
Information Processing Letters 70 (1999) 197–204

Two design patterns for data-parallel computation based on
master-slave model

Kuo-Chan Huanga,1, Feng-Jian Wangb,∗, Jyun-Hwei Tsaia,2
a National Center for High-Performance Computing, Taiwan, ROC

b Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC

Received 18 March 1998; received in revised form 5 January 1999
Communicated by F.Y.L. Chin

Abstract

This paper presents two design patterns useful for parallel computations of master-slave model. These patterns are concerned
with task management and parallel and distributed data structures. They can be used to help addressing the issues of data
partition and mapping, dynamic task allocation and management in parallel programming with the benefit of less programming
efforts and better program structures. The patterns are described in object-oriented notation, accompanied with illustrative
examples in C++. We also provide our experience in applying these patterns to two scientific simulation programs simulating
Ising model and plasma physics respectively. Since master-slave model is a widely used parallel programming paradigm, the
design patterns presented in this paper have large potential application in parallel computations. 1999 Elsevier Science B.V.
All rights reserved.

Keywords:Software design and implementation; Parallel processing; Design pattern

1. Introduction

Parallel programming is a necessary and compli-
cated task to make use of computation power of par-
allel computers. A classical, but largely unrealized,
goal in the parallel programming community is that
users write pure serial programs, and the compiler
synthesizes automatically the good parallel programs
based on analysis of the serial programs. Although
very interesting results were obtained in this direc-
tion, they all are far from a practical use yet. On the
other hand several existing parallel languages, such
as FORTRAN D, CM FORTRAN, C*, High Perfor-

∗ Corresponding author. Email: fjwang@csie.nctu.edu.tw.
1 Email: c00kch00@nchc.gov.tw.
2 Email: c00jht00@nchc.gov.tw.

mance FORTRAN (HPF), etc. [10], provide functional
abstractions for specifying partitioning and distribu-
tion strategies for static and regular data structures
such as array. However, functional abstractions are in-
sufficient for expressing partitioning and distribution
strategies for irregular or dynamic data structures [13].
Currently, for these irregular and dynamic applications
basic parallel programming tools are message-passing
libraries, among which PVM [6] and MPI [7] are the
most popular.

Message-passing based parallel programming is a
kind of programming at assembler level. Although it
is possible to write highly efficient parallel programs
in message-passing languages, most users find such
programming to be incredibly tedious [11]. A more
serious problem is that current parallel programming

0020-0190/99/$ – see front matter 1999 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(99)00057-5



198 K.-C. Huang et al. / Information Processing Letters 70 (1999) 197–204

practice intermixes the specification of parallel con-
trol structure, such as data partition, mapping, and task
management, with the code specifying the real com-
putation stuff. The intermix complicates the software
structure and thus reduces the reusability and main-
tainability of the code constructed.

Some researchers have recognized this issue and be-
gun to study programming language constructs to re-
solve it [11]. However, it will take a long time be-
fore these constructs appear in daily programming lan-
guages such as C++ or FORTRAN. Before the appear-
ance, programmers of parallel programs need other
kinds of tools handy to approach this issue. This pa-
per extends our previous work [4] and presents two
design patterns to address the issue. The proposed pat-
terns in this paper are not tied to any specific program-
ming languages, thus provide a portable design-level
solution. These patterns can be easily implemented
in widely available object-oriented programming lan-
guages, e.g., C++.

2. Design pattern

OOD has proven to be quite popular in practice,
and sophisticated OOD methodologies offer signif-
icant leverage for designing software [2], including
ease of decomposing a system into its constituent el-
ements and partitioning system functionality and re-
sponsibility among those elements. However, it is not
well suited for describing complex interactions be-
tween groups of objects. Likewise, individual objects
can often be reused in other implementations, while
capturing and reusing common design idioms, involv-
ing multiple objects, can be difficult [3]. Design pat-
terns are important because they fill design gaps that
objects handle poorly. Patterns help to express design
in terms of the relationships between the parts of a
system and the rules to transform those relationships.
Patterns have given us a vocabulary to talk about struc-
tures larger than modules, procedures or objects [12].
Many of these structures are not new; but even though
some of them are decades old, they are seldom ex-
plicit. Patterns bring these structures long known to
expert practitioners to the daily programmer. They
help programmers gain competence, and sometimes
excellence using microarchitectures such as those pub-
lished in [5]. The complexity of parallel programming

lies on the interaction among modules in the computa-
tion. Since design pattern is good at describing the in-
teractions among objects, it is thus a natural and good
supporting methodology for parallel programming.

Recently, design patterns have been applied to
successfully solve issues in developing concurrent or
distributed software systems [14–18]. Most of these
works resolve issues such as event handling, job
dispatching, connection management, etc. This paper
applies software design patterns to parallel processing,
which is similar to distributed/concurrent computing
conceptually but with different focus. The patterns in
this paper focus on computation topology and task
management as well as data distribution and exchange
among tasks.

3. The computing space pattern

Parallel computation can be viewed as a group of
processes cooperating to achieve a common goal or
obtain a global result in a faster way. The structur-
ing of the group of processes becomes a major con-
stituent for the complexity and efficiency of parallel
programs. Current practice scatters the code for the
group management around the entire program. This
makes the used group structure and parallel process-
ing techniques unclear and not easy to understand;
it unavoidably leads to trouble in program mainte-
nance. It is even worse when the computation exploits
nested, multiple parallelisms, or dynamic group struc-
ture. Thecomputing spacepattern is developed to ad-
dress the above issue and consists of two kinds of ob-
jects: the topology object and neighbor objects. The
topology and neighbor objects reside on master and
slave processes, one for each, respectively. The rela-
tionships between these two kinds of objects are de-
picted in Fig. 1.

The topology object maintains the process group
structure. The topology object itself contains two lay-
ers, as shown in Fig. 3. The upper layer describes
the logical structure of the process group specified
by the parallel algorithm, including the number of
slave processes, the interconnection among the slave
processes, and the information about the programs ex-
ecuted by the slave processes. The lower layer main-
tains the information about the physical computing en-
vironment, including the number of processor nodes,



K.-C. Huang et al. / Information Processing Letters 70 (1999) 197–204 199

Fig. 1. Topology and neighbor objects.

processor speed and workload, networking structure,
communication link properties such as latency and
bandwidth. The information is crucial for adaptive par-
allel systems to perform dynamic processor allocation
and dynamically adjust the data partition and distri-
bution methods. A method in the topology object is
responsible for efficiently mapping the logical process
group structure onto the physical computing environ-
ment.

The topology object provides an interface allow-
ing a master process to create certain parallel com-
putation structure according to the group structure in-
formation in it. The group structure is determined
by the parallel algorithm used. A slave process, af-
ter spawned by the master process, first instantiates
a neighbor object which records the communication
structure among it and its neighbors according to in-
formation received from the topology object. Through
the computing spacepattern, the computation and
communication structure of a parallel computation is
gathered into software modules in a form which can be
easily accessed and managed dynamically. This leads
to a clearer and more understandable software struc-

ture for maintenance. Moreover, through dynamic ma-
nipulation of the topology and neighbor objects the
pattern especially benefits adaptive parallel computa-
tion which needs to dynamically reconfigure its com-
putation and communication structure for better per-
formance. In the following, we use the parallel simula-
tion of Ising model [8] as an example to illustrate how
to build and apply thecomputing spacepattern. In par-

Fig. 2. Parallel simulation of Ising model.

allel simulation of two dimensional Ising model using
master-slave approach, the lattice of spins is divided
into a set of sublattices each of which is processed by
a slave process, as shown in Fig. 2. The master process
collects data from slave processes at the end of each
iteration and then computes the macroscopic informa-
tion. In this case, C++ and PVM [6] library together
are used to implement thecomputing spacepattern.
We defined two classes for topology and neighbor ob-
jects, respectively. The interface of these two classes
is shown in Table 1.

ClassTopology uses a data structure,Mesh, to
store the mesh group structure. The member func-
tion, Spawn() , uses the facilities provided by PVM
to spawn the slave processes according to the group
structure and pass them the information of the neigh-
borhood. In the constructor of classNeighbor , it re-
ceives the process Ids of its up, down, left, right neigh-
bors and the master process from the master process.
These process Ids are then used by the slave process
for the communication through PVM in the following
computation.

4. Group communication pattern

In data-parallel computation, distribution adds a
new design dimension requiring a designer to take
into account the partitioning and distribution strate-
gies with respect to distributed data structures which
themselves are kept in processes running on differ-



200 K.-C. Huang et al. / Information Processing Letters 70 (1999) 197–204

Fig. 3. Layered structure of the topology object.

Table 1
Interfaces of classTopology andNeighbor

Class Topology
{
public:

Topology(Mesh);
void Spawn();
...

private:
Mesh slave_topology;

}

class Neighbor
{
public:

Neighbor(int up, int down, int left,
int right, int master);

int Left();
int Right();
int Up();
int Down();
int Master();
...

private:
int left, right, up, down, master;
...

};

ent processors. Group communication is a recognized
technique for managing the complexity of distributed
systems [1]. It can be used to simplify implementa-
tion of the partitioning and distribution strategies by
enabling simultaneous addressing of all members of a
group. The partitioning and distribution strategies may
be reused with different applications that use the same
data and task structures.

Thegroup communicationpattern in this section ad-
dresses the issue of partitioning and distribution strate-
gies in data-parallel computation based on the master-

slave model in cooperation with thecomputing space
pattern described in the previous section. A common
feature of the master-slave model in parallel computa-
tion is that the master process broadcasts global infor-
mation or distributes data to slave processes and col-
lect computation results from the slave processes. The
group communicationpattern consists of two kinds of
objects: the global and local objects. The global ob-
ject resides on the master process and the local objects
on the slave processes. Conceptually, the global ob-
ject and the collection of local objects represent the



K.-C. Huang et al. / Information Processing Letters 70 (1999) 197–204 201

Fig. 4. Communication structure between global and local objects.

same shared data, but used in the master and slave
processes, respectively. Technically, the data sharing
is done by keeping two copies of the shared data on
the global and the collection of local objects, respec-
tively. Replication is used to improve the efficiency of
local accesses to the shared data. The consistency be-
tween the two copies of data is guaranteed by proper
updating of global and local objects through commu-
nication among processes at specific points of compu-
tation. The communication details are encapsulated in
the global and local objects, however, when to update
data for maintaining consistency is determined by the
program context in the master and slave programs. The
communication structure among the global and local
objects is depicted in Fig. 4. The global object sets
up its relationship with the local objects according to
the group structure information which is stored in the
topology object of thecomputing spacepattern.

The usage of the shared data in the master-slave
model usually has some simple and clear fixed pat-
terns. Therefore, the data consistency problem in this
model is less complex and easier to solve than in gen-
eral distributed computing scenarios. The following

are three common usage patterns of shared data in this
model:
• Global data broadcasting. The master process needs

to broadcast global information or data stored in
the global object to the local objects in the slave
processes at perhaps the beginning of each com-
putation iteration. Here, each local object gets the
same whole copy of the global object.
• Computation result collection. The master process

has to collect the computation results from the slave
processes for further processing or display at the
end of each iteration of computation. Here, the
results in all local objects are put together into
the global object to form a whole picture of the
computation results.
• Data scattering and gathering. The master process

at the beginning of each iteration distributes initial
data in the global object to the slave processes. Each
slave process gets a part of the initial data and stores
it in the local object to perform the computation.
At the end of the iteration, the slave process has
updated the initial data in the local object according
to the computation performed. The master process



202 K.-C. Huang et al. / Information Processing Letters 70 (1999) 197–204

Table 2
Global data broadcasting

Class Global
{
public:

Global(Topology*);
void Broadcast();
Grid grids; //The global information

about the fields in plasma reactor
...

private:
//information about the

corresponding local objects
...

};

class Local
{
public:

Local();
Receive();
Grid grids; //The global information

received from global object
...

private:
//information about the

corresponding global object
...

};

then gathers the updated data from slave processes
into the global object to get complete information.
In the above three shared data usage patterns, the

accesses to the shared data from the master and the
slave processes have fixed sequence and would not
interferes each other. Therefore, the complex multiple
concurrent read and write accesses problem does
not occurs here. The following are two examples
of how to build and apply the distributed object
pattern. The two examples concern theglobal data
broadcastingandcomputation result collectionusage
patterns which appear in our parallel implementation
of plasma simulation [9]. The implementation is based
on C++ and the PVM [6] library. Table 2 shows the
interface definitions of the global and local objects for
the global data broadcasting usage pattern.

The global object’s constructor,Global(Topo-
logy*) , needs a topology object to help initialize
the relationship with local objects. The local object’s
constructor,Local() , sets up connection with the
global object for following communication. The meth-

Table 3
Computation result collection

class Global
{
public:

Global(Topology*);
Collect();
Field fields; //the collected whole

computation result
...

private:
//information about the

corresponding local objects
...

};

class Local
{
public:

Local();
Send();
Field fields; //computation result

in each slave process
...

private:
//information about the

corresponding global object
...

};

ods Broadcast() and Receive() perform the
data updating stuff through the help of PVM to main-
tain the consistency of shared data. In this case, the
shared global information,Grid , is broadcasted from
the global object to a set of local objects. Table 3
shows the interface definitions of the global and lo-
cal objects for the computation result collection usage
pattern. The computation result collection is achieved
through the cooperation of the two member functions,
Collect() and Send() . The computation result,
Field , in each local object is just a part of the whole
result. The other parts of interface definitions are the
same as in Table 2.

5. Performance evaluation

While with better software structure and other ben-
efits, software design pattern usually introduces an ad-
ditional layer of encapsulation, which may lead to per-
formance degradation through the overheads of addi-



K.-C. Huang et al. / Information Processing Letters 70 (1999) 197–204 203

Table 4
Performance of the parallel plasma simulation

sequential 2 nodes 4 nodes 6 nodes 8 nodes 10 nodes 12 nodes 14 nodes

time (sec) 2828.82 1427.81 734.47 493.45 382.41 312.22 275.15 234.20

speedup 1 1.98 3.85 5.73 7.39 9.06 10.28 12.07

Table 5
Overhead evaluation of the two design patterns

computing space pattern group communication pattern

overhead (sec) 0.03 0.14

tional procedure-call and object initialization. How-
ever, previous experience [14] shows that with careful
design, performance loss can be kept to a minimum.
This section evaluates the additional overheads when
applying the two design patterns proposed in this pa-
per. The evaluation is based on a parallel plasma sim-
ulation [9]. Table 4 shows the runtime performance of
the parallel simulation on IBM SP2 with IBM PVMe.

Different implementations of the parallel simula-
tion, with or without the two design patterns, are com-
pared to evaluate the possible performance loss. Ta-
ble 5 shows the result of the comparison. Compared
to the total execution time in Table 4, the overhead in-
curred by the design patterns is negligible. Moreover,
the additional procedure-call overhead can be further
minimized by theinline technique in programming
languages such as C++.

6. Conclusions

This paper presents two useful design patterns con-
cerning group structuring and communication for par-
allel computation of master-slave model. The two pat-
terns work in a collaborative fashion. The topology ob-
ject in thecomputing spacepattern stores the group
structure information of the parallel processes which
the group communicationpattern use to set up the re-
lationship between the global and local objects. Ap-
plying these two patterns has a number of significant
benefits. First, it promotes design-level reuse: routine
solution to the data partition and distribution problem
with well-understood properties can be reapplied to
new applications with confidence. Second, it can lead
to significant code reuse: often the invariant aspects

of process group structure lend themselves to shared
implementations. Third, it is easier for others to un-
derstand the organization of a parallel computation be-
cause conventionalized structures are used. Fourth, use
of standardized group structure supports interoperabil-
ity. Our experience, when applying these two patterns
to two real applications: parallel simulations of Ising
model and plasma respectively, indicates that they do
provide help as explained previously. As indicated by
the evaluation, the runtime overhead of these patterns
due to the higher-level object-oriented structuring is
negligible in comparison with the total execution time.

References

[1] M.F. Kaashoek, A.S. Tanebaum, Group communication in the
amoeba distributed operating system, in: Proc. 11th Interna-
tional Conference on Distributed Computer Systems, Arling-
ton, VA, May 1991, pp. 222–230.

[2] J. Rumbaugh et al., Object-Oriented Modeling and Design,
Prentice-Hall, Englewood Cliffs, NJ, 1991.

[3] R.T. Monroe, A. Kompanek, R. Melton, D. Garlan, Architec-
tural styles, design patterns, and objects, IEEE Software 14 (1)
(1997) 43–52.

[4] K.C. Huang, P.C. Wu, F.J. Wang, Developing high-perform-
ance scientific applications in distributed computing environ-
ments, in: Proc. 5th IEEE Computer Society Workshop on Fu-
ture Trends of Distributed Computing Systems, 1995, pp. 308–
312.

[5] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-
Wesley, Reading, MA, 1995.

[6] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
V. Sunderam, PVM: Parallel Virtual Machine, A User’s Guide
and Tutorial for Networked Parallel Computing, MIT Press,
Cambridge, MA, 1994.



204 K.-C. Huang et al. / Information Processing Letters 70 (1999) 197–204

[7] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, MIT Press,
Cambridge, MA, 1994.

[8] K. Huang, Statistical Mechanics, John Wiley & Sons, Inc.,
New York, 1963.

[9] K.C. Huang, J.H. Tsai, F.J. Wang, Parallel computation of
loosely synchronous system with time-increasing data set,
in: Proc. 2nd Symposium on Computer and Communication
Technology, 1996, pp. 50–56.

[10] T.G. Lewis, H. El-Rewini, Introduction to Parallel Computing,
Prentice-Hall, Englewood Cliffs, NJ, 1992.

[11] A.L. Lastovetsky, mpC: a multi-paradigm programming lan-
guage for massively parallel computers, ACM SIGPLAN No-
tices 31 (2) (1996) 13–20.

[12] J.O. Coplien, Idioms and patterns as architectural literature,
IEEE Software 14 (1) (1997) 36–42.

[13] R. Panwar, G. Agha, Partitioning and distribution strategies as
first class objects, Technical Report available at http://www-
osl.cs.uiuc.edu/Papers/Parallel.html.

[14] R.K. Keller, J. Tessier, G.V. Bochmann, A pattern system for
network management interfaces, ACM Comm. 41 (9) (1998)
86–93.

[15] D.C. Schmidt, Acceptor-connector—An object creational pat-
tern for connecting and initializing communication services,
in: Proc. European Pattern Language of Programs Conference,
July 10–14, 1996.

[16] I. Pyarali, T. Harrison, D.C. Schmidt, T.D. Jordan, Proactor—
An object behavioral pattern for demultiplexing and dispatch-
ing handlers for asynchronous events, in: Proc. 4th Annual Pat-
tern Languages of Programming Conference, Allerton Park,
IL, September 2–5, 1997.

[17] R.G. Lavender, D.C. Schmidt, Active object—An object be-
havioral pattern for concurrent programming, in: Proc. 2nd Pat-
tern Languages of Programs Conference, Monticello, IL, Sep-
tember 6–8, 1995.

[18] S. Baker, Design patterns for network development, UNIX
Review (1997) 33–37.


