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Abstract—We propose a new efficient serial architecture to
implement the Berlekamp–Massey algorithm, which is frequently
used in BCH and Reed–Solomon decoders. An inversionless
Berlekamp–Massey algorithm is adopted which not only elimi-
nates the finite-field inverter but also introduces additional par-
allelism. We discover a clever scheduling ofthreefinite-field mul-
tipliers to implement the algorithm very efficiently. Compared
to a previously proposed serial Berlekamp–Massey architecture,
our technique significantly reduces the latency.

Index Terms—Bose–Chaudhuri–Hacquenghem (BCH).

I. INTRODUCTION

AMONG the most well-known error-correcting codes,
the Bose–Chaudhuri–Hacquenghem (BCH) codes [1],

[2], and the Reed–Solomon (RS) codes [3] are undoubtedly
the most widely used block codes in communications and
storage systems. For a comprehensive review of BCH and RS
decoders, the texts by Berlekamp [4], Lin and Costello [5], or
Blahut [6] are the best sources.

The most popular RS decoder architecture today can be
summarized into four steps: 1) calculating thesyndromes
from the received codeword; 2) computing theerror locator
polynomialand theerror evaluator polynomial; 3) finding the
error locations; and 4) computing error values. The second step
in the four-step procedure involves solving thekey equation
[4], which is1

where is the syndrome polynomial, is the error
locator polynomial and is the error evaluator polynomial.

The techniques frequently used to solve the key equation
include the Berlekamp–Massey algorithm [4], [8], the Eu-
clidean algorithm [9], and the continuous-fraction algorithm
[10]. Compared to the other two algorithms, the Berlekamp-
Massey algorithm is generally considered to be the one with
the least hardware complexity [11]. Another advantage of the
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1In fact, the key equation defined in [4] was(1 + S(x))�(x) =


(x) mod x2t; where the syndrome polynomial was defined to be
S(x) = � Sjx

j . In our notation which follows [7]S(x) = � Sjx
j�1; and

hence our key equation formulation is slightly different.

Berlekamp-Massey algorithm is that it can be formulated to
compute only, thus saving a portion of the hardware
used to compute

Existing architectures to implement the Berlekamp–Massey
algorithm in hardware were proposed by Berlekamp [12],
Liu [13], and Oh and Kim [14]. These proposals require

finite-field multipliers (FFM’s) where is the number
of correctable errors. In addition, they all require a finite-
field inverter (FFI) to implement the division operation, which
imposes a significant hardware complexity. An inversionless
Berlekamp–Massey algorithm was proposed by Burton [15]
for BCH decoders, and was implemented by Reed, Shih, and
Truong [11] for BCH and RS codes. However, more FFM’s
are required in the existing implementation of the inversionless
Berlekamp–Massey algorithm [11].

In this letter we present a new architecture to imple-
ment the Berlekamp–Massey algorithm with drastically re-
duced hardware complexity while maintaining the overall
decoding speed. Our work was motivated from the follow-
ing observations. First, the existing architectures to imple-
ment the Berlekamp–Massey algorithm aretoo fast. Indeed,
in the four-step decoding approach, the throughput is lim-
ited by syndrome calculation and Chien Search, each tak-
ing cycles to finish, while existing architectures for the
Berlekamp–Massey algorithm take cycles to finish.
Slowing down the Berlakamp–Massey algorithm till taking
cycles will not slow down the decoding. Therefore, we exploit
time sharinga smaller number of FFM’s to implement the
Berlekamp–Massey algorithm. In this letter, such an approach
will be termed aserial architecture, as in contrast to those
parallel architectures [11]–[14].

To our knowledge, a serial architecture for the
Berlekamp–Massey algorithm was firstly shown in a text
by Blahut [6]. That architecture uses three FFM’s and one
FFI, and requires clock cycles in each iteration.
The clock cycle is determined by the the logic circuit delay
of one FFM and one FFI. In this letter, we propose a new
serial architecture which uses three FFM’s and no FFI, and
requires no more than clock cycles in each iteration.
The clock cycle in our architecture is determined by the logic
circuit delay of one FFM. Our architecture is therefore much
faster than that in [6].

In Section II, we describe the time-sharing idea in details
and present our efficient scheduling. In Section III, we show
how to reconfigure the architecture to compute In
Section IV we conclude the paper.
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TABLE I
DATA DEPENDENCY OF THEINVERSIONLESS

BERLEKAMP–MASSEY ALGORITHM AFTER DECOMPOSITION

II. EFFICIENT SCHEDULING OF SERIAL

BERLEKAMP–MASSEY ARCHITECTURE

An inversionless Berlekamp–Massey algorithm is adopted
in our architecture that is a -step iterative algorithm as shown
in the following:

where is the th step error locator polynomial with
degree and ’s are the coefficients of is the
th step discrepancy andis a previous discrepancy;

is an auxiliary polynomial and is an auxiliary degree
variable.

Define

for
for

for
for

where ’s are the

coefficients of and ’s are thepartial resultsin
computing At cycle 0 of th step, we get

In other words, we candecomposethe th iteration into
cycles In each cycle requires at most two

finite-field multiplications and requires only one finite-
field multiplication. The data dependency of the decomposed
algorithm can be seen in Table I.

It is evident from Table I that, at cycle the computation of
requires and which have been computed

at cycle Similarly, at cycle the computation of

Fig. 1. The scheduling and data dependency of the decomposed inversionless
Berlekamp–Massey algorithm. The dotted line represents the data dependency.

Fig. 2. The three-FFM architecture for implementing the inversionless
Berlekamp–Massey algorithm.

requires and which have been computed at
cycle and the th step, respectively. Note that the
original Berlekamp–Massey algorithm cannot be scheduled
as efficiently because the computation of requires two
sequentialmultiplications and one inversion. The inversionless
Berlekamp–Massey algorithm provides the necessary paral-
lelism to allow our efficient scheduling. The scheduling and
data dependency of the decomposed algorithm are further
illustrated in Fig. 1.

The decomposed algorithm shown above suggested a three-
FFM implementation of the inversionless Berlekamp–Massey
algorithm, which is shown in Fig. 2. Though not shown in
this letter, our architecture can also be used in the correction of
both errors and erasures. Compared to the previously proposed
parallel architectures [11]–[14], our architecture reduces the
hardware complexity significantly. Compared to a previously
proposed serial architecture [6], our architecture reduces the
time complexity significantly because of (1) the reduction of
the number of clock cycles, and (2) the reduction of cycle time.
Therefore, the proposed architecture achieves an optimization
in the area-delay product.

III. EFFICIENT COMPUTATION OF

The conventional way to compute the error evaluator poly-
nomial, is to do it in parallel with the computation of

Using the Berlekamp–Massey algorithm, this involves
an iterative algorithm to compute
However, if (with degree is first obtained, we have
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Fig. 3. The three-FFM architecture is reconfigured to compute
(x): Note
the labels in this figure are different from those in Fig. 2.

from the key equation and the Newton’s identity

That is, the computation of can be performeddirectly
after is computed. Note that the direct computation
requires fewer multiplications than the iterative algorithm
which computes manyunnecessaryintermediate results. The
penalty of this efficient computation is the additional latency
because and are computed in sequence.

Furthermore, it can be seen that the computation ofis
very similar to that of except some minor differences.
Therefore, the same hardware used to compute can be
reconfiguredto compute after is computed. Like

we compute as follows:

for
for

In Fig. 3, we show how the same three-FFM architecture can
be reconfigured to compute

IV. CONCLUSION

In this letter we propose a new efficient serial architecture
to implement the Berlekamp–Massey algorithm, which is

frequently used in BCH and RS decoders. An inversionless
Berlekamp–Massey algorithm is adopted which not only elim-
inates the FFI, but also introduces additional parallelism to the
computation. We discover a clever scheduling of three FFM’s
to implement the algorithm very efficiently. To efficiently
compute the computation is performed after is
obtained. Moreover, in our architecture the computation of

and shares the same hardware. Our technique can
also be applied to the correction of both errors and erasures.
Compared to the previously proposed parallel Berlekamp-
Massey architectures, our architecture significantly reduces
the hardware complexity. Compared to a previously pro-
posed serial Berlekamp–Massey architecture, our architecture
significantly reduces the timing complexity. Therefore, our
architecture achieves an optimization in the area-delay product.
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