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PROPAGATION AND REFLECTION OF THERMAL
WAVES IN A RECTANGULAR PLATE

Jhy-Ping Wu and Hsin-Sen Chu
Department of Mechanical Engineering, National Chiao Tung University,
Hsinchu, Taiwan 300, Republic of China

The wave nature of heat propagatio n in a two-dimensional rectangular plate with an

instantaneous thermal disturbance released in an arbitrary position is investigated by

solving the hyperbolic heat conduction equation. The exact analytical solution s are

developed for the temperature field and heat flux using the Green’s function technique to

deal with two limiting boundary conditions, the constant wall temperature and the adiabati c

condition , around the region. The disturbance gives rise to a severe thermal wave front,

which differs completely from that obtained through one-dimensional analysis, traveling

through the medium at a finite speed with a sharp peak at the leading edge. The significant

findings in these results are that a negative trailer is generated and follows behind the wave

front. In addition , the magnitude of the front is significantly attenuated from the side

adjacent to the trailer because the increasing area available to it for diffusion , and decays

exponentially along its path of travel, since the thermal energy is dissipated in the wake of

the moving wave front. The results also reveal that different boundary conditions strongly

influence the reflection of a thermal wave front from the exterior surfaces and the reflection

and interaction among thermal waves are more complicated than those found through

one-dimensional analysis.

INTRODUCTION

The Fourier law of heat conduction, which is the classical theory of diffusion,
postulates a heat flux to be directly proportional to a temperature gradient in the

form

s . s . s .q r, t s yk = T r, t 1

where k is the thermal conductivity, r the position vector, and t the physical time.

According to this law, the traditional heat conduction equation implies an infinite

speed of propagation of the thermal wave, indicating that a local change in

temperature causes an instantaneous perturbation in the temperature at each

point in the medium, even if the intervening distances are infinitely large. In other

words, heat propagates infinitely fast, which is incompatible with physical reality.
Despite such an illogical notion of energy transport in solids, the classical diffusion
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J.-P. WU AND H.-S. CHU52

NOMENCLATURE

s .a, b plate lengths in the x and X , Y dimensionless position of heat source0 0

y directions a thermal diffusivity

A, B dimensionless plate lengths in the d Dirac delta function

X and Y directions D x, D y thermal disturbance widths in x

c thermal wave speed and y directions, respectively

C specific heat D X, D Y dimensionless thermal disturbancep

g volumetric energy source widths in x and y

g total energy released per unit directions, respectivly0

s .length, as defined by Eq. 7 u dimensionless temperature
sG X, Y, Green’s function F finite integral transform operatorm n

< .t j , h , z l eigenvaluem n

Ã s .G t transform of Green’s function j , h , z dummy variable s replacing dimen-m n

H Heaviside function sionless variable s X, Y, and t , respec-

k thermal conductivity tively, in Green’s function technique

q heat flux r density

Q dimensionless heat flux t dimensionless time

r position vector t relaxation timeR

S dimensionless energy source

t time Subscripts

T temperature
s .T arbitrary number ) 0 m, n indices

T initial temperature x, y components in x and y direction,0

x, y Cartesian coordinate respectively

X, Y dimensionless Cartesian coordinate X, Y components in X and Y direction,
s .x , y position of heat source respectively0 0

theory has been widely applied in heat transfer problems and gives reliable results

for most situations encountered in practice, mainly because in most situations the

thermal diffusivity is 10 orders of magnitude smaller than that corresponding to the

speed of a thermal wave. However, with the advent of science and technology
dealing with very low temperatures near absolute zero, an extremely short transient

duration, and an extremely high rate change of temperature or heat flux, some

investigators have found that the heat propagation velocity in such situations

becomes finite and dominant.

One of the earliest experiments aimed at detecting thermal waves was

w xperformed by Peshkov 1 using superfluid liquid helium at a temperature of 1.4 K
and having a thermal wave velocity of 19 m rs. He referred to this phenomenon as

`̀ second sound’’ because of the similarity between thermal waves he observed and

w xordinary acoustic waves. Von Gutfeld 2 measured that the velocities of thermal

waves in different dielectric crystals, such as sapphire, GeSi, and NaCl, are all of
3 w xthe order of 10 m rs at low temperatures. Maurer and Thompson 3 found that if

the surface heat fluxes are of an order greater than 107 W rm2, the Fourier heat
flux model breaks down.

In recent years, because of advancements in short-pulse laser technologies

and their applications to modern microfabrication technologies, research of high-

rate heating on thin film structures has progressed rapidly. To consider the finite

speed of wave propagation, a damped-wave model has been proposed that uses a
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PROPAGATION AND REFLECTION OF THERMAL WAVES 53

variety of reasonings and derivations. Its development is presented in detail in the

w x w xexhaustive review articles by Joseph and Preziosi 4, 5 . Cattaneo 6 and Vernotte

w x7 independently suggested a modified heat flux model of the form

s . s . s .q r, t q t s yk = T r, t 2R

s .where t is relaxation time, an intrinsic thermal property of media. Equation 2R

implies that the temperature gradient established at time t, due to insufficient

response time, results in a heat flux vector at a later time t q t . This means theR

heat wave model allows a time lag between the heat flux and the temperature

gradient. In fact, the relaxation time t is associated with the communicationR

s .`̀ time’’ between phonons phonon-phonon collisions necessary for commencement
of heat flow and is a measure of the thermal inertia of a medium. Based on ideas

from the collision theory of molecules, t f a rc2, where c is the thermal waveR

s .velocity in the medium. Clearly, for t s 0, Eq. 2 reduces to the classicalR

Fourier’s law and leads to an infinite propagation velocity. Several investigators

wattempted to estimate the magnitude of t for common engineering materials 8,R

x y109 . It appears that the magnitude of t ranges from 10 s for gases underR

standard conditions to 10y14 s for metals, with values of t for liquids andR

w xinsulators falling within this range. Sieniutycz 10 showed that the t values for aR

homogeneous substance are of the order of 10y8
] 10y10 s, while recent work by

w xKaminsky 11 on nonhomogeneous inner structure materials revealed values for t R

w xof the order of fractions of a minute. Recently, Mitra et al. 12 determined
experimentally that the value of t is ; 16 s for biological materials, and directlyR

validated the hyperbolic nature of heat conduction by comparing experimentally

observed temperatures with corresponding non-Fourier predictions.
ÈTo emphasize engineering applications of the thermal wave theory, Ozisik

w xand Tzou 13 presented a thorough review of thermal wave propagation that

included a sharp wave front and rate effects, the thermal shock phenomenon,
thermal resonance phenomenon, and reflections and refractions of thermal waves

across a material interface. They also employed the concept of dual phase lag to

capture the microscopic mechanisms in some limiting cases. A general criterion for

w xthe dominance of wave behavior over diffusion was proposed by Tzou 14 :

2 2­ T T c c t0
s .c exp 3t /­ t 2 a a

T being the reference temperature. According to this criterion, the relative0

importance of the wave behavior in heat conduction can be examined by consider-
s .ing the interaction of three factors, the thermal properties a and c , the thermal

s . s .loading and response conditions ­ T r ­ t, and T , and the transient time t . If the0

heat transfer process occurs in an extremely short period of time or at an extremely

high rate of temperature increase, the wave behavior may become pronounced

regardless of the value of T .0

Various analytical and numerical methods were proposed to solve hyperbolic
Èw xheat conduction problems 15 ] 19 . Analytical solutions were developed by Ozisik
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J.-P. WU AND H.-S. CHU54

w xand Vick 20 for the hyperbolic heat conduction equation in a one-dimensional

finite slab with insulated boundaries subjected to a volumetric energy source in the
medium specifically to explore the propagation and reflection of thermal waves in a

w xfinite medium. Recently, Haji-Sheikh and Beck 21 presented a general form of

the Green’s function solution method for a wave-type conduction equation in a

finite body and employed a convergence-accelerating technique when using a series

solution to describe an abrupt change in temperature. However, most problems

involving complicated geometries and conditions or variable physical properties are
difficult to solve analytically, and numerical solutions must be sought. To the best

of the authors’ knowledge, only a few researchers have focused attention on the

thermal wave behavior caused by a single thermal disturbance in multidimensional

w xgeometry. Recently, Wu et al. 22 presented a numerical analysis of the two-

dimensional hyperbolic heat conduction problem in an anisotropic medium under a

point heat source with different boundary conditions. They found that the transient
behavior of the propagation of the two-dimensional thermal wave is much more

complicated than that of the one-dimensional thermal wave because of the reflec-

tions by boundaries and interactions with each other.

w xRecently, Tamma and Namburu 23 pointed out that interdisciplinary prob-

lems encompassing thermal sciences and structural mechanics rdynamics disci-

plines are encountered in a number of applications in mechanical, aerospace, and
nuclear engineering. Thermomechanical interactions in materials and structures

are an important consideration in the design ranalysis of mechanical components.

A unified computational methodology and algorithmic representation for nonclas-

sical rclassical thermomechanical problems relevant to thermal stress wave propa-

gation, thermally induced structural dynamics, and thermal stress problems was

described with applications to various illustrative examples. More recently, Tamma

w xand Zhou 24 also presented some noteworthy perspectives of macroscale and

microscale thermal transport including thermomechanical interactions in materials

and structures.

This investigation was concerned with the propagation of a thermal wave in a

rectangular plate with an initial thermal disturbance located in an arbitrary

position. The effects of thermomechanical interactions are ignored. Two kinds of
sboundary conditions, a constant wall temperature that is, a continuous, constant

.temperature equivalent to the initial temperature and an adiabatic condition, were

considered, and the boundary conditions on four exterior sides were assumed to be

the same. We use the Green’s function technique to solve the above boundary

value problem. The results showed that the disturbance induces a severe thermal

wave front that traverses the medium with a sharp peak at the leading edge and
generates a negative trailer that follows behind the wave front. Moreover, the

reflection and interaction of thermal waves are complicated by two factors, the

finite area of the thermal disturbance and the boundary conditions. These results

are strikingly different from those for a one-dimensional analysis.

ANALYSIS

s .By applying Taylor’s series expansion to q in Eq. 2 with respect to t , andR

then neglecting the second- and higher-order terms of t , the Maxwell-CattaneoR
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PROPAGATION AND REFLECTION OF THERMAL WAVES 55

equation or non-Fourier’s law can be obtained:

s .­ q r, t
s . s . s .q r, t q t s yk = T r, t 4R ­ t

s .Equation 4 is the constitutive equation used in the linearized thermal wave
s .theory. The elimination of heat flux q between Eq. 4 and the energy conservation

equation leads to the following hyperbolic heat conduction equation with energy

sources for the temperature distribution:

1 ­ 2T 1 ­ T 1 a ­ g
2 s .q s = T q g q 5

2 2 2t /a ­ t k ­ tc ­ t c

where g represents the volumetric energy source in the medium and a s k r r C .p

The thermal properties and the thermal relaxation time are assumed to be
s .constant. For the case in which c ª ` , Eq. 5 reduces to the classical heat

diffusion equation, which corresponds to instantaneous energy diffusion.

In this investigation a two-dimensional heat conduction problem in a rectan-

gular plane with constant thermal properties was considered. The thermal conduc-

tivity and the velocity of a thermal wave were assumed to be isotropic in the

medium. The region was initially in equilibrium at temperature T . The boundary0

conditions of the four sides were the same, and two kinds of boundary conditions,

the adiabatic and a constant wall temperature equal to the initial one, were

considered. The geometry and Cartesian coordinates are depicted in Figure 1. The
s .internal heat source initiated by some distributed energy source, g x, y, t , is

s .located at an arbitrary location x , y when times t ) 0. The widths of the plane0 0

in the x and y directions are a and b, respectively.

Figure 1. Schematic drawing of the physical model.
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J.-P. WU AND H.-S. CHU56

For convenience in the subsequent analysis, the nondimensionalized variables

are defined in the transformed system as follows:

cx cy c2 t
s .X s Y s t s 6 a

2 a 2 a 2 a

s . s .T x, y, t y T q x, y, t0 x
s . s . s .u X , Y, t s Q X , Y, t s 6bX 2g c rk g c r a0 0

s . s .q x, y, t g x, y, ty
s . s . s .Q X , Y, t s S X , Y, t s 6cY 2 4 3g c r a g c r8 a0 0

where the reference quantity g is considered to be finite and is defined as0

` a b
s . s .g s g x, y, t dydxdt 7H H H0

ts 0 xs 0 ys 0

which represents the total energy released per unit length normal to the xy plane
over the entire region over all times.

The energy equation and its initial conditions are expressed in terms of the

above dimensionless variables as

­ 2u ­ u ­ 2u ­ 2u 1 ­ S
q2 s q q S q2 2 2 s .t / 8­ t 2 ­ t­ t ­ X ­ Y

0 - X - A 0 - Y - B t ) 0

where A s ca r2 a, B s cb r2 a. Initial conditions are

­ u
s . s . s .u X , Y, t s 0 s X , Y, t s 0 s 0 9

­ t

To understand the different boundary conditions influencing the propagation
and reflection of the heat wave, two limiting boundary cases were selected for

consideration. One is the prescribed temperature at which the temperature at the

boundaries was equal to T . This means the heat transfer coefficient of the0

surroundings approaches infinity. Conversely, the other case was an adiabatic

boundary condition under which no heat flux is transferred through the boundary.

Therefore the heat was fully reflected by the boundaries and restricted within the
s .medium. The foregoing governing equation, Eq. 8 , was thus considered subject to

the two kinds of boundary conditions mentioned above and is summarized below.

Constant wall temperature

s . s . s .u X s 0, Y, t s 0 0 X s A, Y, t s 0 10 a

s . s . s .u X , Y s 0, t s 0 0 X , Y s B, t s 0 10b
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PROPAGATION AND REFLECTION OF THERMAL WAVES 57

Adiabatic

­ u ­ u
s . s . s .X s 0, Y, t s 0 X s A, Y, t s 0 11a

­ X ­ X

­ u ­ u
s . s . s .X , Y s 0, t s 0 X , Y s B, t s 0 11b

­ Y ­ Y

The Green’s function solution method is a good and simple procedure for

w xobtaining a solution to the heat wave equation 21 . First, the problem with regard
s . s .to the governing system of equations, Eqs. 8 ] 11 , was subjected to arbitrary

s .dimensionless heat generation, S X, Y, t . The analytical solution of the system is

w xexpressed in terms of a Green’s function of the form 25

t 1 ­ SA B
s . s < . s .u X , Y, t s G X , Y, t j , h , z ? S j , h , z q d z dh d jH H H t /2 ­ zj s 0 h s 0 z s 0

s .12

s < .Here the Green’s function, G X, Y, t j , h , z , represents the fundamental solution
s . s .of the problem governed by Eqs. 8 ] 11 with the arbitrary nonhomogeneous

s . s .contribution, S j , h , z q1 r2 ­ S r ­ z , replaced by a quantity of heat released at
s . s . spoint j , h at time z according to the unit-impulse function d X y j d Y y

. s . s .h d t y z . The d x represents the Dirac delta function. Once the Green’s
s .function is found, the temperature distribution can be solved by Eq. 12 . There-

fore the key ingredient in this analytical development is to determine the Green’s

function, the definition of which presented here is different from that given by

w xHaji-Sheikh and Beck 21 . They showed that a solution of the Fourier-type
diffusion equation serves as a building block in constructing a solution for the heat

wave equation.

The Green’s function satisfies the following governing equation:

­ 2G ­ G ­ 2G ­ 2G
s . s . s .y 2 s q q d X y j d Y y h d t y z2 2 2 s .13­ t­ t ­ X ­ Y

0 - X - A 0 - Y - B t , z - T

s < .In addition, G X, Y, t j , h , z satisfies the initial conditions or, equivalently, the
end conditions,

­ G
s < . s < . s .G X , Y, T j , h , z s X , Y, T j , h , z s 0 14

­ t

and the boundary conditions,

­ G
s .pG qq s 0 X s 0 or A, t , z - T 15

­ X

­ G
s .pG qq s 0 Y s 0 or B , t , z - T 16

­ Y
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J.-P. WU AND H.-S. CHU58

s .The initial conditions, Eq. 14 , are based on the causality principle, which states

that an effect cannot be experienced at any time prior to its cause, whereas the
s . s .boundary conditions, Eqs. 15 and 16 , depend on different combinations of the

coefficients p and q. If a constant wall temperature at the boundaries is specified,

then p s 1 and q s 0 are required. On the other hand, if an adiabatic boundary

condition is given, the coefficients must be p s 0 and q s 1.

w xThe multiple finite transform technique 26 for two independent variables X
s . s .and Y is used to solve the two-dimensional system Eqs. 13 ] 16 . Using this

transform, an ordinary differential equation and initial conditions with respect to

time, t , can be obtained. Then we can obtain the Green’s function using a

straightforward series of manipulations along with the inversion theorem as fol-

lows:

s < . y s t y z . s .G X , Y, t j , h , z s e H t y z

` ` s . s . s .sin t y z l y 1X F j , h F X , Ym n m n m n
= p p

s .F , Fl y 1X m n m nm nm s 0 n s 0

s .17

where l are the allowable eigenvalues, F is the operator of finite integralm n m n

s .transform, and H t is the Heaviside function. Next, this fundamental solution is
s .then introduced into Eq. 12 to obtain the temperature distribution as

tA B y s t y z .s .u X , Y, t s eH H Hj s 0 h s 0 z s 0

` ` s . s . s .sin t y z l y 1X F j , h F X , Ym n m n m n
= p p

s .F , Fl y 1X m n m nm nm s 0 n s 0

1 ­ S
s . s .= S j , h , z q d z dh d j 18t /2 ­ z

where the heat generation S can be given in many forms. The Heaviside function
s . s .H t y z in Eq. 17 vanishes and is transformed into an integral with respect to

time, z , from 0 to t .

The fundamental nature of hyperbolic heat conduction is best represented by

considering a thermal disturbance deposited in a volumetric source of area D x D y.
s .The energy is located in an arbitrary position x , y and released instantaneously0 0

at time t s 0 with a total strength or energy content per unit length normal to the

xy plane of g . Such an energy source could serve as a model, for example,0

application of film rtape superconductors, which is associated with thermal stability

under thermal disturbances caused by a sudden relaxation of dislocations, crystal

w xdefects, or other spontaneous processes in superconductors 27 . This situation

assumes both the film rtape and the disturbance source to be infinite lengths along
the current direction, and Figure 1 displays the profile of a cross section normal to
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PROPAGATION AND REFLECTION OF THERMAL WAVES 59

the current direction. Another important application concerns a strong or ultra-

short-duration laser beam irradiation of absorbing or thin media surfaces. If the
absorbent layer is sufficiently comparable with the thickness of the medium, the

energy pulse may be assumed a volumetric source of finite area. Therefore this

physical model can be considered to lump the system in the thickness variable if

the upper and lower surfaces of the plane are also assumed to be adiabatic. In this

example, Figure 1 shows the upper surface of the plane. Such energy sources can

be described mathematically as

s .Ig d t0
x ( x ( x q D x y ( y ( y q D y0 0 0 0ís . s .g x, y, t s 19D x D y

J0 otherwise

s . s .where g is given in Eq. 7 and d t is the Dirac delta function. Here the delta0

function with respect to time means the limit of a pulse-type function as the pulse

becomes infinitely concentrated. By introducing the dimensionless quantities Eqs.
s . s .6 a ] 6c , the corresponding dimensionless form of the heat generation function,

s .Eq. 19 , can be expressed as

s .I d t
X ( X ( X q D X Y ( Y ( Y q D Yí 0 0 0 0s . s .S X , Y, t s 20D X D Y

J0 otherwise

s .Consequently, we substitute the energy generation function S X, Y, t into the
s .solution Eq. 18 and integrate with respect to time, z , over the 0 ( z ( t domain.

Since the source term S is zero within the medium except for the regions

X ( X ( X q D X and Y ( Y ( Y q D Y, X replaces 0, and X q D X re-0 0 0 0 0 0

places A in the integral range for X, while Y replaces 0, and Y q D Y replaces B0 0

in the integral range for Y. Then, by performing the indicated operations, we

obtain

y t ` ` s . s .e F j , h F X , YX qD X Y qD Y m n m n0 0s .u X , Y, t s p pH H s .D X D Y F , Fj s X h s Y m n m n0 0 m s 0 ns 0

sin t l y 1Xt /m n
s .= qcos t l y 1 dh d j 21Xt /m nt /l y 1X m n

Once the temperature distribution is known, the corresponding heat flux can be
s .determined by applying the general flux law, Eq. 4 , to a two-dimensional body

described by rectangular coordinates, and expressing the results in dimensionless
form as

s . s .­ Q X , Y, t ­ u X , Y, tX
s . s .qQ X , Y, t s y 22 aX­ t ­ X

s . s .­ Q X , Y, t ­ u X , Y, tY
s . s .qQ X , Y, t s y 22 bY­ t ­ Y
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J.-P. WU AND H.-S. CHU60

where the subscripts X and Y in Q represent the direction of heat flow in X and
s . s .Y, respectively. We then individually integrate Eqs. 22 a and 22 b with respect to

t to obtain

s .t ­ u X , Y, t
y2 t 2 ts . s .Q X , Y, t s ye e d t 22 cHX ­ Xt s 0

s .t ­ u X , Y, t
y2 t 2 ts . s .Q X , Y, t s ye e dt 22 dHY ­ Yt s 0

If the boundary conditions at four interior surfaces are known, we can introduce
s .the temperature function Eq. 21 , into the heat flux relationship given by Eqs.

s . s .22 c and 22 d to obtain an explicit description of the dimensionless heat flux. For
this reason, we now discuss the influence of the boundary conditions on the

temperature and heat flux distribution.

For different kinds of boundary conditions the parameters, F and l , inm n m n

s .the temperature solution, Eq. 21 , exhibit different values. As mentioned previ-

ously, we apply multiple finite sine and cosine transformations to variables X and

Y, respectively, for constant wall temperature and adiabatic conditions. Conse-
quently, the dimensionless solution of temperature for constant wall temperature

becomes

s .u X , Y, t

y t ` ` s . s .2 e sin l X sin l Ym n
s p p

AB l lm nm s 1 n s 1

v w s . x s .4v w s . x s .4cos l X q D X y cos l X cos l Y q D Y y cos l Ym 0 m 0 n 0 n 0
=

D X D Y

sin t l y 1Xt /m n
s .= qcos t l y 1 23Xt /m nt /l y 1X m n

As the time t increases in value, the effects of the boundaries increase, and the
temperature function approaches zero because u s 0 at the four boundaries. The

s .temperature solution in Eq. 23 is substituted into the heat flux relationship, Eqs.
s . s .22 c and 22 d and the dimensionless heat flux Q and Q can been directlyX Y

obtained.

The temperature distribution for the adiabatic boundary condition is

1
s .u X , Y, t s

2 AB

y t ` s . v w s . x s .4e cos l X sin l X q D X y sin l Xm m 0 m 0
s .q 24p

AB l D Xmm s 1
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PROPAGATION AND REFLECTION OF THERMAL WAVES 61

sin t l y 1Xt /m 0
= qcos t l y 1Xt /m0t /l y 1X m 0

` s . v w s . x s .4cos l Y sin l Y q D Y y sin l Yn n 0 n 0
q p

l D Ynn s1

sin t l y 1Xt /0 n
= qcos t l y 1Xt /0nt /l y 1X 0n

` ` s . s .cos l X cos l Y s .m n 24
q2 p p s .Cont.l lm nm s 1 n s 1

v w s . x s .4sin l X q D X y sin l Xm 0 m 0

v w s . x s .4= sin l Y q D Y y sin l Yn 0 n 0
=

D X D Y

sin t l y 1Xt /m n
= qcos t l y 1Xt /m nt /l y 1X m n

We note that l is a nonzero value resulting in the operator F becoming a00 00

s .constant. This value of l for temperature in Eq. 21 must be included in the00

s .series and reduces to the first term on the right-hand side of Eq. 24 , which

represents the steady state portion of the solution. Since any energy released

within the insulated region cannot escape, a residual temperature will be evenly

distributed over the entire medium, given sufficient time. A comparison of the
solutions for different boundary conditions shows that the summation terms for the

s .temperature and heat flux are quite similar. These summations in Eqs. 23 and
s . s .24 contain the factor exp y t . For `̀ large’’ values of dimensionless time, this

exponential factor causes the summations in these equations to approach zero in

value. That is, u , Q , and Q go to 0, given conditions of constant wall tempera-X Y

s .ture, and u goes to 1 r 2 AB and Q , Q go to 0, given adiabatic conditions asX Y

time passes.

It is interesting to examine whether the above solutions for the four bound-

aries insulated in a rectangular plate can be made to approximate those for the

one-dimensional problem by assuming the width of a disturbance source along the

Y axis is equal to the length of the plate; i.e., D Y s B. This problem is similar to
È w xthe one-dimensional one solved by Ozisik and Vick 20 , wherein they gave the

solutions for considering only a pulsed energy source released adjacent to the

insulated boundary surface at X s 0. This means the source position was fixed.

w xTherefore, using their results 20 , we rewrite temperature and heat flux solutions
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J.-P. WU AND H.-S. CHU62

for an arbitrarily positioned source as follows:

y t ` s . v w s . x s .41 e cos l X sin l X q D X y sin l Xm m 0 m 0
s .u X , Y, t s q p

2 A A l D Xmm s 1

sin t l y 1Xt /m 0
s .= qcos t l y 1 25Xt /m 0t /l y 1X m 0

y t `e
s . s .Q X , Y, t s sin l XpX m

A
m s1

v w s . x s .4 sin t l y 1Xsin l X q D X y sin l X t /m 0m 0 m 0
s .= 26

D X l y 1X m 0

Before presenting representative results, we again examine some interesting
limiting cases. First, we consider a limit on the disturbance energy source becoming

infinitely concentrated by making the region of an active disturbance source
s .approximate a point; this is D X D Yª 0. Then solutions are found for Eqs. 23

s .and 24 . Alternatively, since the energy source released at time t s 0 at location
s . s . s .X, Y s X , Y corresponding to the source term in Eq. 20 can be given by0 0

s . s . s . s . s .S X , Y, t s d X y X d Y y Y d t 270 0

s .the solutions for this limiting case can be determined by substituting Eq. 27 into
s .the general solution, Eq. 18 . Then the solutions can also be obtained for the

following.

Constant wall temperature

y t ` `2 e
s . s . s . s . s .u X , Y, t s sin l X sin l Y sin l X sin l Yp p m n m 0 n 0

AB
m s 1 n s 1

sin t l y 1Xt /m n
s .= qcos t l y 1 28Xt /m nt /l y 1X m n

Adiabatic

s .u X , Y, t

y t `1 e
s . s .s q cos l X cos l Xp m m 0

2 AB AB
m s 1

`sin t l y 1Xt /m 0
s . s . s .= qcos t l y 1 q cos l Y cos l Y 29X pt /m 0 n n 0t /l y 1X m 0 n s 1
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PROPAGATION AND REFLECTION OF THERMAL WAVES 63

sin t l y 1Xt /0 n
= qcos t l y 1Xt /0nt /l y 1X 0n

` `

s . s . s . s .q2 cos l X cos l Y cos l X sin l Yp p m n m 0 n 0

m s 1 ns 1

sin t l y 1Xt / s .m n 29
= qcos t l y 1Xt /m n s .Cont.t /l y 1X m n

Another interesting limiting case is one in which the finite region is made to

approach infinite size by making the limits on A ª ` and on B ª ` . These
s . s .limiting results can be obtained from Eqs. 23 and 24 and expressed as follows.

Constant wall temperature

s .u X , Y, t

y t s . s .` `2 e sin v X sin v Y1 2
s H H2 v vp v s 0 v s 0 1 21 2

v w s . x s .4v w s . x s . 4cos v X q D X y cos v X cos v Y q D Y y cos v Y1 0 1 0 2 0 2 0
=

D X D Y

2 2Xsin t v q v y 1t /1 2
2 2 s .X= qcos t v q v y 1 d v d v 30t /1 2 2 12 2X v q v y 11 2

Adiabatic

s .u X , Y, t

y t s . s .` `2 e cos v X cos v Y1 2
s H H2 v vp v s 0 v s 0 1 21 2

v w s . x s .4v w s . x s .4sin v X q D X y sin v X sin v Y q D Y y sin v Y1 0 1 0 2 0 2 0
=

D X D Y

2 2Xsin t v q v y 1t /1 2
2 2 s .X= qcos t v q v y 1 d v d v 31t /1 2 2 12 2X v q v y 11 2

s . s .The limiting solutions for Eqs. 30 and 31 should predict the same temper-
s . s .ature and heat flux distributions as given in the solutions for Eqs. 23 and 24 ,

respectively, for times prior to when the thermal wave front is reflected from the

described boundaries around the medium, since energy propagate s as a wave and
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J.-P. WU AND H.-S. CHU64

exhibits a distinct wave front with a finite propagation velocity. The physical

significance of the foregoing results is examined below.

RESULTS AND DISCUSSION

Numerical computations were performed in order to observe the behavior of

a thermal wave induced by an instantaneous thermal disturbance in a two-dimen-

sional plane. Specifically, a disturbance energy source of area D X D Y and concen-
tration 1 r D X D Y, located in the center of the medium, or adjacent to a boundary,

or in a corner of the plane was studied to determine the effects of boundary

conditions on internal heat transfer. Constant wall temperature and adiabatic

conditions at four exterior surfaces that influence the propagation and reflection of
s . s .thermal waves are discussed in the following results. Equations 23 and 24 are

used to compute the temperature and heat flux for constant wall temperature and
adiabatic boundary conditions, respectively. The temperatures predicted by the

one- and two-dimensional analyses are compared in order to emphasize the

significant differences between the two formulations. An examination of the series
s .solutions shows that the exponential term written as exp y t is independent of m

s .and n and does not contribute to convergence of the solutions. Therefore Eqs. 23
s .and 24 , in particular, are expected to converge slowly. As is generally known, the

Green’s function for hyperbolic conduction converges more slowly than that for

parabolic conduction, and the solutions for the wave front also converge more

slowly than those for other situations. Furthermore, the accuracy and convergence

of the series analytical solution were both verified using the numerical method

w xdeveloped by Yang 18 , which resolves the multidimensional thermal waves with-

out introducing oscillation or dissipation.
Figure 2 shows three-dimensional sketches of dimensionless temperature at

different dimensionless times for adiabatic boundary conditions and an instanta-

neous thermal disturbance located in the center of the medium. Additional

temperature profiles at fixed position Y s 0.5 are displayed in Figure 3, in order to

understand the propagation and reflection of the thermal wave more clearly. The

boundary around the plate is insulated, preventing heat from being transferred
through the boundaries and reflecting the energy back completely. The initial

dimensionless temperature is 0. Clearly, when the thermal disturbance occurred at

the center over the region D X D Y s 0.01 at t s 0 q and the temperature suddenly

increased to 100, an annular thermal wave was generated and propagate d in all

directions at a constant speed of 1. Note that all energy was concentrated in a wave

front of finite width, which was preserved during all reflection-transmission effects.
The front width was equal to D X or D Y, but an entire front had not yet formed

prior to t - 0.1. The amplitude of the annular wave front has its highest value

along the direction normal to the boundary because the energy source is assumed

to be square. In other words, if the directions of a traveling front deflect from the

X and Y axes, then the energy of a front would be dissipated more rapidly than

that along X and Y axial to induce a lower concentration due to a sudden increase
in the energy diffusible region. The striking feature in these results, which is

Èdifferent from that of the one-dimensional analysis presented by Vick and Ozisik

w x16 , is the negative trailer generated and forming a minus-amplitude peak in the
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PROPAGATION AND REFLECTION OF THERMAL WAVES 65

Figure 2. Three-dimensional temperature sketch at different times for adiabatic boundary conditions

for an instantaneous thermal disturbance located in the center of the medium.

vicinity of origin of the heat source when t ) 0.05. The minus peak follows after

the wave front until diffusion phenomena become dominant and is of the same

order of magnitude as the wave front peak. Another phenomenon of particular

interest is the wave front being attenuated to a sharp front and the presence of a
tip at the fore that differs from the uniform front displayed in the one-dimensional

analysis. These phenomena are discussed in conjunction with Figure 8.

As time passes, the positive thermal wave accompanies a negative trailer to

propagate toward the boundary, and the two wave cusps decay exponentially while

dissipating their energy along their path and diffusing it over a more extensive

region. Also, since the external boundaries are insulated for all t ) 0, the total
energy content is constant, so that the heat flux normal to the walls is zero, as
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J.-P. WU AND H.-S. CHU66

Figure 3. Temperature profiles at Y s 0.5 corresponding

to the situations described in Figure 2.

shown in Figure 4. As the wave propagates forward, energy is deposited in its wake

by diffusion and induces a small negative residual temperature due to the effect of
the negative wave. At t s 0.45 the leading edge of the wave front contacts the

exterior insulated surfaces and starts being reflected, and at t s 0.5 the half crest

of the wave has fully encountered these surfaces at X s 0.5 and Y s 0.5, as shown

in Figure 3. Thus the hyperbolic heat conduction equation predicts that a thermal

wave disturbance tends to propagate in a given direction until its course is impeded

by a barrier. When t s 0.7, the four wave fronts generated by the four adiabatic
boundaries exhibit positive amplitudes and are accompanied by negative waves, as

previously seen. Figure 2 d shows that the thermal waves move directly back toward

the origin. These fronts then begin to cross each other and are strengthened due to

combination in the regions of intersection, as is clearly seen at the corners. In

addition, extra waves generated by the four corners have traveled a considerable

distance at t s 1.0, as shown in Figure 2 e. At this moment the four waves reflected
by the boundaries arrive simultaneously at the center of the plane. This transmis-
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PROPAGATION AND REFLECTION OF THERMAL WAVES 67

Figure 4. Heat flux profiles in the X direction at Y s 0.5

corresponding to the situations described in Figure 2.

sion-reflection-combination phenomenon persists until diffusion dominates. As

more time passes, the temperature distribution becomes smoother and more
uniform, until the residual temperature approximates its ultimate constant, as

shown at t s 5.0.

Figure 4 shows the heat flux Q profiles at Y s 0.5 corresponding to theX

conditions shown in Figure 2. Again a severe thermal wave front with a reverse

trailer can be observed where the heat flux displays antisymmetry at the heat

source center, since the propagation directions of the thermal wave are opposite in
Figure 4. That is, if the positive wave front is moving in the negative X direction,

the corresponding magnitude of the heat flux in the wave front and in the wake of

the front is opposite to that moving in the positive X direction. After the front is

reflected by boundaries, the wave front is converted into an inverse wave front and

moves toward the center of the plane. In addition, in this configuration with the

heat flux in the Y direction, Q is always equal to zero due to symmetry, whichY

means the energy does not cross the surface of Y s 0.5 and is equivalent to the
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J.-P. WU AND H.-S. CHU68

adiabatic condition. When t s 1.0, the temperature profile in Figure 3 shows

evidence of three obvious thermal waves, but in practice, the two wider waves and
part of the main wave come from reflections off the boundaries Y s 0 and 1.

Therefore the Q of the two wider waves are lower than u in Figure 3. Moreover,Y

the depressions between the three waves are induced by the accompanying nega-

tive trailer reflected by the adiabatic surfaces at X s 0 and 1.

Figure 5 shows the temperature distributions of the whole domain at various
s .times i.e., t s 0.1, 0.3, 0.5, 0.7, 1.0, 5.0 for which the physical assumptions are the

same as those in Figure 2, except that the boundary conditions are maintained at

u s 0 so that heat can be absorbed rapidly by the environment. Figures 6 and 7

display the temperature and heat flux profiles, respectively, at Y s 0.5 for different

Figure 5. Three-dimensional temperature sketch at different times for conditions of constant wall

temperature boundary for an instantaneous disturbance located in the center of the medium.
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PROPAGATION AND REFLECTION OF THERMAL WAVES 69

Figure 6. Temperature profiles at Y s 0.5 corresponding

to the situations described in Figure 5.

s .times. At any time before the wave encounters the boundaries t - 0.45 , the

behavior of the thermal wave and the temperature and heat flux profile coincide
with that of the case shown in Figures 2 ] 4. When t s 0.1, the temperature profile

is identical to the graph in Figure 2 a, since the wave front is unaffected by the

boundary effect at this time. The reflected portion, which initially encounters the

boundaries at t s 0.45 and starts being reflected, shows a negative thermal wave

with a positive trailer moving toward the origin at t s 0.7. This negative wave front

results from the enhanced ability of an environment to transmit energy and the
basic criterion for energy conservation. Conversely, the negative trailer behind the

incident front is transformed into a positive one by reflection because the capacity

for heat transfer from the environment to the medium is correspondingly strength-

ened. The internal reflections are produced at the interface between two dissimilar

media in a two-region slab exposed to a pulsed volumetric source. The reflected

waves in region 1 may be positive or negative in magnitude as determined by the
thermal conductivity in region 2. The effects of region 2 are similar to those of the
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J.-P. WU AND H.-S. CHU70

Figure 7. Heat flux profiles in the X direction at Y s 0.5

corresponding to the situations described in Figure 5.

environment in our cases. The positive reflected wave resulting from adiabatic

boundary conditions in our studies can be simulated by assuming the thermal

w xconductivity of region 1 to be lower than that of region 2, as in their study 28 . In

contrast, the negative reflected wave due to the boundary at u s 0 can be

simulated by assuming the thermal conductivity of region 1 to be higher than that

of region 2. Figures 5e ] 5 f display the complicated temperature profile in the plane

due to boundary reflections and wave interactions. As time passes, the effect of the

wave gradually decreases until the temperature profile is uniform and approaches
zero.

To clarify the causes for a negative trailer formed after the wave front, the

different lengths of disturbance sources along the Y axis, i.e., D Y s 1, 0.5, and 0.05,

but the same D X s 0.1 are compared in Figure 8, and the case in which D X s
D Y s 0.1, in Figure 3, must also be compared. The temperature profiles at Y s 0.5

are shown in Figure 8 for three times, t s 0.05, 0.1, and 0.3. In general, decreasing
the disturbance area causes the energy concentration in the wave front to increase,

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

3:
22

 2
8 

A
pr

il 
20

14
 



PROPAGATION AND REFLECTION OF THERMAL WAVES 71

Figure 8. Comparison of temperature distributions for the

different lengths of disturbance sources along Y axis,

D Y s1, 0.1, and 0.05, all at the same D X s 1.

with the peak becoming more severe for the same energy content. If we were to

continue at the limit as the disturbance concentration became infinite over an

infinitesimally small disturbance region, the limiting delta function behavior de-
s . s .scribed by solutions Eqs. 28 and 29 for the case in which D X D Yª 0 would be

obtained. The other evident phenomenon is that as D Y decreases, the negative
trailer occurs earlier and is more concentrated. This phenomenon was not found in

any previous studies of thermal waves. A negative temperature means the tempera-

ture is below the initial temperature. D Y s 1 with adiabatic boundary conditions

around the rectangular plane can be reduced to the one-dimensional heat conduc-

tion model in which no negative trailer is generated, since the directions of heat

transfer are restricted to one direction. Whereas, as D Y decreases from 1, the
temperature distribution at the center of the plane will be exposed to the stronger

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

3:
22

 2
8 

A
pr

il 
20

14
 



J.-P. WU AND H.-S. CHU72

influence of Y direction heat conduction. In other words, the disturbance source is

far removed from the insulated boundaries, which will involve the undisturbed
regions in absorbing the released energy. Therefore, in order for the thermal wave

to move in more directions and keep its wave nature; i.e., possession of an

energy-concentrated thermal wave front, the negative-temperature trailer is gener-

ated to preserve the energy content of the system. According to the above results,

we find that the negative trailer occurs only when the reflected portion from a pair

of opposite insulated surfaces arrives at the center of the disturbance location and
strengthens the temperature magnitude . If the disturbance region persists in

decreasing, a negative trailer is generated earlier and easier. In addition, for

small-disturbance regions the peak of the negative trailer is lower in magnitude

and closer to the wave front at the same moment than that for large-disturbance
s .regions. At a time equal to one-half the front width t s D X s 0.05 , the tempera-

ture profiles for D Y s 1 and 0.5 at Y s 0.5 are exactly the same, and the front has
not yet separated into two portions traveling in opposite positive and negative X

directions, whereas for D Y s 0.1 the fronts heading in different directions have

formed at this time but the negative trailers have not yet appeared. On the other

hand, when D Y s 0.05, the trailer has induced a severe front. In the center of

Figure 8 and the upper portion of Figure 3, we can clearly see the beginning of the

negative trailer. When the trapezoidal wave front starts to move toward the
boundaries, the two sides of the wave front decrease in magnitude exponentially

until they reach the negative trailer adjacent to the edge of the front. Once the

trailer meets the trapezoidal wave front, it starts to attenuate to the front rapidly in

amplitude until only a severe tip is left at the leading edge. The process of trailer

production is more difficult to observe as the region of thermal disturbance

becomes smaller.

CONCLUSIONS

The transient temperature distribution and heat flux in a two-dimensional

rectangular plate with a thermal disturbance instantaneously released over a finite
area have been determined using the hyperbolic heat conduction model. All

surfaces around the plate were assumed to be at either a constant wall temperature

or an adiabatic condition. The thermophysical properties were also assumed to be

constant, so that analytic solutions to the problem could be obtained by using the

Green’s function technique. The results of the present analysis, showing the

contour of a thermal wave generated by a thermal disturbance possessing a
concentrated thermal wave front with an accompanying negative trailer, are

significantly different from those obtained through one-dimensional analysis. The

formation of a negative trailer and a sharp peak existing at the leading edge of the

front, which decay exponentially along its path of travel because of dissipating

energy in its wake, result from an increase in the diffusible region as it travels

through the medium. Because of overlapping and interaction of the reflected wave
fronts and trailers from the peripheral surfaces, the sharp peaks of the thermal

wave are more complicated than those found through one-dimensional analysis.

Furthermore, a comparison of temperature distributions derived from the hyper-
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bolic and parabolic models reveals that the parabolic model significantly underesti-

mates temperatures in the beginning, as the wave phenomenon is obvious.
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