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Abstract

We propose that more than one spatial fundamental Gaussian mode may occur in concentric and confocal resonators
under persisting nonlinear effect. Extensively studying the influence of the resonator’s parameters in a Kerr-lens mode-locked
resonator, pitchfork bifurcation results in more symmetrical configurations, and saddle-node bifurcation appears as the
symmetry being broken. From the properties of bifurcation, we suggest that the equal-arm and near-confocal resonator is
suitable for the emergence of bistability in Kerr-lens mode-locked lasers. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, bistability in Kerr-lens mode-locking
Ž .KLM resonators has been studied by many

w xresearchers since the KLM laser was built 1–3 .
Bistability was first predicted in a near-concentric
unstable KLM resonator by considering saturable
Gaussian gain and Kerr nonlinearity when the pump-
ing rate is modulated about the threshold for laser

w xoperation 1 . When both spatial and temporal effects
are simultaneously taken into account, the S-shaped
bistable behavior of spot size, pulse width and pulse
energy with varying pump power was found at a

w xspecific near-confocal configuration 2 . In these two
papers, bistability results mainly from the mixing

Ž .effect of absorptive gain saturation and dispersive
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Ž .optical Kerr effect nonlinearity. Excluding gain
w xeffect, bistable behavior was also studied in Ref. 3 .

By applying the reduced self-focusing ABCD matrix
for a Kerr medium and considering the nonlinear
coupling of two transversal directions in the elliptical
beam, they found that more than one TEM res-00

onator mode exists around concentric configuration.
Summarizing the previous results, multiple Gaussian
modes are numerically obtained in some specific
configurations with the different source of nonlinear-
ity. However, why these configurations are sensitive
to nonlinear effects and whether this bistable charac-
ter is configuration-dependent is not known. In this
paper, we show that the bistability depends upon
resonator configuration, and we propose a reasonable
illumination from studying the dynamics of Gaussian
beam propagation.

In previous research, the iterative map was used
to study Gaussian beam propagation in a general
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w xresonator 4 . Analyzing the map with the help of
w xGreene’s residue theorem 5 , we propose that bifur-

cation can easily occur around the confocal and
concentric configurations whilst keeping a nonlinear
perturbation. This result will be numerically verified
in KLM resonators. For the sake of discussing the
bifurcation of configuration dependence, we will only
focus on the Gaussian beam propagation in a cold
KLM resonator having pure self-focusing. The multi-
ple fundamental Gaussian modes indeed exist in the
above-mentioned configurations, even just consider-
ing the self-focusing. Moreover, we extensively ex-
plored the bifurcation behaviors under the influence
of the resonator’s parameters, such as crystal posi-
tion and astigmatism angle of curved mirrors in
equal- and unequal-arm resonators. These resonators
have the different classifications of bifurcation that
mainly result from the degree of symmetry. These
results offer a useful analysis for bistability resonator
design in KLM experiment, because self-focusing
governs the character of the KLM resonator.

2. Theoretical prediction

In the paraxial approximation, the fundamental
propagation of Gaussian beam follows the ABCD
law for the q parameter. The q parameter of Gauss-

Ž 2 .ian beam is defined as 1rqs1rRy ilr pw ,0

where R is the radius of curvature, w the spot size0

and l the wavelength of the beam. After using the q
parameter to construct the iterative map, the charac-
ter of fundamental resonator mode can be deter-
mined from the behavior of the map at the period-1

w xfixed point 4 . Analyzing the stability of the fixed
point with the Greene’s residue theorem, we ob-
tained the residue in a linear system as

2Ress1y 2G G y1 . 1Ž . Ž .1 2

Here we have defined G saybrr and G sdy1 1 2

brr as the G-parameters for general optical res-2

onators, where r and r are their radii of curvature1 2
a bfor the two end mirrors and is the transfer
c d

matrix of one-way pass between these two end mir-
rors. If a fixed point of a map without multiplier q1
is isolated, there are no other fixed points within its

w xproximity 5 . In contrast, another periodic orbit

could be created or destroyed when the fixed point
has a multiplier q1. Such saddle-node or pitchfork
bifurcation may occur under persisting nonlinear per-
turbation. Since the system with residue equal to

w x Ž .zero has multiplier q1 5 , the confocal G G s01 2
Ž .or concentric G G s1 configuration could have1 2

the above-mentioned bifurcation with the help of Eq.
Ž .1 . Thus, a general resonator at these configurations
has the intrinsic character that it may have multiple
Gaussian resonator modes under the nonlinear effect.

Based on the previous discussion, we will analyze
the properties of bifurcation in a KLM resonator.
The nonlinear self-focusing of Gaussian beam in the
Kerr medium can be described by using the renor-

w xmalized q parameter 6 . After renormalizing the q
parameter to be

1 1 1 'sRe y j Im 1yK , 2Ž .Xq q q

qX will follow the free-space propagation in the Kerr
medium. Here the Kerr parameter K is the cavity
beam power over the critical power of self-trapping
and the Re and Im represent the real and imaginary
parts of a complex number. From self-consistency of
the q parameters in a resonator, a simple analytical
approach was proposed to design the four-mirror

w xfolded KLM laser 7 . The four-mirror folded KLM
resonator, shown in Fig. 1, consists of two flat end

Ž .mirrors M and M and a pair of curved mirrors1 4
Ž .M and M of focal length f. The distance be-2 3

tween M and M is d , between M and M is d ,1 2 1 3 4 2

between M and the end face I of the Kerr medium2

Fig. 1. The KLM resonator. The four-mirror folded KLM res-
Ž .onator consists of two flat end mirrors M and M and a pair of1 4

Ž .curved mirrors M and M with the same focal length f. The2 3

distance between M and M is d , M and M is d , M and1 2 1 3 4 2 2

the end face I of Kerr medium is r and two curved mirrors is z,1

respectively.
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is r and between two curved mirrors is z, respec-1

tively. Since the curvature of Gaussian resonator
mode must match those of the end mirrors in lossless
system, the curvature of parameter q at output flat
mirror M is zero. Thus, we can assume that the q1

parameter at M is q s jys jpw2rl. Using the1 1

renormalized q parameter concept to transform q1

through the Kerr medium and the self-consistence at
end face II, one can obtain the spot size of funda-
mental mode at M to satisfy a quartic equation of1

2 w xy as 7

4 3 22 2 2h w , K , G sa y qa y qa yŽ . Ž . Ž . Ž .4 3 2

qa y2 a s0. 3Ž .Ž .1 0

Here G represents a configuration variable that de-
pends on d , d , r , r , z, f and the Kerr medium1 2 1 2

length L. The coefficients a , a , a , a , and a are4 3 2 1 0

functions of K and G . Owing to a quartic equation
having analytic solutions, one can extensively study
the bifurcation behavior of spatial fundamental
Gaussian mode in the KLM resonator with various
configurations G s and K s. This approach is used in
the following numerical calculation.

3. Numerical results

We will concentrate initially on the symmetric
confocal configuration in the KLM laser. This res-
onator has equal arms with d sd s850 mm and1 2

the crystal is placed at the center of two curved
mirrors with r sr . The parameters of the optical1 2

w xelements referred to the experimental ones 8 in
which the radii of curvature of the curved mirrors
M and M are both 100 mm and the length of2 3

Brewster-cut Ti:sapphire rod is Ls20 mm. The
curved mirrors have been tilted by an angle u for the
astigmatism compensation about Brewster-cut laser
rod. Thus, the resonator could be divided into two
astigmatic optical systems associated with the sagit-
tal and tangential planes. These two planes are con-
sidered to be orthogonal. Because similar behavior
can also be found in both planes, we focused the
following numerical simulation on the sagittal plane.
Since the beam’s q-parameter contains only the spot
size with zero curvature at the output mirror M , the1

spot size is chosen as the scalar measure in the

numerical simulation. The Kerr parameter offers the
nonlinear effect to be the bifurcation parameter.

Ž .Fig. 2 a shows spot size at M versus Kerr1

parameter for zs115.3 mm, r sr s47.65 mm1 2

and us14.58 in the symmetrical stable resonator.
The solid line in this figure indicates the stable
solutions of self-consistent Gaussian beam and the
dashed line represents the unstable one. The configu-
ration is near confocal, since the confocal configura-

Ž .tion for linear cw resonator corresponds to a
separation of the curved mirrors z s115.267 mm;c

therefore, as predicted in Section 2, the bifurcation
appears as a pitchfork bifurcation with the bifurca-

Ž . Ž .tion point at K , w s 0.04278, 0.4513 mm ,b b

where K and w represent the critical bifurcationb b

Kerr parameter and spot size, respectively. Further-
more, we numerically obtain hsh sh sh s0w w w K

at the bifurcation point, where the subscripts of

Fig. 2. Pitchfork bifurcation. The spot size at M versus Kerr1

parameter in equal-arm resonator with d s d s85 cm is shown1 2
Ž . Ž .for zs115.3 mm and a r s47.65 mm, b r s46.5 mm and1 1

Ž .c r s49 mm. The solid line corresponds to the stable solutions1

of self-consistent Gaussian beam and the dashed line represents
the unstable one.
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Ž .function h w, K ,G represent the various order par-
tial derivatives with respect to the variables indicated

w xas subscripts. According to the singularity theory 9 ,
this result also verifies that the classification belongs
to the pitchfork bifurcation.

When the crystal is located away from the center
of two curved mirrors, the characteristics of bifurca-
tion will be changed. By constraining zs115.3 mm,
the bifurcation diagram with r s46.5 mm is shown1

Ž .in Fig. 2 b , note that r s47.65 mm for symmetry1

resonator. It is no longer a standard pitchfork bifur-
cation but a perturbed one. As pitchfork bifurcation
is not generic, it usually results from some peculiar
symmetry or the inadequacy of the idealization, in

w xwhich some small effects are neglected 9 . There-
fore, moving the crystal away from the center of two
curved mirrors had broken the symmetry and in-
duced the perturbed variation of bifurcation. In Fig.
Ž .2 b , the upper branch of this typical perturbed bifur-

cation corresponds to the continuous evolution branch
from before to after bifurcation. On the contrary, the
other typical perturbed pitchfork bifurcation takes
place at r greater than 47.65 mm. For example,1

Ž .r s49 mm in Fig. 2 c , the lower branch in this1

type is a continuous evolution one.
When a slit is inserted at M in a hard aperturing1

KLM resonator, the KLM strength d is determined
by the rate of change of the spot size as increasing

w xthe laser power 7,10 . Experimentally, for achieving
the larger self-amplitude modulation, in general the
slit is inserted vertical to the tangential plane, which
has the larger KLM strength. If the configuration has
the pitchfork bifurcation in the sagittal plane with
d-0 in the tangential plane, it is suitable for observ-
ing the bistability in hard-aperturing KLM laser.
Under well-matching astigmatism, d has the same
sign in both planes, thus the configuration with the

Ž .type r s49 mm in Fig. 2 c prefers to operate at1

KLM due to d-0 in both planes. However, the
configuration with the type r s46.5 mm in Fig.1
Ž .2 b will not be a preferred KLM one.

Further calculating the bifurcation points by vary-
ing the configuration-parameters z and r , we obtain1

the contour of critical bifurcation parameter K ,b

shown in Fig. 3 with progressively increasing K b
Ž . Ž .from curves a to e . The dashed line represents the

symmetrical configuration that the crystal is located
at the center of two curved mirrors. Clearly, the K b

Fig. 3. Contour of the critical bifurcation parameter in equal-arm
Ž . Ž .resonator. The contour values are a K s0.01, b K s0.05,b b

Ž . Ž . Ž .c K s0.1, d K s0.2, and e K s0.3, respectively. Theb b b

dashed line represents the crystal locating at the center of two
curved mirrors in which corresponds to the symmetric configura-
tion.

increases as the crystal is located away from the
center of two curved mirrors or as the configuration
far from the confocal structure. Similar behavior can
also be found in the tangential plane, but the bifurca-
tion region will reduce to less than half of that in the
sagittal plane. The smaller region results from shorter
effective rod length and effective focal length of the
curved mirrors in the tangential plane. The bifurca-
tion region on the right hand side of dashed line
belongs to the perturbed pitchfork bifurcation having

Ž .the type of Fig. 2 c . Compared with the preferable
w xKLM region in the experiments in Ref. 10 and the

w xtheory in Ref. 11 , we find that the bifurcation
region is located within the preferred KLM region
though much smaller than the preferred one. Thus,
we believe that bistability may be observed in such a
bifurcation region.

If we consider the asymmetric resonator with
d /d but d qd s170 cm, a different classifica-1 2 1 2

tion of bifurcation will take place. In Fig. 4 with
d s70 cm, d s100 cm, zs114.74 mm and r s1 2 1

41 mm, saddle-node bifurcation occurs at critical
bifurcation parameter K f0.08993. There is no realb

solution of spot size as K-K , and two self-con-b

sistent spot sizes exist as K)K . The lower branchb

with solid line indicates stable solutions and the
upper branch with dashed line represents unstable
solutions. When the configuration varies close to the
confocal one, the K decreases. In general, pitchforkb
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bifurcation will occur in more symmetrical configu-
rations and saddle-node bifurcation exists as this

w xsymmetry being broken 5 . Therefore, we think the
emergence of different classification mainly results
from the configurations having the unequal arms,
which have broken the symmetry of resonator.

However, the symmetry broken from the slightly
unequal arms can be compensated by the tilted angle
of the curved mirrors. The critical bifurcation param-
eter against the tilted angle is shown in Fig. 5 with
d s83 cm, d s87 cm, zs115 mm and r s401 2 1

mm which corresponds to near-confocal configura-
tion. We constrain our discussions on K -0.4 thatb

the associated power can be obtained from general
experiments. As u-u s13.77098, the configura-a

tion has only one real solution of spot size and no
bifurcation. Increasing the tilted angle to u)u , wea

find the saddle-node bifurcation takes place. The
upper branch corresponds to the stable solution and
the lower branch corresponds to the unstable solu-
tion. Moreover, K increases as the tilted angle isb

increased, but the stability reverses and the K de-b

creases as increasing the tilted angle to u)u sb

13.91558. When u is greater than u s14.12078, thec

bifurcation transits to the perturbed pitchfork bifurca-
tion and K still decreases as increasing u . Theb

minimum K is 0.04955 at u s14.13618 corre-b d

sponding to the standard pitchfork bifurcation. The
other type of perturbed pitchfork bifurcation exists as
u -u-u s14.21868, in which K increases asd e b

increasing u . The configuration returns to having
one reasonable spot size as u)u if one constrainse

K -0.4. In fact, dynamical characteristics in thisb

region still belongs to the pitchfork bifurcation for
K )0.4. Because such a K value is not easy tob

reach in general KLM lasers, the phenomenon of

Fig. 4. Saddle-node bifurcation. The bifurcation diagram is shown
as d s70 cm, d s100 cm, zs114.74 mm and r s41 mm.1 2 1

Fig. 5. The critical bifurcation parameter versus the tilted angle. It
is shown the critical bifurcation parameter against the tilted angle
with d s83 cm, d s87 cm, zs115 mm and r s40 mm. The1 2 1

value of specific tilted angle are u s13.77098, u s13.91558,a b

u s14.12078, u s14.13618 and u s14.21868. These tilted an-c d e

gles are transition point for the changing the character of bifurca-
tion diagram.

bifurcation may not be observed in experiments. It is
worth noting that the above regions all have d-0 in
the tangential plane, i.e., these regions prefer KLM
operation with hard aperture. Although the tilted
angle can compensate the broken symmetry resulting
from unequal arms, the latter one governs the emer-
gence of bifurcation. If we constrain d qd s1701 2

cm and d Fd , the region of pitchfork bifurcation1 2

is about hundreds of mm for z translation in equal-
arm resonator. The region quickly shrinks as increas-

< <ing d yd and becomes less than 10 mm as1 2
< <d yd G4 cm, even having the tilted angle com-1 2

pensation.

4. Discussion

The bifurcation phenomenon can also be found in
the near-concentric resonator. However, the region
having bifurcation is smaller than that of near-confo-
cal resonator, and its classification belongs to the
saddle-node bifurcation. Since saddle-node bifurca-
tion has only one stable solution, bistability will not
be found in such configuration if we just consider
the self-focusing effect. Moreover, no steady spot
size in the range with K-K represents that theb

resonator lacks a steady pulse generating mechanism
from cw with Ks0 transiting to KLM with higher
K. This system may not be spontaneous in KLM
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laser. On the contrary, bistability could be observed
in the configuration with unperturbed or perturbed
pitchfork bifurcation having two stable spot sizes in
K)K and a steady one in K-K ; especially, theb b

configurations having d-0 in tangential plane is
achievable to mode-locking operation with hard
aperture. Thus, we suggest that the equal-arm and
near-confocal resonator is suitable for the emergence
of bistability in experiment due to the region with
pitchfork bifurcation being large.

When we further consider the spatial and tempo-
ral effects in a KLM resonator, a simple quadratic
equation is obtained to determine the pulse width

w xfrom space–time analogy 12 . Owing to the spot
size variation in Kerr medium couples to temporal
self-phase modulation matrix, the bifurcation of spot
size will result in the bifurcation of pulse width. We
indeed found the same classification of bifurcation in
pulse width versus Kerr parameter. It is also to be

w xfound in Ref. 2 that both spot size and pulse width
appear to have the same bistability behavior. How-

w xever, the S-shaped behavior in Ref. 2 is not found
and instead of pitchfork bifurcation in this research,
this difference may be attributed to the gain satura-
tion effect.

5. Conclusion

Studying the iterative map constructed from the
propagation of Gaussian q parameter in a resonator,
we found that the confocal and concentric configura-
tion corresponding to the map having multiplier q1.
Such a map will induce bifurcation under nonlinear
perturbation in general. This result gives a reason-
able interpretation for the existence of multiple fun-
damental Gaussian modes, which often occur at the
limit of stable region. When the numerical simula-
tions contain only the self-focusing and ignore the
gain saturation effect in KLM resonator, bistability

takes place in the above-mentioned configurations.
Under extensively studying the influence of different
arm-lengths, crystal position and tilted angle, there
are two main classification bifurcation corresponding
to pitchfork and saddle-node ones. Pitchfork bifurca-
tion occurs in configurations with higher symmetry
and saddle-node bifurcation exists as this symmetry
being broken. In addition, we suggest that the equal-
arm and near-confocal resonator is suitable for the
emergence of bistability in experiments.
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