = + P,K„ - X/, Ey — + P2Kpy 

Yr 

(5) 

(6) 

(7) 

(8) 

(9) 

F = F C — F C 
^c ^y^y ^x^x 

U, = Kp,E, - Ce,C,; Uy = K^yEy + Ce.Cy 

X, = P,Ux; Y„ = P,Uy 

E, = X,-X,; Ey=Y,-Y, 

From Eqs. (12)-(14), the axial errors {E^, Ey) are 

Yr ~ CCyP^Bc ^_ X, + CC,P,e, 
1 + P , r „ ' -̂ ^ 1 + P,K„ 

(11) 

(12) 

(13) 

(14) 

(15) 

When Eq. (15) is substituted into Eq. (11), the contouring error of 
the coupled motion-control system e„ becomes 

When Eq. (9) is substituted into Eq. (5), the contouring error of the 
uncoupled system becomes 

1 + PiKpy 

1 

1 + P^Kpx 

(1 +P^Kpy){\ +P,KJ 

Nomenclature 

C = compensator in CCC 
C„, C,, = numerator and denumator of 

the compensator C 
C,, Cy = variable gains in CCC 
E,, Ey = position error of X and Y 

axes 
GM, PM = gain margin and phase mar­

gin, respectively 

Ka = D/A gain (2.442 X 10 ' 
V/pulse) 

Ke = encoder gain (632.62 pules/ 
rad) 

Kpx, K„ = proportional gain controllers 
for X and Y position loops 

Mi„ uip = the maximum gain M,, and 
corresponding frequency to,, 
of contouring error transfer 
function T 

Pi, Pz = equivalent controlled plant of 
X and Y axes 

T = contouring error transfer func­
tion 

Be = contouring error of coupled 
motion control system 

E„ = contouring error of uncoupled 
motion control system 

iw„ = reference frequency of tem­
plate 
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Fig. 3 An equivalent CCC controi system 

X[{C,Y,- CC,C,P^e,){\ + P^K,:) 

- (CX + CCC./'.eJCl + P^/fJ] (16) 

Eq. (16) can be rewritten as 

[(1 + P^K,,){\ + />,*:,,) + (1 + P,K^:)CC,C,P^ 

+ (1 + P^K,,)CC,C,P,-\e, = (1 + P, . f :JC,F, 

- (1 + P,K^y)CJC, (17) 

Then, the contouring error e^ can be represented as 

1 
"' " [(1 + P,K„)(\ + P,K,,) + (1 + P,K,,)CC,C,P2 + (1 + f2/i:„)CC,C,P,] • 

[-(1 + /'2A:„)C, (1 + />,^, , )cj[^;] (18) 

III The Contouring Error Transfer Function 
Using Eqs. (10) and (18), and introducing the following two 

representations 

a = (l + ^ , , P i ) ( l +K,yP2) 

p = (1 + K,,Pi)CC,C,P2 + (1 + K^,P2)CC,C,Pi 

the contouring error for the uncoupled and coupled systems can be 
simply represented as 

e„ = - [ - (1 + P2KJC, (1 + P^KJC,] 

a + ji 
[ - (1 + K,,P2)CAi + K^.Pt)Cy] 

(19) 

(20) 

respectively. By combining Eqs. (19)-(20), the relationship of the 
contouring error to the coupled and uncoupled systems can be 
derived as 

1 1 
Be — 

1 + 
\ + CK 

T-e„ (21) 

where C is the compensator in the CCC to be designed, and 

(l+K^,P,) C,C,P2 + (1 + K„P2)Cfi,P 1 
^ ~~ 7\ i 7^ r> \ / ̂  i 7? i7^̂ ^ (22) (1 + ^ , ,Pi) ( l + K^P^) 

1 

1 + CK 
(23) 

As represented in Eqs. (21)-(23), the functional relationship T 
between the coupled and uncoupled motion-control systems is 
defined as the contouring error transfer function (CETF). When the 
cross-coupling gains are changing during a contour motion, both 
the K and T in Eq. (21) are parameter-varying functions. 

An Equivalent CCC Design. Note that in Eqs. (21)-(23), the 
CETF is similar to the sensitivity function in a feedback control 
system. Therefore, the CETF can be further represented as an equiv­
alent feedback control loop, as shown in Fig. 3. Consequently, the 
design goals of the compensator C in CCC become reduction of the 
contouring enror e ,̂ and stabilizing the equivalent CCC control sys­
tem. Note that with the present CETF formulation, various robust 

algorithms for controller design can be directly employed to achieve 
desirable stability margins and performance. Moreover, the compen­
sator C design in the present CCC for the two-axis servo system can 
be simplified to a single-loop design problem. 

In CCC design, the relationship between the coupled system 
stability and the equivalent feedback control loop as shown in Fig. 
3 is examined below. 

Theorem 1 (Yeh, 1990) 
For internally connected systems, the input signals are injected 

into each internal connection point to result in the mixed output 
signals. The internally connected systems are internally stable if 
the set of all input signals and output signals are bounded-input-
bounded-output (BIBO) stable. 

Theorem 2 
If the CCC controlled system is designed to meet the following 

requirements: 

(Al) the position feedback loop controller [K,,,, K„) achieves 
internal stability for each axis, and 

(A2) the equivalent CCC control system, as shown in Fig. 3, 
remains internally stable as the cross-coupling gains (C„ C,) are 
changed, 

then the designed coupled system as shown in Fig. 2 is internally 
stable. 

Proof: We can prove this theorem for the CCC controlled 
system by examining the transfer functions between injected input 
signals and mixed output signals. Clearly, the requirements (Al) 
and (A2) achieve all stable zeros of the rational function (a + ji), 
where a and J3 are both defined as previous. Since the poles of the 
rational function (a + j3) contains the poles of the forward path 
gains between each injected bounded input signal and each mixed 
output signal, the poles of the transfer function for each injected 
bounded input signal and each mixed output signal in Fig. 2 are 
thus stable. Therefore, from Theorem 1, the coupled motion-
control system is internally stable. 

According to Theorem 2, the design requirement (Al) can be 
accomplished independently by designing a position loop feedback 
controller for each axis. By applying available robust design meth­
ods to the equivalent CCC control system, as shown in Fig. 3, the 
design requirement (A2) can be thus directly achieved. 

Define Pi = 'PJPu, Pi = PiJPii, and C = CJC^, the 
rational function K can then be represented as 

K 
ClP^il + K.,P,) + C,^P,(1 + K^,P py' 2J 

(1 +K^,Pi)i^ +K„yP2) 

C]P2n{Pu + K,,PJ + C,^Pi„(P,, + K„P2„) 

(P,, + K^,P,„)(P2U+K^,P2„) 
(24) 

Since the uncoupled motion control system is internally stable, 
both the polynomial (Pu + K^^P^,,) and (Pj^ + /fp,P2„) have 
stable roots. In other words, the stable poles of the rational func­
tion K are fixed and independent of the cross-coupling gains. 

IV Robust Design of Compensator C 
Since the sampled data control system is usually a nonminimum 

phase system (Ogata, 1970; Astrom, 1984; Golten, 1991), the gain 
margin and phase margin are both larger than zero in discrete-time 
domain frequency analysis can not guarantee the stability of systems. 
Therefore, the general version of the Nyquist stability criterion for 
digital control (Kuo, 1992) is employed in the present design. 

Because the CETF represented as T = 1/(1 -I- CK) for the 
cross-coupled system is similar to the sensitivity function in the 
control design shown in Fig. 3, the four design requirements for a 
compensator C that produces satisfactory stability are as follows: 

(Bl) the robust compensator have only one pole at z = 1; i.e.. 
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Magnitude 
(dB) 

Template 

Nominal Point 

Phase (degree ) 

Fig. 4 The template at reference frequency <a = oio (rad/s) 

(B2) C{,z) is the minimum phase rational function, and 
(B3) the rational function CK{z) is strictly proper, and has no 

real zeros equal to or larger than one. 
(B4) the rational function CK{z) has both positive gain and 

phase margins in frequency domain analysis. 

According to the general version of Nyquist stability criterion, 
the robust compensator design to meet requirements (B1)-(B4) 
guarantee the equivalent CCC control system as shown in Fig. 
3 to be internally stable as the cross-coupling gains are changed. 
Although the above requirements (B1)--(B4) for the present 
CCC design are quite conservative, they can achieve guaranteed 
stability margins and contouring performance under different 
operating conditions. 

In this paper, we adopted the quantitive feedback theory (QFT) 
design algorithm (Horowitz and Sidi, 1972) to achieve a robust 
CCC design. Since the cross-coupling gains are changed for dif­
ferent contour motions, their variation range [ - 1 , 1] can be mod­
eled as the uncertainty in the QFT design to achieve robust CCC 
systems. The design theory of the QFT algorithm is to move the 
template of the rational function K{ z) to meet design specifications 
by robust compensator C(z) at certain reference frequencies. Thus, 
the rational function CK(z) which achieves desired frequency 
responses provides sufficient stability margins under the different 
cross-coupling gains. The template can be constructed by varying 
the cross-coupling gains from —1 to 1, as shown in Fig. 4. In Eq. 
(21), the gain and the phase responses of the rational function 
CK{z) can be represented as 

\CKie M.TA\.^ = 

AlCKie''"-''-)] degree 

= |C(e>"''')ldB-

/ : [C(e^-^ ')]degree + 

h iKie^''''')^ (25) 

^[A:(e>°^-)]degr«. (26) 

The frequency response of K{e'"°^') is shifted by 
(/l[C(e-'""''0]degree, |C(e^""''0|dfl) according to the compensator fre­
quency response C{e''"°') at the reference frequency oj = aj„ 
(rad/sec), and the template of the rational function K{z) is thus 
shifted according to the design of the robust compensator C{z). 
Therefore, the present robust compensator C can be designed such 

Fig. 5 Tiie experlmentai setup 

implies the same magnitude M of the transfer function T; i.e., M = 
| r | = 11/(1 -I- CK)\, and each point on the inverse Nichol's Chart 
is the magnitude and phase frequency responses of the rational 
function CK{z)- Thus, the template of the rational function K{z) 
has to be moved into a suitable region by applying lead or lag 
compensators designed to keep the frequency response of the 
rational function CK{z) within the specified gain margin, phase 
margin and suitable gain response of the CETF in order to main­
tain system stability and reduce contouring errors when the cross-
coupling gains are changed. 

V Implementation of the Robust CCC 
The experimental setup for the present study is shown in Fig. 5. 

The PC-486 generated the main control commands and recorded 
the signals including: the input command calculation for different 
contours, the implementation of a variable-gain CCC controller, 
and the control inputs to the velocity loop. The Sanyo UT-80 DC 
servo driver with analog current signal feedback included a veloc­
ity loop, a current loop, and a PWM output. The PC-486 interface 
utilized an AD/DA card to send and receive the control inputs and 
position outputs respectively at a sampling period of 1 ms. 

The Position Loop. To identify the velocity loop for each axis, 
the axial control input was given a pseudo random binary sequence 
(PRBS) and the systems were modeled as the ARX model (SQd-
erstrom, 1989). Then, the equivalent digitally controlled plants 
(Pi, Pi), as shown in Fig. 2, for the present biaxial motion-control 
system were obtained as 

P , ( z - ) = 
0.0026Z"' -I- O.OOSz"^ + 0.0018?^' + 0.00222"" - 0.0003z ' + 0.0006z~'^ 

1 - 1.5957Z'' -I- 0.5804Z-' - 0.322z""' + 0.30992"" -I- O .nOlz" ' - 0.20702-" + 0.1 I z " ' - 0.0456z' 

0.0023Z"' + 0.0031z"^ + 0.0015z"^ - 0.0003z"" - 0.0036z"^ + 0.00032""^ 

1 - 1.5578Z-' + 0.3473Z-' - 0.1946z"-' + 0.3141z" 0.1933Z- 0.102z- ' + 0.1997z" 0.2001Z" 

(27) 

(28) 

that the frequency responses of the rational function CK at certain 
reference frequencies satisfy the design specifications. 

In consideration of the gain response of the CETF, the QFT 
design algorithm can be represented on the inverse Nichol's Chart. 
Each point on the same curve on the inverse Nichol's Chart 

To achieve both stable motion and matched gains for the uncou­
pled two-axis system (Poo et al., 1972), the position loop propor­
tional gains {Kp^, Kp,) were set at 

K„, 0,28 
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Magnitude (dB) - Phase (Degree) Table 1 Frequency responses of the robust CCC design 
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Fig. 6 The frequency response of the rational function CK(ii with the 
Integral compensator C(2) ( : (0 ,1, C,,i), : (Ca, 0,2)) 

K,,y = 0.2544 

Compensator C Design. To maintain system stability and 
achieve suitable CETF gain response, the conservative design 
specifications were set at a 50 dB gain margin, and a 90 deg phase 
margin. By applying the robust compensator design requirements 
(B1)-(B4) and the QFT design algorithm, the robust compensator 
was obtained as 

C{z) 
O.Sz" - 1.4625z' + 1.4713z^ - 0.5504z + 0.0417 

z" - 1.0450z' + 0.04572^ - 0.0007z + 3 X lO"*' 

(29) 

To examine the system stability and the gain response of the CETF 
for different compensators, the frequency response of the rational 
function CK{z) with the digital integral compensator C{z) = 
l/(z - 1), a basic form in requirement B(l), was compared with 
the robustly designed compensator C{z), as in Eq. (29). We 
considered two linear commends of 79.38 and 13.24 degrees, 
respectively. Their corresponding cross-coupling gains {C^i, C,i) 
and (C,2, C,2) were (0.9829, 0.1843) and (0.2290, 0.9734), re­
spectively. The frequency responses of ,the rational function 
CK{z) for different compensators, C{z) = l/(z — 1) and C{z) as 
in Eq. (29), with different cross-coupling gains are shown in Fig. 
6 and Fig. 7, respectively. As shown in Fig. 6, the frequency 
responses of the rational function CK{ z) with the digital integral 
compensator C{z) = l/(z - 1) have both negative gain margins 
and phase margins, the cross-coupled system is thus unstable. As 
shown in Fig. 7, the frequency performance of all gain and phase 
margins for these gain variations are positive. Furthermore, the 
designed results listed in Table 1 for the two different linear 

Magnitude (dB) - Phase (Degree) 

M=0.1 

MSDrTpT 

Solid 

w-0.1 
w=0.3325 
w-100 

- w=1000 
w=2473.6?71 

M=1M-___ 

"" =wj-^° 

1 

)ashed 

»=0.1 
»=0.3447 
»=100 
»=100O . 
»=1583.t698 

-200 -150 

Phase (degree) 

Degree of the line 79.38 13.24 

(C,, C,) 

o),, (rad/sec) 
GM (dB) 
PM (degree) 

(0.9829,0.1843) 
1.00232 
1682.1172 
51 
90 

(0.2290, 0.9734) 
1.00268 
1583.1698 
50 
90 

commands meet the frequency response specifications well. More­
over, the maximum gain of the CETF is only 1.00268 in the 
present CCC. Therefore, in addition to the guaranteed stability, the 
contouring error is also effectively suppressed by the present CCC 
design. 

VI Experimental Results 

Different Contouring Commands. Since the design of the ro­
bust CCC was based on linear contours, experiments were con­
ducted involving three typical motion commands to verify its 
robustness: 

(1) linear command: a linear command with 79.38 degree 
inclination angle, 20.3485 mm length at a speed of 1.2852 m/min 
for 0.95 seconds. 

(2) corner command: a corner command is composited of two 
linear commands. The first linear segment of the corner command 
with 79.38 degree inclination angle, 20.3485 mm length at a speed 
of 1.2852 m/min for 0.95 seconds; the second linear command 
with 13.24 degree inclination angle, 21.8303 mm length at a speed 
of 1.31 m/min for 1 seconds. 

(3) circular command: a circular command was performed 
with a 6.25 mm radius at a speed of 1.9635 m/min for 1.2 seconds. 

We also compared the performance among three controllers, (1) an 
uncoupled controller with only a position loop controller P, (2) the 
proposed robust CCC, denoted as CCC(robust), and (3) a CCC in 
PID format, denoted as CCC(PID). We adopted the following 
parameters for the CCC(PID), Kp = 3.4, Ki = 6.2, and Kd = 0.11 
which were obtained using the learning automata technique, spe­
cifically, under the circular command (Chen, 1995). 

Circular Contour 

(a) X axis (ram) 

Contouring Error Tracking Error 

0.5 1 
(c) Time (sec) 

Fig. 7 
robust 

Fig. 8 Results for circular contouring, (a) Circular contour, (b) The 
The frequency response of the rational function CK{z) with the corresponding contouring error, (c) The corresponding tracidng error, 
compensator C{z) ( : (C,i , Cyi), : (C,2, Cyjj) ( : P -I- CCC(Robust), : P -H CCC(PID), : P) 
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Table 2 Experimental measures of linear contouring 

Error measure/controller 

P 
P + CCC(Robust) 
P + CCC(PID) 

Table 3 Experimental 

Error measure/controller 

P 
P + CCC(Robust) 
P + CCC(PID) 

Table 4 Experimental 

Error measure/controller 

P 
P + CCC(Robust) 
P + CCC(PID) 

lAE (mm) 

7.7592 
3.1001 

10.6111 

measures of corner 

lAE (mm) 

59.4292 
30.5961 
61.7025 

ISE (mm') 

0.1832 
0.0433 
0.1548 

contouring 

ISE (mm') 

21.7336 
12.6868 
16.6428 

measures of circular contouring 

lAE (mm) 

154.2828 
54.8602 
11.1431 

ISE (mm') 

24.9959 
3.1295 
0.1637 

Table 5 Performance measures under loading for corner 
contouring 

Loading No load 
30 kg weight 
on each axis 

Error measure/ 
controller 

lAE 
(mm) 

ISE 
(mm') 

lAE 
(mm) 

ISE 
(mm') 

P + CCC(Robust) 
59.4292 
30.5961 

21.7336 
12.6868 

67.7116 
38.8027 

24.1695 
13.9260 

Table 6 Performance measures under loading for circular 
contouring 

Loading No load 
30 kg weight 
on each axis 

EiTor measure/ 
controller 

lAE 
(mm) 

ISE^ 
(mm') 

lAE 
(mm) 

ISE^ 
(mm') 

CCC(Robust) 
154.2828 
54.8602 

24.9959 
3.1295 

190.4763 
61.7682 

45.1249 
5.0257 

Experimental results for the circular contouring command are 
shown in Fig. 8. Moreover, the normalized statistical results of 
corresponding integrals of absolute error (lAE) and integrals of 
square error (ISE), as listed in Tables 2-4, were also plotted, as 
shown in Fig. 9. Results indicate that compared with the uncoupled 
control system, the present robust CCC not only achieves signif­
icantly improved contouring accuracy, but also maintains the ac­
curacy over all contouring commands presented. Note that the 
CCC(PID), which was specifically tuned for circular motion did 
achieve the least circular contouring error, as shown in Fig. 9. 
However, it became oscillation when applied to linear and comer 
contours, because an optimally tuned CCC(PID) is only margin­
ally stable. As a whole, results indicate that the present robust CCC 
rendered the best contouring accuracy over all commands pre­
sented. 

QP 
• P-t-CCCIRobust) 
• PtCCCIPID) 

Line Corner Circle 

(a) lAE performance index 

Loading Conditions. In practice, motion-control systems are 
operated under either known or unknown loading conditions. 
Therefore, the present robust CCC design was also tested under a 
loading condition of 30 kg on each servo axis. The normalized 
statistical results for lAE and ISE for the corner and circular 
contours under loading, as listed in Tables 5-6. Results indicate 
that apparently, loading increased contouring errors in all cases. 
Nevertheless, the motion accuracy for the robust CCC still re­
mained well even under different commands, as shown in Fig. 9. 
Clearly, the present design with sufficient stability margins makes 
the proposed robust CCC widely applicable. 

VII Conclusions 
This paper presents the theory and applications of a robust CCC 

design for motion-control systems. Based on a novel formulation 
of CETF, the design of the compensator C in the CCC is simply 
equivalent to a feedback-control design problem. Thus, available 
robust control theories can be applied to the proposed robust CCC 
design to achieve sufficient stability and contouring performance. 
For the present two-axis motion-control system, the CCC design is 
simplified to an SISO system and the QFT control design algo­
rithm is directly employed to obtain satisfactory stability and 
guaranteed performance. 

Experimental results indicate that the present robust CCC design 
achieves satisfactory contouring accuracy under different contour­
ing commands and loading conditions. Although the robust CCC 
was designed with a fourth-order compensator in this case, the 
results provided by personal computer implementation have 
proven the feasibility of the present design. 

ap 
• PtCCCIRobust) 

• P+CCC(PID) 

Corner Circle 

(b) ISE performance index 

Fig. 9 Contouring errors for different compensators 
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