
The speed-controlled interpolator for machining parametric curves

S.-S. Yeh, P.-L. Hsu*

Department of Electrical and Control Engineering, National Chiao Tung University, Hsinchu, 300 Taiwan

Received 30 September 1998; received in revised form 20 February 1999; accepted 1 March 1999

Abstract

Modern CNC systems are designed with the function of machining arbitrary parametric curves to save massive data communication
between CAD/CAM and CNC systems and improve their machining quality. Although available CNC interpolators for parametric curves
generally achieve contouring position accuracy, the specified feedrate, which dominates the quality of the machining processes, is not
guaranteed during motion. Recently, some approximation results concerning motion speed have been reported [Shpitalni M, Koren Y, Lo
CC. Computer-Aided Design 1994;26(11):832–838; Bedi S, Ali I, Quan N. Trans ASME J Engng Industry 1993;115:329–336; Chou JJ,
Yang DCH. Trans. ASME J Engng Industry 1991;113:305–310; Chou JJ, Yang DCH. Trans ASME J Engng Industry 1992;114:15–22]. In
this paper, by deriving a compensatory parameter, the proposed interpolation algorithm has significantly improved curve speed accuracy. In
real applications, the proposed algorithm results in: (1) constant speed; and (2) specified acceleration and deceleration (ACC/DEC) to meet
the feedrate commands. The motion accuracy and feasibility of the present interpolator have been verified with a provided non-uniform
rational B-spline (NURBS) example.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In modern CAD/CAM systems, profiles for parts like
dies, vanes, aircraft models, and car models are usually
represented in parametric forms. As conventional CNC
machines only provide linear and circular arc interpolators,
the CAD/CAM systems have to segment a curve into a huge
number of small, linearized segments and send them to CNC
systems. Such linearized-segmented contours processed on
traditional CNC systems are undesirable in real applications
as follows:

• the transmission error between CAD/CAM and CNC
systems for a huge number of data may easily occur,
i.e. lost data and noise perturbation;

• the discontinuity of segmentation deteriorates surface
accuracy;

• the motion speed becomes unsmooth because of the line-
arization of the curve in each segment, especially in
acceleration and deceleration.

As the generated curves or profiles may be in a parametric
form, only parametric curve information is required to be
efficiently transferred among CAD/CAM/CNC systems as

shown in Fig. 1. Shpitalni et al. [1] proposed the curve
segments transfer between CAD and CNC systems and
Bedi et al. [2] proposed the B-spline curve and B-spline
surface interpolation algorithm to obtain both accurate
curves and gouge free surface. Huang and Yang [3] devel-
oped a generalized interpolation algorithm for different
parametric curves with improved speed fluctuation. More-
over, Yang and Kong [4] studied both linear and parametric
interpolators for machining processes.

In these CNC systems, parametric curves are profiles in
different formats like the Bezier curve, B-spline, cubic
spline, and NURBS (non-uniform rational B-spline). The
general parameter iteration method used is

ui11 � ui 1 D�ui�

whereui is the present parameter,ui11 is the next parameter,
andD�ui� is the incremental value. The interpolated points
are calculated by substitutingui into the corresponding
mathematical model to recover the originally designed
curves. As the cutter moves straight between contiguous
interpolated points, two position errors may occur as: (a)
radial error; and (b) chord error [5] during motion for a
parametric curve as shown in Fig. 2.

The radial error is the perpendicular distance between the
interpolated points and the parametric curve. Basically, the
radial error is caused by the rounding error of computer
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systems. With the rapid development of microprocessors with
higher precision, the radial error is no longer a major concern
in present applications. In addition, the chord error is the maxi-
mum distance between the secantCDand the secant arcAB

_
. A

small curvature radius with a fast feedrate command may
cause the chord error. Thus, an adaptive feedrate is required
to keep the chord error within an acceptable range.

However, cutting speed dominates the quality of the
machining process. To achieve the specified feedrate for
parametric curves is usually difficult. The undesirable
motion speed may deteriorate the quality of the machined
surface. Several researchers have developed different inter-
polation algorithms for parametric curves to improve
motion speed accuracy. Bedi et al. [2] setD(ui)as a constant
to form the uniform interpolation algorithm which is the
simplest method and its chord error and curve speed
however are not guaranteed. According to the analysis of
CNC machine kinematics and cutter path geometry, an
improved interpolation algorithm in position, velocity, and
acceleration was proposed by Chou and Yang [6] if the CNC
machine kinematics model is known exactly. Further,
Houng and Yang [3] developed the cubic spline parametric
curve interpolator by using the Euler method. Shpitalni et al.
[1] derived the same interpolation algorithm by using
Taylor’s expansion. Lo and Chung [7] proposed the
contouring error compensation interpolation algorithm
which contains real-time contouring error calculations and
a simplified parameter iteration method to achieve satisfac-
tory motion accuracy. In acceleration and deceleration, Kim
[8] obtained a simple method for parametric curves while its
position and speed errors are significant.

The present speed-controlled interpolation algorithm is
proposed by deriving a suitable compensatory parameter
for the first-order approximation [1,6,8] to obtain desirable
motion speed. Then, the proposed interpolator is applied to
the constant-speed mode and the acceleration/deceleration
mode to achieve constant feedrate and the specified speed
profiles, respectively. Thus, the present CNC interpolators
result in stable motion and smoothly changed speed to avoid
mechanical shock or vibration in machining processes. The
proposed speed-controlled interpolators have also been
successfully applied to a NURBS command on a personal
computer to achieve high motion precision.

2. Parametric curve formulation

SupposeC(u) is the parametric curve representation func-
tion and the time functionu is the curve parameter as

u�ti� � ui and u�ti11� � ui11

By using Taylor’s expansion, the approximation up to the
second derivative is

ui11 � ui 1
du
dt

����
t�ti
�ti11 2 ti�1

1
2

d2u

dt2

�����
t�ti

·�ti11 2 ti�2

1 HOT �1�

As the curve speedV(ui) can be represented as

V�ui� � dC�u�
dt





 




u�ui

� dC�u�
du





 




u�ui

du
dt

����
t�ti

the first derivative ofu with t is obtained as

du
dt

����
t�ti
� V�ui�

dC�u�
du





 




u�ui

�2�

By taking the derivative of Eq. (2), the second derivative of
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Fig. 1. The machining systems with parameters transmission.

Fig. 2. The radial error and the chord error.
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By substituting Eq. (4) into Eq. (3), the second derivative of
u is rewritten as

d2u

dt2
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By substituting Eq. (6) into Eq. (5), the second derivative of
u becomes

d2u

dt2
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Let the sampling time in interpolation beTs seconds and

ti11 2 ti � Ts

The first- and second-order approximation interpolation
algorithms are obtained by substituting Eqs. (2) and (7) into
Eq. (1), respectively. By neglecting the higher order term,
the interpolation algorithms in Eq. (1) can be processed as
follows:

The first-order approximation interpolation algorithm
[1,6,9]

ui11 � ui 1
V�ui�Ts

dC�u�
du





 




u�ui

�8�

The second-order approximation interpolation algorithm

[6,9]

ui11 � ui 1
V�ui�·Ts

dC�u�
du





 




u�ui

2

V2�ui�·T2
s ·

dC�u�
du

·
d2C�u�
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 !�����
u�ui

2·
dC�u�

du





 



4
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whereV(ui) can be either the feedrate command, the speci-
fied speed profiles of ACC/DEC, or any desired speed in a
general machining process.

3. The speed-controlled interpolation algorithm

3.1. The compensatory parameter

In Eqs. (8) and (9), the first-order and the second-order
interpolation algorithms are approximated results by
neglecting the higher order term as in Eq. (1). Therefore,
the approximation error for those methods is unavoidable
and an interpolation algorithm concerning the curve speed is
proposed in this paper. The present interpolation algorithm
is based on the first-order approximation interpolation algo-
rithm with a compensatory valuee (ui) as

ui11 � u0i11 1 e ui

ÿ �
wheree(ui) is the compensatory value and

u0i11 � ui 1
V�ui�·Ts

dC�u�
du





 




u�ui

To precisely calculate the compensatory valuee (ui),
Taylor’s expansion for the curve and its speed must be
concerned. Suppose

C�u� �
Cx�u�
Cy�u�

" #
is the parametric curve representation function for theX and
Y axes, the interpolated pointsCx(ui11) and Cy(ui11) are
approximated as follows:

Cx�ui11� � Cx�u0i11�1
dCx�u0i11�

du
e�ui� �10�

Cy�ui11� � Cy�u0i11�1
dCy�u0i11�

du
e�ui� �11�

There are two approximation techniques used in deriving
the interpolation algorithm. The first one is the Taylor’s
expansion of the parameteru with respect to the timet to
obtain the first- or second-order approximation interpolation
algorithms [1,6,9], as in Eqs. (8) and(9). The second one is
the Taylor’s expansion of curveC with respect to the
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parameteru as in Eqs. (10) and (11). By comparing Eqs. (1),
(8) and (9) with Eqs. (10) and (11), the higher-order term of
the Taylor’s expansion in the first approximation is esti-
mated as the compensatory valuee(ui) by applying the
second approximation. Eqs. (10) and (11) implies that the
difference between position

Cx�ui11�
Cy�ui11�

" #
and

Cx�u0i11�
Cy�u0i11�

24 35
is determined by the slope of curve with the adjustment gain
e (ui).

Although V(ui) is the instantaneous velocity atu � ui in
the interpolation algorithm, it is usually assigned as the
constant feedrate commandF in real interpolation applica-
tions. The following equation is provided to accurately
achieve a linear motion from

Cx�ui�
Cy�ui�

" #
to

Cx�ui11�
Cy�ui11�

" #
with the desired speedV(ui):�����������������������������������������������������
�Cx�ui11�2 Cx�ui��2 1 �Cy�ui11�2 Cy�ui��2

q
Ts

� V�ui�
�12�

then, a quadratic equation for the compensatory parameter is
derived as

Ue2 1 Ze 1 W � 0

where

U � X 0�u0i11�2 1 Y 0�u0i11�2

Z � 2�DX·X0�ui11�1 DY·Y0�ui11��

W � DX2 1 DY2 2 �V�ui�Ts�2

DX � Cx�u0i11�2 Cx�ui�

DY � Cy�u0i11�2 Cy�ui�

X 0�u0i11� � dCx�u0i11�
du

Y 0�u0i11� �
dCy�u0i11�

du

The compensatory valuee(ui) can be directly obtained as

3.2. Selection of compensatory parameters

As the two values in Eq. (13) are the roots of a quadratic
equation, characteristics of roots have to be discussed in real
applications. Define two vectors as

~D �
DX

DY

" #

~C 0 � X 0�u0i11�
Y 0�u0i11�

" #
Eq. (13) can be rewritten as

e1;2�ui� �
2� ~D z ~C 0�^

����������������������������������
i~C 0i2�V�ui�Ts�2 2 u~C 0 × ~Du2

q
i~C 0i2 �14�

where the geometrical relationship between vectors~D and
~C 0 correspond to parameters among which the parameters
ui, u0i11, ui11 are shown in Fig. 3.u is the angle between the
difference vector~D and the differential vector~C 0, and

i~C 0i2·V�ui�Ts�2 2 u~C 0 × ~Du2� i~C 0i2T2
s V2�ui�2 u~C 0 × ~Du2

i~C 0i2T2
s

" #

� i~C 0i2T2
s V2�ui�2

����� ~C 0

i~C 0i
×

~D
Ts

�����
2

24 35

� i~C 0i2T2
s V2�ui�2






 ~D
Ts







2

sin2 u

24 35
As i~C 0i2

. 0 and T2
s . 0, {i~C 0i2�V�ui�Ts�2 2 u~C 0 × ~Du2}

has the same sign as

V2�ui�2
~D
Ts














2

sin2 u

" #( )
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Fig. 3. Geometrical representation of parameters.
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The solutions of Eq. (13) can be in the following three
categories:

(i) e1,2(ui) are two different real numbers if

V2�ui� .
i~Di
Ts

 !2

sin2 u

" #

(ii) e1,2(ui) are the same real numbers if

V2�ui� � i~Di
Ts

 !2

sin2 u

" #

(iii) e1,2(ui) are a pair of complex conjugate numbers if

V2�ui� ,
i~Di
Ts

 !2

sin2 u

" #

Compared with�i ~Di=Ts� and the desired speedV(ui), we

conclude that the sign of

V2�ui�2
~D
Ts














2

·sin2 u

" #( )

is dominated by angleu. Conditions (ii) and (iii), which may
produce the same real roots or complex conjugate roots of
the quadratic equation, are shown in Fig. 4. As the vector~D
and the differential vector~C 0 are almost perpendicular and
parameterui11 is near points a or b as shown in Fig. 4,
sin2 u ù 1 and the conditions of

V2�ui� #
i ~Di
Ts

 !2

sin2 u

" #

may occur. In physical meaning, the multiple real roots and
the complex conjugate roots exist where the curvature is
relatively large. In general applications, the curvature
should be small to achieve precise interpolation. Thus,
conditions (ii) and (iii) are not allowed in real applications

and only the two different real roots as in condition (i) are
concerned in the present algorithm.

According to Eq. (14)

e1;2�ui� �
2 ~D z

~C 0

i~C 0i

 !
^

������������������������������
V�ui�·Ts

ÿ �22u
~C 0

i~C 0i
× ~Du2

vuut
i~C 0i

�
2 i ~Di cosu
� �

^

������������������������������
�V�ui�Ts�2 2 i~Di2 sin2 u

q
i~C 0i

� 2�i ~Di cosu�^
��������������������������������������
�V�ui�Ts�2 2 i~Di2

1 i ~Di2cos2 u
q

i~C 0i

Let

�V�ui�Ts�2 2 i~Di2 � m

By applying Taylor’s expansion, roots of the quadratic
equation have the approximated values in simple forms as

e1 ù
m

2·i~C 0i i~Di cosu

e2 ù
22 i~Di cosu

i~C 0i

Asm is small, the first root is near zero and the other root is
negative and relatively large. To achieve reliable compensa-
tion and forward motion during the interpolation process,
the small compensatory parameter is preferable as

As the present speed-controlled interpolation algorithm
incorporates the first approximation interpolation algorithm
and a suitable compensatory value which corrects the curve
speed error, the obtained curve speed almost equals the
specified speedV(ui) during the interpolating process. The
roots condition

{ i~C 0i2�V�ui�Ts�2 2 u~C 0 × ~Du2}

can be examined before calculating the compensatory value.
When the undesirable condition may occur, the compensa-
tory value is set to be zero to avoid the complex conjugate
roots.

In real machining processes, the present interpolator
achieves (1) a constant speed and (2) specified ACC/DEC.
The constant speed mode keeps the curve speed almost the
same as the given constant feedrate command during the
machining process. The ACC/DEC mode makes the curve
speed in smooth profiles with the specified speed for
machining parametric curves.
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Fig. 4. Illustrative conditions (ii) and (iii).
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4. Applications

4.1. The example of NURBS

In this simulation, the interpolator is written by Turbo C
2.0 and is executed on a personal computer with both 80 and
200 MHz CPU. The present interpolator is applied to a
NURBS [10] parametric curve with two degrees as shown
in Fig. 5.

The control points, weight vector, and knot vector of
NURBS are assigned as follows:

• The ordinal control points are

0

0

" #
;

2150

2150

" #
;

2150

150

" #
;

0

0

" #
;

150

2150

" #
;

150

150

" #
; and

0

0

" #
�mm�:

• The weight vector isW� [1 25 25 1 25 25 1].
• The knot vector is U� [0 0 0 1

4
1
2

1
2

3
4 1 1 1].

The interpolating processes are as follows:

• the sampling time in interpolation isTs � 0:002 s and
• the feedrate command isF � 200 mm/s� 12 m/min.

In many recent applications, the machining is in a high
speed like high-speed machining, e.g. high-speed milling
[11–14], machining by linear motor [15,16], and laser
machining [17]. In this example, the provided weight vector
which results in sharp corners is used to exam the speed
deviation of different interpolation algorithms under the
feedrate commandF � 200 mm/s� 12 m/min.

4.2. The constant-speed mode

The curve speed fluctuations for different interpolation
algorithms are compared as below: (a) the uniform, (b)
the first-order approximation [1,6,9] (c) the second-order
approximation [6,9] and (d) the proposed speed-controlled
mode. Simulation results for different interpolation algo-
rithms are shown in Figs. 6–8 and are summarized in
Table 1. The curve speed fluctuation ratio for each inter-
mediate point is calculated byhi � �F 2 Vi�=F whereVi is
the curve speed from the interpolated pointC(ui) to C(ui11)
and F is the given feedrate command. According to the
simulation results, most interpolation algorithms except
the uniform interpolation result in high contouring accuracy
with relatively small chord errors. As shown in Figs. 6–8,
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Fig. 5. The example of NURBS.

Fig. 6. Simulation results of the first-order approximation.



all the maximum speed deviation occurs at the four sharp
corners. Moreover, the speed-controlled interpolation algo-
rithm provides the best curve speed accuracy during the
interpolating process. Simulation results show that the
curve speed deviates within [20.004, 0.004] mm/s by
applying the present speed-controlled interpolation algo-
rithm. However, the second-order approximation achieves
larger speed deviation within [20.2, 0.2] mm/s and the first-
order approximation achieves the largest speed deviation
within [25, 5] mm/s.

By applying the present algorithm, the roots of the
quadratic equation for the compensatory value are also
shown in Fig. 9. Fig. 9 indicates that one root is near
zero which is adopted here while the other is negative
and relatively large. The curve speed accuracy of the

interpolator by applying the uniform interpolation algo-
rithm is the worst case because the undefined real map
operation of curve and parameters is not uniform. Although
the present interpolation algorithm takes a longer period to
compute the compensatory value, its processing time can be
significantly improved with an updated CPU to achieve
desirable performance.

4.3. The ACC/DEC mode

In order to avoid shock or vibration of mechanical
systems when starting and slowing down the axial travel,
ACC/DEC algorithms are required during the machining
process. The conventional ACC/DEC algorithms for para-
metric curves usually result in larger radial and chord errors.
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Fig. 9. Roots of quadratic equatione1,2(ui).
Fig. 7. Simulation results of the second-order approximation.

Fig. 8. Simulation results of the present constant-speed interpolation. Fig. 10. Speed error of the first-order approximation during acceleration.



Kim [8] proposed the parametric ACC/DEC algorithm. As
the mapping operation between the curve and the parameter
is not uniform in nature, the ACC/DEC in the uniform para-
meter interpolation algorithm cannot obtain the desirable
acceleration and deceleration.

The curve speed errors in different acceleration
profiles—linear, parabolic, and exponential profiles with
different interpolations as (a) the first-order approximation,
(b) the second-order approximation, and (c) the speed-
controlled interpolation—are compared. The curve speed
errors by applying the parabolic ACC/DEC method are

shown in Figs. 10–12 and are also summarized in Table
2. Results indicate that the largest speed error is caused by
applying the exponential ACC/DEC method and the smal-
lest curve speed error is obtained by applying the parabolic
ACC/DEC method. According to the simulation results, the
curve speed is also changed parabolically during the accel-
eration process. Results also indicate that the present inter-
polation algorithm achieves the best speed accuracy with
error magnitude 3–5 order less than when other methods
are used.

In general, ACC/DEC functions are required in real
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Table 1
Simulation results for different interpolation algorithms

Type Measure

Mean-square
of speed error
(mm/s)2

The maximum
speed fluctuation
ratio

The maximum
chord error (mm)

Computation time
with 80 MHz CPU
(ms)

Computation time
with 200 MHz CPU
(ms)

Uniform 9.346× 106 151.5245 0.036053 11 4
First order approximation [1,6,9] 1.3718 0.02583 0.0036181 27 10
Second order approximation
[1,6,9]

6.1091× 1024 0.00201 0.003545 60 19

Constant speed 1.679× 1027 1.6398× 1025 0.003540 77 26

Table 2
Measurement of the maximum curve speed error

Interpolation ACC type

Linear (mm/s) Parabolic (mm/s) Exponential (mm/s)

First order approximation 3.7364× 1021 3.7152× 1021 4.0231× 1021

Second order approximation 7.0317× 1024 6.9518× 1024 8.1802× 1024

Speed2 controlled 1.309× 1026 1.2868× 1026 1.6420× 1026

Fig. 11. Speed error of the second-order approximation during accelera-
tion.

Fig. 12. Speed error of the speed-controlled interpolation during accelera-
tion.



machining with different speed profiles, like linear, para-
bolic, and exponential types [5,8]. In this paper, the decel-
eration algorithm is the same as the acceleration algorithm
except that the speed is decreasing during the process.
Results indicate that the present speed-controlled interpola-
tion algorithm achieves smooth acceleration and decelera-
tion with the specified ACC/DEC speed profiles.

5. Conclusions

The proposed speed-controlled interpolation algorithm
has significantly improved curve speed accuracy for para-
metric curves by including a compensatory value. The
constant-speed mode operates the contiguous interpolated
points with a constant curve speed and the ACC/DEC mode
generates interpolated points successively with smooth
speed variation. The proposed interpolation algorithm
provides the best accuracy in both position and speed in
real machining processes. Although the processing time of
the proposed interpolation algorithm is a little longer than
the others, it has been successfully implemented with faster
computers.
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