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Abstract

The dynamic behavior of a rotational machine with centrifugal governor which is subjected to two
di�erent forms of external disturbance is studied in this paper. The Lyapunov direct method is applied
to obtain conditions of stability of the equilibrium points of the system. A codimension one bifurcation
analysis for the autonomous system is carried out near the degenerate point. It is found that a Hopf
bifurcation occurs in the system. The incremental harmonic balance (IHB) method combined with the
multi-variable Floquet theory has been e�ectively applied to obtain the steady state responses of the
three-dimensional nonautonomous system. Phase portraits, power spectra, PoincareÂ maps, and
Lyapunov exponents are presented to observe periodic, quasi-periodic and chaotic motions. # 1999
Elsevier Science Ltd. All rights reserved.

1. Introduction

During the past one and half decades, a large number of studies have shown that chaotic
phenomena are observed in many physical systems that possess non-linearity [1,2]. It was also
reported that the chaotic motion occurred in many nonlinear control systems [3,4].
The centrifugal governor is a device that automatically controls the speed of an engine and

prevents load torque due to sudden change from damaging the engine. It plays an important
role in many rotational machines such as diesel engines, steam engines and so on. A simpli®ed
version of Vyshnegradskii's analysis of the steam engine with Watt's centrifugal governor is
presented by Pontryagin [5], and the stability of the system is also investigated by Hassard et
al. [6]. When an engine system is subjected to external disturbances, the speed of the engine
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varies. In order to diminish the change of engine speed, and to avoid the chaotic motion
emerging in the operational process of the engine, the regular and chaotic dynamics of a
rotational machine with a centrifugal governor are studied in this paper. The mechanical
system is assumed to have two di�erent forms of external disturbance. Here, the disturbance
can be considered either an initial disturbance (the autonomous case) or a periodic external
load (the nonautonomous case).
In Section 2, the governing equations of motion will be formulated, then the stability of the

®xed points of the autonomous system are studied by the Lyapunov direct method. In
nonlinear dynamical systems, variation of system parameters may cause sudden change in the
qualitative behavior of their state. The sudden change of state is referred to as a bifurcation
and the parameter value at which the bifurcation occurs is called the bifurcation point. A
codimension one bifurcation analysis for the autonomous system is carried out near the
degenerate point. The forms of bifurcation will be determined through the process of the local
bifurcation analysis. Both the Lyapunov exponents and the Lyapunov dimension will be used
to detect the chaos existing in the system.
In Section 3, the nature of the periodic, quasi-periodic and chaotic motions is shown in the

phase diagrams, PoincareÂ maps and power spectra. In order to determine the stability of
periodic solutions, various perturbation techniques are employed in weak nonlinear analysis
such as the method of averaging [7], and the method of multiple scales [8]. The harmonic
balance (HB) [9,10] can be used to treat strong nonlinear systems well but its drawbacks are
that a set of complex nonlinear algebraic equations are formulated and must be solved. For
higher accuracy, higher harmonic terms are needed and the whole formulation must be

Fig. 1. Physical model of a rotational machine with a ¯y-ball governor system.
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reformed. In comparison, the incremental harmonic balance (IHB) method proposed by Lau et
al. [11] which can give accurate results with a few harmonic terms and the accuracy of the
results can be increased without di�culty.
In this paper, the IHB method is applied to obtain the periodic solutions of the system. To

be more e�ective, a cubic extrapolation technique [12] is used to predict the neighbouring state
from some known states. Thus, the number of iterations required to converge can be further
reduced. In addition, the multi-variable Floquet theory [13] is applied to analyze the stability
of the periodic solutions.

2. Regular and chaotic dynamics of autonomous systems

2.1. An analytical model

The rotational machine with centrifugal governor is shown in Fig. 1. Some basic
assumptions for the system are

1. the mass of the sleeve and the rods is neglected;
2. viscous damping in the rod bearing of the ¯y-ball is presented by damping constant b.

From Fig. 1, the kinetic and potential energies of the system are written as follows:

T � 2�
�
1

2
m�l2Z2 sin2j� l2 _j2�

�
� ml2Z2 sin2j�ml2 _j2,

V � ÿ2mgl cos j

where l, m, j and Z represent the length of the rod, the mass of the ¯y-ball, the angle between
the rotational axis and the rod, and the angular velocity of the governor, respectively. It is easy
to obtain the Lagrangian

L � Tÿ V � ml2Z2 sin2j�ml2 _j2 � 2mgl cos j:

Using the Lagrange equation, the equation of motion is derived

�j � b
m

_j � g

l
sin j � Z2 sin j cos j: �1�

The net torque is the di�erence between the torque Q produced by the engine and the load
torque QL, which is available for angular acceleration. That is,

J
do
dt
� QÿQL �2�

where J is the moment of inertia of the machine. As the angle j varies, the position of the
control valve which admits the fuel is also varied. Their relation is presented by Refs. [5,6], so
Eq. (2) is written in the form
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J _o � g cos jÿ P �3�
where g>0 is a proportionality constant and P is an equivalent torque of the load.
Usually, the governor is geared directly to the output shaft such that its speed of rotation is

proportional to the engine speed, i.e. Z=no. Changing time scale t=Ont, Eqs. (1) and (3) can
be written in nondimensional form

�j � C _j � sin j � ro2 sin j cos j

_o � k cos jÿ F �4�
where

k � g
JOn

, F � P

JOn

, r � n2l

g
,

C � b
mOn

, On �
����
g

l

r
and the overdot denotes di�erentiation with respect to t. Eq. (4) can be expressed as three ®rst
order equations

_j � c,

_c � ro2 sin j cos jÿ sin jÿ Cc,

_o � k cos jÿ F, �5�
where j is the angular velocity of the rod. Hence, the dynamics of the system of a rotationing
machine with a ¯y-ball governor is described by a three-dimensional autonomous system.

2.2. Stability analysis by the Lyapunov direct method

Find the equilibria of the system and determine the stability of them. These equilibria can be
found from Eq. (5) as p=[j0, 0, o0] with

cos j0 �
F

k
, o2

0 �
k

rF
:

Add slight disturbances x, y, z to the ®xed point (arccos F/k, 0,
����������
k=rF

p
)

j � j0 � x, c � y, o � o0 � z: �6�
Substitute Eq. (6) into Eq. (5), and expanding sin j, cos j as the Taylor series, it becomes

_x � y
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_y � ÿaxÿ Cy� bz� � � �

_z � ÿdx� � � � �7�
where

a � k2 ÿ F 2

kF
, b � 2

��������
rkF
p ����������������

k2 ÿ F 2
p

k2
, d �

����������������
k2 ÿ F 2
p

,

and the terms higher than one degree have not been written down. Let k>F>0, then a>0,
b>0 and d>0.
First, asymptotical stability of the null solution of Eq. (7) can be studied by using the

Lyapunov direct method. Construct the quadratic Lyapunov function candidate in the form

V�x,y,z� � A11x
2 � A22y

2 � A33z
2 � 2A12xy� 2A13xzÿ 2yz:

The derivative of V with respect to t along the trajectories of the system is given by

_V � ÿ2�aA12 � dA13�x2 � �2A12 ÿ 2CA22�y2 ÿ 2bz2 � �2A11 ÿ 2aA22 ÿ 2CA12 � 2d�xy� �2a

� 2bA12 ÿ 2dA33�xz� �2C� 2A13 � 2bA22�yz
� � � � :

Now, it is necessary to choose A11, A22, A33, A12 and A13 such that V and ÿ _V are positive
de®nite [14]. Let

A11 � ab� a2b� bC 2 � b2Cd� C 3d� bd2

aCÿ bd
,

A22 � b� ab� Cd

aCÿ bd
,

A33 � a2C� b2Cÿ abd� b3d� bC 2d

aCdÿ bd2
,

A12 � bC� b2d� C 2d

aCÿ bd
,

A13 � b2 � ab2 � aC 2

bdÿ aC
:

Then

_V�x,y,z� � ÿb�x2 � y2 � z2� � � � �
is negative de®nite. By Sylvester's theorem [16], the su�cient condition for V to be positive
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de®nite is found:

aC > bd

i.e.

k >
4rF 3

C 2
: �8�

From the Lyapunov asymptotic stability theorem, we conclude that the origin is asymptotically
stable. The stability of the origin when k=4rF 3/C 2 has not been obtained by the Lyapunov
direct method. In the next subsection, it will be determined by the center manifold and normal
form theory.
Next, the stability of the ®xed point (arccos F/k, 0, ÿ ����������

k=rF
p

) is studied. The di�erential
equations for disturbances are

_x � y,

_y � ÿaxÿ Cyÿ bz� � � � ,

_z � ÿdx� � � � , �9�
where a, b, d are the same as above.
In order to determine the instability of the null solution of Eq. (9), the quadratic Lyapunov

function candidate is assumed in the form

V�x,y,z� � ÿ�a� d�x2 ÿ y2 � a

d
z2 ÿ 2�b� C �xzÿ 2yz:

The derivative of V with respect to t along the trajectories of the system are given by

_V � 2�bd� Cd�x2 � 2Cy2 � 2bz2 � � � �
which is positive de®nite. There exists the region V(x, y, a )>0 in the neighborhood of the
origin of Eq. (9). Its boundaries in the x±y plane are

y � ÿd�
���������������
ad� d2
p

d
z and y � ÿdÿ

���������������
ad� d2
p

d
z,

in the x±z plane are

x �
ÿ�b� C �d�

�����������������������������������������������
�b� C �2d2 � ad�a� d�

q
d�a� d� z

and
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x �
ÿ�b� C �dÿ

�����������������������������������������������
�b� C �2d2 � ad�a� d�

q
d�a� d� z:

In the x±y plane the boundary is

z � 0:

So, by the Lyapunov instability theorem, the origin is unstable.

2.3. Applications of the center manifold and normal form theory

In nonlinear dynamical systems, variation of system parameters may cause sudden change in
the qualitative behaviour of their state. The state change is referred to as a bifurcation and the
parameter value at which the bifurcation occurs is called the bifurcation point. Here we give
attention to the Hopf bifurcation which will occur in this system. Eq. (7) is rewritten in matrix
form

_X � AX� f�X � �O�4�, X 2 R3 �10�
where X=[x, xÇ , z ]T= [x, y, z ]T

A �

266664
0 1 0

F 2 ÿ k2

Fk
ÿC 2

���������������������������
rFk�k2 ÿ F 2�

p
k2

ÿ
����������������
k2 ÿ F 2
p

0 0

377775,

f �
24 0
f1�X �
f2�X �

35
where

f1�X � � ÿ3
����������������
k2 ÿ F 2
p

2k
y2 � rF

����������������
k2 ÿ F 2
p

k2
z2 � 2�2F 2 ÿ k2� ��������

rFk
p

Fk2
xy� 4k2 ÿ 7F 2

6Fk
x3

� r�2F 2 ÿ k2�
k2

xz2 � 4F
���������������������������
rFk�k2 ÿ F 2�

p
Fk2

x2z

f2�X � � ÿF
2
x2 �

����������������
k2 ÿ F 2
p

6
x3:

The Jacobian matrix A is evaluated at the ®xed point (arccos F/k, 0,
����������
k=rF

p
). Further, it is

necessary to ®nd the value of k for which the eigenvalues of A contain a pure imaginary pair
with the remaining eigenvalue having a negative real part. The conditions for a pure imaginary
pair can be shown to be
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k � 4rF 3

C 2
:

Here k is considered as the only parameter to be varied for the occurrence of the Hopf
bifurcation. When the values of parameters C, F, r are given as 0.7, 1.942, 0.25, respectively,
the parameter k takes the critical value

kc � 14:947

which is called the bifurcation point.
At this critical parameter kc, the origin is nonhyperbolic. The eigenvalues of matrix A fail to

determine the stability of the ®xed point and it becomes necessary to consider the higher order
terms to analyze the three-dimensional nonlinear system. So one employs the following
methods to analyze the dynamical system. First, the center manifold theorem [15] will be
applied to reduce the dimension of the state spaces at the critical parameter kc. The following
linear transformation matrix is used to transform Eq. (10):

T �

26666664
0

C

2
��
r
p

F

C 3

d

d
4rF 4

0
ÿC 4

d
1 0 1

37777775
which is formed by eigenvectors of A at kc, where d �

��������������������������������
16r2F 6 ÿ C 4F 2
p

. Let24 x
y
z

35 � T

24 q1
q2
q3

35
then Eq. (10) is transformed into Jordan form

24 _q1

_q2

_q3

35 �
26666664

0
ÿd

2C
��
r
p

F 2
0

d
2C

��
r
p

F 2
0 0

0 0 ÿC

37777775
24 q1
q2
q2

35� T ÿ1f�Tq�:

According to the center manifold theory, it is found that there exists a center manifold tangent
to the two dimensional center eigenspace which is formed by eigenvectors corresponding to the
pair of pure imaginary eigenvalues. The behavior of the original system in close proximity to
the degenerate point can be determined by a two dimensional system restricted within the
center manifold h(q1, q2).�

_q1

_q2

�
�
�

0 ÿ2:751
2:751 0

��
q1
q2

�
�
�
0:059q21 ÿ 0:915q1q2 ÿ 0:096q22
0:015q21 ÿ 0:233q1q2 ÿ 0:016q22

�
�
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�
0:009q31 ÿ 0:005q21q2 ÿ 0:054q1q

2
2 ÿ 0:023q32

0:002q31 ÿ 0:002q21q2 ÿ 0:014q1q
2
2 ÿ 0:01q32

�
, �11�

where

h�q1,q2� � ÿ0:081q21 ÿ 0:001q1q2 � 0:086q22 � 0:009q31 ÿ 0:002q21q2:

Next, normal form theory [17±19] is used to study the qualitative properties of the ¯ow
restricted on h(a1,q2). The method is a local analysis and a sequence of transformation matrices
are generated in the neighborhood of the ®xed point. The procedure will enable us to simplify
the nonlinear terms of Eq. (11) and does not change the qualitative behavior of the system. So
Eq. (11) will be written as

_y1 � 2:751y2 � �ÿ0:0055y1 ÿ 0:0086y2�� y21 � y22� �O�5�,

_y2 � 2:751y1 � �0:0086y1 ÿ 0:0055y2�� y21 � y22� �O�5�,
which is the simplest form of the original system.
One also considers what might occur in the neighborhood of the bifurcation point

kc=14.947. By applying the method used in Ref. [19], we get the unfolding normal form at
k=kc+m:

Fig. 2. The stable region of the system.
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_y1 � m1y1 ÿ m2y2 ÿ 2:751y2 � �ÿ0:0055y1 ÿ 0:0086y2�� y21 � y22� �O�5�,

_y2 � 2:751y1 � m2y1 � m1y2 � �0:0086y1 ÿ 0:0055y2�� y21 � y22� �O�5�, �12�
where m1=ÿ0.011m, m2=0.092m. Change the form of Eq. (12) into polar coordinates and let
y1= r cos y, y2= r sin y, then

_r � ÿ0:011mrÿ 0:0055r3 �O�r5�,

_y � 2:751� 0:092m� 0:0086r2 �O�r4�: �13�
The following conditions can be derived from Eq. (13): (1) for m>0 (k>kc), the origin is
stable; (2) m<0 (k<kc), the origin is unstable and forms a limit cycle. It is recognized that the
form of the Hopf bifurcation is a supercritical Hopf bifurcation from conditions (1), (2). The
stable region of the ®xed point (arccos F/k, 0,

����������
k=rF

p
) of Eq. (10) is shown in Fig. 2. From the

above facts, the center manifold method and normal form method are very useful for analyzing
the nonlinear system.

2.4. Lyapunov exponents and PoincareÂ map

In order to determine the chaos existing in a nonlinear system, the method of detecting the
chaos becomes very important. Here a Lyapunov exponent is used as a quantitative measure of
the chaotic motion of the system. The Lyapunov exponent may be used to measure the
sensitive dependence upon the initial conditions [1]. It is an index for chaotic behavior.
Di�erent solutions of the dynamical system, such as ®xed points, periodic motions,
quasiperiodic motion, and chaotic motion can be distinguished by it. If two chaotic trajectories
start close to one another in phase space, they will move exponentially away from each other
for a small time on average. Thus, if d0 is a measure of the initial distance between the two
starting points, the distance is d(t )=d02

lt. The symbol l is called the Lyapunov exponent. The
divergence of chaotic orbits can only be locally exponential, because if the system is bounded,
d(t ) cannot grow to in®nity. A measure of this divergence of orbits is that the exponential
growth at many points along a trajectory has to be averaged. When d(t ) is too large, a new
``nearby'' trajectory d0(t ) is de®ned. The Lyapunov exponent can be expressed as:

l � 1

tN ÿ t0

XN
k�1

log 2
d�tk�

d0�tkÿ1� : �14�

The signs of Lyapunov exponents provide a qualitative picture of the system dynamics.
Positive values of Lyapunov exponents indicate chaos, negative values of Lyapunov exponents
indicate a stable orbit. In three-dimensional space, the Lyapunov exponent spectra for a
strange attractor, a two-torus, a limit cycle and a ®xed point are described by (+,0,ÿ), (0,0,ÿ),
(0,ÿ ,ÿ) and (ÿ,ÿ ,ÿ), respectively [20].
In order to explore the chaos of the ¯y-ball governor system, three Lyapunov exponents are

calculated when the values of parameters C, F, r are given as 0.7, 1.942, 0.25 and k is varied
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from 1.942 to 20. Fig. 3 illustrates the fact that some values of parameter k will cause chaotic
motion. When one de®nes j=x, jÇ=y, o=z, and uses the initial conditions x(0)=0.02,
y(0)=0.01, and z(0)=0.03 at: (1) k=16, and (2) k=2.603, three Lyapunov exponents are
obtained, respectively,

l1 � ÿ0:008, l2 � ÿ0:0127, l3 � ÿ0:6792,
the motion of which converges to ®xed point and

l1 � 0:1116, l2 � 0:0, l3 � ÿ0:8116
which means chaotic motion. Three Lyapunov exponents for the occurrence of a Hopf
bifurcation at kc=14.947 are 0.0, 0.0002, ÿ0.6998, respectively.
In a dissipative system, the sum of all the Lyapunov exponents is equivalent to the negative

value of the coe�cient of damping in the system [21]. Hence, the sum of the three Lyapunov
exponents for the two cases (1) and (2) are ÿ0.7.
The PoincareÂ map for di�erent k is used to determine the form of the bifurcation leading the

system into chaos. Usually, the period of the trajectories is not explicitly known for the
autonomous system, so the choice of the PoincareÂ section is di�erent from the nonautonomous

Fig. 3. Three Lyapunov exponents for k between 1.942 and 20.
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system. The PoincareÂ section of the three-dimensional autonomous system Eq. (5) is de®ned by

S � f�x,y,z� 2 R1 � R1 � R1jz � z0g
and satis®es the condition

n � �xÿ xS� > 0:

The vector n normal to S is given by

n �
24 0
0
1

35
and xS is a point located on the section S. As k is decreased from the Hopf bifurcation which
occurred at kc=14.947, a cascade of period-doubling bifurcations develops which leads the
system into chaos. Fig. 4(a), (b) shows the phase portraits and PoincareÂ map of the chaotic
motion at k=2.603.
In this section, the governing equations of motion of the system are given while the stability

Fig. 4. (a) Phase portrait; and (b) PoincareÂ map for k=2.603.
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of the ®xed points are studied by the Lyapunov direct method. Holpf bifurcation analysis is
carried out near the degenerate point. A Lyapunov exponent and a Lyapunov dimension are
used to show the chaos existing in the system.

3. Regular and chaotic dynamics of nonautonomous systems

In the previous section, the load torque is assumed to be constant for the system. Another
condition can be considered. The load torque is now not constant but is represented by a
Fourier series consisting of a constant term and a series of harmonic terms. It is reasonable
that the load torque of an internal combustion engine repeats after every complete working
cycle. For simplicity, the form of the load torque is assumed to be F� n sin �o t, where F, n, �o
are constants. Denoting j=x, jÇ=y, o=z, Eq. (4) is rewritten in the form

�x � C _x � sin x � rz2 sin x cos x,

Fig. 5. Show period-1 T motion at k=17.8: (a) time history; (b) power spectrum.
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_z � k cos xÿ Fÿ n sin �o t,

where C=0.7, r=0.25, F=1.942 �o � 3:0 and n=0.5.

3.1. Time history and power spectrum

A valuable technique for the identi®cation and characterization of the system is the power
spectrum. It is often used to distinguish between periodic, quasi-periodic and chaotic behaviors
of a dynamical system [22,23]. The nonautonomous systems are observed by the portraits of
the time history and the power spectrum for k=17.8, 14.5 and 5.13. In Fig. 5(b), the system is
in periodic motion, and the power spectrum exhibits a strong peak at the forcing frequency
together with super-harmonic frequencies. In Fig. 6(b), the power spectrum of the system
consists of two fundamental frequencies o1, o2, and integer combinations a1o1+a2o2 where
a1 and a2 are small integers [24]. At k=5.13, the chaotic motion appears in Fig. 7(b). The
chaotic spectrum is a continuous broad-band one. Although a broad spectrum does not
guarantee sensitivity to initial conditions, it is still a reliable indicator of the chaos.

Fig. 6. Show quasi-periodic motion at k=14.5: (a) time history; (b) power spectrum.
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Lyapunov exponents are also adopted for distinguishing periodic, quasi-periodic, and chaotic
motions. The results shown in Table 1 are also in good agreement with the power spectrum.

Fig. 7. Show chaotic motion at k=5.13: (a) time history; (b) power spectrum.

Table 1
Lyapunov exponents for di�erent values of k

Period-T Quasi-periodic Chaotic

k 17.8 14.5 5.13

l1 ÿ0.027 0 0.172
l2 ÿ0.031 ÿ0.015 ÿ0.03
l3 ÿ0.642 ÿ0.685 ÿ0.842
l4 0 0 0P

i li ÿ0.7 ÿ0.7 ÿ0.7
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Fig. 8. (a) Phase portrait; and (b) PoincareÂ map for k=17.8.
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Fig. 9. Projection of PoincareÂ map of: (a) quasi-periodic; and (b) chaotic motion on x±y plane.

Z.-M. Ge et al. / International Journal of Engineering Science 37 (1999) 921±943 937



3.2. PoincareÂ map and bifurcation diagram

Now a PoincareÂ map is adopted to deal with the nonautonomous system where the PoincareÂ

section is prescribed as a �o t � f0 � 2np (f0=0) plane in four-dimensional space (x, xÇ , z, �o t).

Assuming that the motion of the system starts at an initial time t= t0, the points on the
PoincareÂ section can be collected by a sampling of state variables at intervals of the forcing

period T � 2p= �o . Some numerical simulation results for di�erent k are discussed below. The
small circle in Fig. 8(a), (b) for k=17.8 indicates that the system motion is a stable harmonic

motion of period 2p/o or period-1 motion. When k=14.5, the system motion is a quasi-
periodic motion and the map will form a continuous closed orbit in the PoincareÂ section as

Fig. 10. (a) Bifurcation diagram for k between 16.5 and 14; (b) shows how the Floquet multiplier leave the unit
circle for secondary Hopf bifurcation.
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shown in Fig. 9(a). If the PoincareÂ map appears as neither a ®nite set of points nor a closed
orbit, the motion may be chaotic. From Fig. 9(b), chaotic motion is seen as k=5.13.
One tries to vary one of the control parameters in the system, and to record the data of the

PoincareÂ map corresponding to every di�erent parameter value. Then, the steady state
behavior of the system vs the range of control parameters will be plotted. This is called as a
bifurcation diagram. It is a widely used technique to describe a transition from periodic motion
to chaotic motion for a dynamical system. The transition sequence of the system studied is
from periodic motion to quasi-periodic motion which ®nally routes to chaotic motion.
From k=16.5 to 14, the bifurcation diagram shown in Fig. 10(a) shows that a periodic

solution loses stability at the critical value k=15.57, then a quasi-periodic solution is formed.
This is called a secondary Hopf bifurcation. The multi-variable Floquet±Liapunov theory [13]
is also applied to observe the change of the qualitative behavior of their state. When k is used
as a control parameter and gradually decreased from 16.5, the periodic solution remains stable
until the critical value k=15.53 is reached. At this value, a complex conjugate pair of Floquet
multipliers crosses the unit circle away from the real axis shown in Fig. 10(b). This bifurcation
point and the form of bifurcation are the same as the above result obtained by numerical
integration.

3.3. Incremental harmonic balance method

From Eqs. (1) and (3), the natural frequency of the system is given by

on �
�������������������������
�K 2 ÿ P2�g

KPl

s
:

Obviously, on depends on the parameters K, P, l and g. Let the dimensionless time be t � �o t
and the frequency ratio be O � �o =on, Eqs. (1) and (3) become

O2 �j � xO _j � s sin j � ro2 sin j cos j,

O _o � a cos jÿ �F ÿ e sin t,

where

a � g
Jon

, �F � P

Jon

, x � b
mon

,

s � g

lo2
n

, r � n2

o2
n

and the overdot denotes di�erentiation with respect to t.
The procedures of the IHB method for seeking periodic solutions are mainly divided into

two steps: (1) the ®rst step is a Newton±Raphson procedure; (2) the second step of the method
is Galerkin's procedure. In the computer implementation, the incremental arc-length method
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combined with a cubic extrapolation technique [12] are adopted. The technique can predict the
next solution from some known states. As such, it will greatly reduce the number of iterations
required for the solution to converge. Further, it also overcomes the convergence problem at
the sharp peaks of the solution diagram. In our examples N=3 is su�cient to obtain very
good and accurate results.
The solutions obtained by the IHB method in comparison with those obtained by numerical

integration are shown in Fig. 11, in which the symbols ``o'' indicate the solution obtained by
IHB. These solutions are in good agreement. Figure 12(a) shows the bifurcation diagram
obtained by numerical integration and that obtained by the IHB method is plotted in Fig.
12(b). The solid line represents a stable solution and the dashed line represents an unstable
solution in Fig. 12(b). Both results are in good agreement with the stable solution as shown in
Fig. 13.

4. Conclusions

In this paper, a rotational machine with a centrifugal governor exhibits regular and chaotic
behavior when the parameters are varied. In Section 2, the conditions of asymptotic stability

Fig. 11. Comparison between IHB and numerical integration for a=5.616, s=0.123, r=0.015, x=0.24, F=0.68,

e=0.17. (a) A periodic solution for three state variables j, _j , o , projected on j, _j plane. (b) the same periodic
solution projected on j, o plane. (c) The same periodic solution projected on _j , o plane.
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Fig. 12. (a) Shows bifurcation diagram for O between 0.9 and 1.1, by numerical integration; (b) shows bifurcation

diagram by IHB, Ð, stable; - - -, unstable.
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and instability of ®xed points have been determined by the Lyapunov direct method. As
k=4rF 3/C 2, the equilibrium point (arccos F/k, 0,

����������
k=rF

p
) of the system has been shown to be

asymptotically stable by the center manifold and normal form theory. The occurrence of a
Hopf bifurcation is also found in the autonomous system. By such analysis, these conditions
will o�er a criterion for the designer on how to decide the parameters of a system for stable
situations of engine operation.
For the nonautonomous case, the periodic, quasi-periodic and chaotic motion are obtained

by the numerical methods such as power spectrum. PoincareÂ map and Lyapunov exponents.
From the bifurcation diagram, it is also obtained that the system possesses a narrow period-3
window for certain parameters. The steady-state responses of the system are analyzed by the
incremental harmonic balance (IHB) method combined with multi-variable Floquet theory, and
the numbers of harmonic terms N=3 are su�cient to obtain very good and accurate result.
The results obtained by the IHB method are found to match exactly those obtained by
numerical integration.

Fig. 13. Comparison between numerical integration and IHB, Ð, stable; - - -, unstable.

Z.-M. Ge et al. / International Journal of Engineering Science 37 (1999) 921±943942



Acknowledgements

This research was supported by the National Science Council, Republic of China, under
grant number NSC87-2212-E-009-019.

References

[1] F.C. Moon, Chaotic and fractal dynamics, Wiley, New York, 1992.
[2] J.M.T. Thompson, H.B. Stewart, Nonlinear dynamics and chaos, Wiley, Chichester, 1986.
[3] R.W. Brockett, On conditions leading to chaos in feedback systems, in: Proc. IEEE 21st Conf. Decision and

Control, Los Angeles, Wiley, New York, 1982, pp. 932±936.
[4] P. Holmes, Bifurcation and chaos in a simple feedback control system, in: Proc. IEEE 22nd Conf. Decision

and Control, Houston, Wiley, New York, 1983, pp. 365±370.

[5] L.S. Pontryagin, Ordinary di�erential equations, Addison±Wesley, Reading, 1962, pp. 213±220.
[6] B.D. Hassard, N.D. Kazarino�, Y-H. Wan, Theory and applications of Hopf bifurcation, Cambridge

University Press, Cambridge, 1981, pp. 149±156.

[7] J.A. Sanders, F. Verhulst, Averaging methods in nonlinear dynamics, Springer, New York, 1985.
[8] A.H. Nayfeh, Perturbation methods, Wiley, New York, 1973.
[9] P. Sekar, S. Narayanan, Periodic and chaotic motions of a square prism in cross-¯ow, Journal of Sound and

Vibration 170 (1) (1994) 1±24.

[10] O. Gottlieb, Bifurcations and routes to chaos in wave-structure interaction systems, Journal of Guidance
Control and Dynamics 15 (4) (1992) 832±839.

[11] S.L. Lau, Y.K. Cheung, Amplitude incremental variational principle for nonlinear vibration of elastic systems,

ASME Journal of Applied Mechanics 48 (1981) 959±964.
[12] Y.K. Cheung, S.H. Chen, Application of the incremental harmonic balance method to cubic nonlinear systems,

Journal of Sound and Vibration 140 (2) (1990) 273±286.

[13] P. Friedmann, C.E. Hammond, T.H. Woo, E�cient numerical treatment of periodic systems with application
to stability problems, International Journal of Numerical Methods in Engineering 11 (1977) 1117±1136.

[14] N.G. Chetayev, The stability of motion, Pergamon Press, New York, 1961.
[15] J. Carr, Applications of Center Manifold Theory, in: Applied Mathematical Sciences, No. 35, Springer, New

York, 1981.
[16] J. Guckenheimer, P.J. Holmes, Nonlinear oscillations of dynamical systems and bifurcations of vector ®elds,

Springer, Berlin, 1983.

[17] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer, Berlin, 1990.
[18] A.H. Nayfeh, Method of normal forms, Wiley, New York, 1993.
[19] G.X. Li, M.P. Paidoussis, Stability, double degeneracy and chaos in cantilevered pipes conveying ¯uid,

International Journal of Nonlinear Mechanics 29 (1) (1994) 83±107.
[20] A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lypunov exponents from a time series, Physica

16D (1985) 285±317.

[21] G.L. Baker, J.P. Gollub, Chaotic dynamics an introduction, Cambridge University Press, Cambridge 1990
Chap. 5.

[22] J.P. Gollub, S.V. Benson, Many routes to turbulent convection, Journal of Fluid Mechanics 100 (1980) 449±
470.

[23] M. Ianstiti, Hu Qing, R.M. Westervelt, M. Tinkham, Noise and chaos in a fractal basin boundary regime in a
Josephson junction, Physical Review Letter 55 (1985) 746±749.

[24] P.R. Fenstermacher, H.L. Swinney, J.P. Gollub, Dynamical instabilities and the transition to chaotic Taylor

vortex ¯ow, Journal of Fluid Mechanics 211 ((1)) (1990) 271±289.

Z.-M. Ge et al. / International Journal of Engineering Science 37 (1999) 921±943 943


