
Optimal assignment of mobile agents for software authorization and
protectionq

Shiuh-Pyng Shieh* , Chern-Tang Lin, Shianyow Wu

Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan

Received 10 November 1997; accepted 21 October 1998

Abstract

In this paper, a model for software authorization and protection in mobile code systems is proposed. In the model, a software is partitioned
into objects, called mobile agents, and the privileges to access these agents are separated and distributed to the user’s local system and a
number of trusted servers called trusted computational proxies. The execution of a program (software) is conducted by cooperation of the
agents and the proxies that contain them. Two agents are dependent if there is a message passing between them. To reduce the risk of software
being attacked, dependent agents are distributed to different proxies. In this way, if a proxy is compromized, minimal information of the
software will be disclosed. Methods for assigning agents to proxies are also proposed to minimize, under the security constraints, computa-
tion load of the proxies as well as communication load between the user’s local system and proxies.q 1999 Elsevier Science B.V. All rights
reserved.

Keywords:Software protection; Mobile code; Remote execution; Java language; Proxy

1. Introduction

The rapid development of network and advanced technol-
ogies enable new software capabilities and wide market
interest, but software piracy, such as the unauthorized copy-
ing, use, or distribution of software products, is still a
serious and tough problem to cope with. Although various
software protection schemes, have been proposed, software
piracy still causes major losses to software vendors since
some protection schemes can be easily cracked by a mali-
cious user and some require additional costs for users
[12,13,15,25,32,35].

Most of these software protection schemes embed access
control mechanisms in the program code, and a user has to
pass these authentication processes before using the soft-
ware. The process may require serial number of the corre-
sponding user, password from the manual, or checking the
source where the software locates (CD or floppy disk, for
example). Unfortunately, these authentication processes
have been cracked by many crackers (Fig. 1). The difficulty
of cracking such a protection scheme depends on how

complex this part of code is written. For example, some
software vendors put checksum values for the authentica-
tion process in the software. If someone tries to modify the
code to bypass the authentication process, an error may be
found later and the execution will be terminated. This just
increases the time to crack the software, however, it cannot
prevent unauthorized use.

Recent advance of network technology allows network
users to access the Internet in a more effective way. The
growing importance of Internet has stimulated research on a
new generation of programming languages. Recently,
mobile code languages [17,19,20] have been proposed as
a technological answer to the problem. These languages
view the network and its resources as a global environment
in which computations take place [5–7]. A mobile-code-
based software is partitioned into objects, called mobile
agents. For example, in mid-1995, Sun Microsystems
announced the Java language [19]. The Java language is a
simple, object-oriented, portable, and robust language that
supports mobile codes. Java augments the present WWW
capabilities by dynamically downloading the mobile agents,
called applets in Java, and running these agents locally [28].

The development of mobile code technologies changes
the style of software usage. The mobility and cross-platform
characteristics of mobile agents allow software rental on the
network. Users can download the corresponding agent of

Computer Communications 22 (1999) 46–55

0140-3664/99/$ - see front matterq 1999 Elsevier Science B.V. All rights reserved.
PII: S0140-3664(98)00254-0

q This work was supported in part by the National Science Council,
Taiwan under contract NSC 86-2622-E-009-007R.

* Corresponding author. Tel.: 886 3573 1876; fax: 886 3572 4176;
e-mail: ssp@csie.nctu.edu.tw

software across the network and run it dynamically when
they want to execute some functions of the software. They
will no longer be asked to purchase the entire software when
they just need to use part of the features. Revision for soft-
ware in the environment becomes simple. Contrarily, soft-
ware developers can always provide the newest software for
users, and can know how many times a program has been
downloaded by a user. However, illicit dissemination of
software appears to be more serious on the network. It is
desirable to control the access that only authorized users can
download and execute a program. When a user wants to
download a program from the service provider, the condi-
tional access can be achieved by appropriately setting down-
load permissions. But the service provider has no control
over the mobile agents that have been distributed to users.
That is, the new style of software usage on the network
causes more serious software-piracy problem, and, simi-
larly, common software protection schemes that relies on
the authentication process within the software itself cannot
effectively prevent the software from being cracked by a
smart cracker.

To deal with the problem of software piracy on the
network, not only the software itself but also the environ-
ment associated with the software must be considered. The
compromised version of software may be harmful to users
executing it, since it may contain a Trojan Horse or virus
[3,14,27]. The malicious code that contains a Trojan Horse
or virus accessing user’s system resources such as the file
system, the CPU, the network, and the graphics display may
cause unpredictable effects, such as stealing user’s privacy
or damaging resources in user environment. Besides Trojan
horse and virus, a user who modifies the code to deviate
from the prescribed execution may cause more problems
to other parties on the network. For example, a user may
cheat in a multi-player game on the network if he has the
ability to modify the prescribed code of the software. There-
fore, not only mobile-code-based softwares require a good
software authorization and protection model to prevent soft-
ware piracy, but also users need a secure environment
against the attacks from malicious mobile agents.

To distribute the software in a secure manner that

prevents users’ local systems from attacks of maliciously
modified agents, digital signature can be applied. Many
code distribution mechanisms have been proposed to
enforce trusted distribution of software [3,21,27,37]. In
JDK 1.1 (Java Development Toolkit) [18,29], the code sign-
ing feature is provided and the user who downloads the
agent can identifying the sender by verifying the signature.
If the agent is not trusted, execution will be restricted in a
sandbox with only limited system resource provided.

Another Java-based mobile agent, called aglet, was
developed at IBM’s Tokyo Research Laboratory [31].
Aglets are able to automatically visit aglet-enable hosts,
execute on them, and communicate with other aglets in
the computer network. Like other mobile agents, aglets
are a potential threat to a system and they are also exposed
to threats by their hosting system. Karjoth et al. thus
proposed a security model for the aglets development envir-
onment [22]. But, like other literatures which discuss the
security issues of mobile agents, their security model
currently only focus on protection of the host against aglets.
That is, the application (or software) composed of aglets
will suffer from the problems of software piracy from mali-
cious hosts (users), such as unauthorized use or illicit disse-
mination.

In this paper, we will propose a software authorization
and protection model which emphasizes the protection for
mobile-code-based software (or the software vendors) to
prevent the attacks of hosts (users). To achieve flexible
and global security for the rapid growing network environ-
ment, the protection of the software property in the network
environment has been taken into consideration. In the
model, the privileges to access the agents of a program
are separated and distributed to the user’s local system
and a number of trusted servers called trusted computational
proxies. Dependent agents are distributed to different
proxies to minimize the information disclosure in case a
proxy is compromised. In the environment, methods for
assigning agents are also proposed to minimize, under the
security constraint, computation load of the proxies as well
as communication load between the user and proxies.

This paper is organized as follows: in Section 2, our
proposed model for software authorization and protection
is presented, which is based on the concept of separation of
execution privileges. In Section 3, a model for software
partitioning to achieve protection in this environment is
presented, and related issues for achieving better perfor-
mance and security will be discussed. Finally, we give the
conclusions in Section 4.

2. The proposed authorization and protection model

In mobile code systems, a program (software) is
composed of a number of agents. An agent can be down-
loaded dynamically from the remote machine and executed
on the local machine, and a job can be processed by the

S.-P. Shieh et al. / Computer Communications 22 (1999) 46–55 47

Fig. 1. Common software protection schemes.

cooperation of these agents. In the section, an authorization
and protection model is proposed to enhance the security
and protection of mobile codes by delegating some critical
execution services to one or more trusted and protected
proxies.

2.1. System model overview

The execution of a program can be considered to include
three parts: incoming messages, transformation processes,
and outgoing messages. An agent participates in the trans-
formation process for a message if the agent sends or
receives the message. If some critical agents are removed
from a program, execution of the program cannot proceed.

With the RMI (Remote Method Invocation) technology
for Java language that enables cooperating of computers on
the network, we proposed a model that protects software
with the help of trusted, protected computational proxy
servers, instead of tamper-resistant hardware devices
installed in the user’s environment. In this model, agents
of the software is partitioned into two types, general and
privileged agents. The users can acquire only general
agents, and the privileged agents are forced to be executed
in a protected environment, that is, the trusted computation
proxy.

The trusted computational proxy provides computation
services for privileged agents, as shown in Fig. 2. Only a
trusted proxy has the capability to get privileged agents and
execute them. The proxy executes the agents on behalf of an
authorized user and returns the result to the user. In this way,
an unauthorized user cannot acquire the results of privileged
agents, and therefore benefit little from the software. A
program may consist of many proxies, and each proxy
executes only a subset of the privileged agents. Thus, a
compromised proxy will not leak all privileged agents. In
the proposed model, agents to be downloaded are encrypted
by agent keys, and the agent keys for each agent are
different. These keys are only available to trusted proxies
or authorized users. The model consists of six major
components:

Software Vendor
The company who developed the software.
Certification Authority
The party who signs and issues the certificate containing the
user’s public key.
Software Authentication Center
An accredited organization that authenticates the software
developed by software vendors, and signing legitimate parts
of the software.
Agent Server
The server who stores agents provided by software vendors.
When a host wants to execute an agent, it first downloads the
agent from an agent server.
Trusted Computational Proxy
The server that provides computational services of privi-
leged agents for users.
User The user who uses the software.

2.2. Licenses for the software

In our model, there are two kinds of licenses, publication
license and execution license. The publication license gives
the right for software vendor to distribute an agent and the
execution license gives the right for user or proxy to down-
load and execute an agent. Note that this paper does not
clearly describe the detailed format of licenses since the
implementation issue is out of the scope of the paper.

2.2.1. Publication license
In our environment, secure distribution of agents is

achieved by the publication licenses. For each agent, there
is a publication license associated with it. The publication
license is issued and signed by software authentication
center, and every agent provided by a software vendor
must have a legal publication license.

A publication license consists of:

1. Serial number,
2. Software vendor information,
3. Software authentication center information,
4. Agent information (ID, version),

S.-P. Shieh et al. / Computer Communications 22 (1999) 46–5548

Fig. 2. The proposed protection model.

5. Message digest of the agent, and
6. Issuing and expiration time.

The license is signed by the center’s private key. When a
user or proxy downloads an agent from the agent server, it
verifies the agent by the center’s public key, and also checks
the message digest and expiration time of the agent.

When the software vendor releases a new agent, it first
sends it and the related information about the agent (for
example, specification or source code) to the software
authentication center. The software authentication center
checks the agent, and if there is no problem with it, the
center issues a publication license of this agent and sends
back to software vendor.

2.2.2. Execution license
The user or proxy must get an execution license to

execute the corresponding agent. The execution license is
issued and signed by software vendor to prevent an
unauthorized user from forging it.

The execution license consists of:

1. Serial number,
2. Execution capabilities for agents of the software,
3. Delegation capabilities for agents of the software (for

user only),
4. User or proxy’s information,
5. Software vendor information, and
6. Issuing and expiration time.

The execution capability of an agent determines whether
a user or a proxy can download the agent. If the user has the
execution capability of an agent, he can get some extra
information of the agent from software vendor, for example,
agent key or message digest of the agent, to decrypt and
verify the agent. To execute the privileged agents that have
to be executed in the proxies, a user must have the delega-
tion capability for these agents. That is, the delegation
capability determines whether a user can delegate the
execution of an agent, which he cannot execute directly,
to the proxy.

The execution and delegation capabilities for a user
depends on how many agents the user has been authorized
to use. If the user is interested in only some features of the
software, software vendors can issue the license with the
capabilities for only the agents providing these features.

The rest of the license contains the other basic informa-
tion, such as the user’s certificate identifying who will
execute the agent, the information of the software vendor
who produced the agent, the expiration time of this license,
and so on. The information helps the agent servers to verify
the legality of the execution licenses while the user/proxy
requests to download agents.

2.3. Using the software

The user can purchase the execution license of the soft-
ware he is interested in from the software vendor. Once the

user receives the execution license issued by software
vendor, he can begin to use the software. In this section,
we describe the related issues when a user is using the soft-
ware.

2.3.1. Agent downloading
In mobile code system, agents are dynamically down-

loaded from a remote server and executed in a local
machine. Agent downloading is necessary if there are no
previously cached agents in a proxy or user’s computer.
The agent server controls the access to the agents to be
downloaded. The client (proxy or user) sends the request
for the agents along with his execution license. If the license
is valid and it consists the execution capability of the agent,
the request will be accepted. Otherwise it will be denied.

When a user or a proxy received an agent from the agent
server, he can decrypt it with the corresponding agent key.
The verification process verifies the validity of an agent,
which includes correctness and effectiveness of the down-
loaded agent.

2.3.2. Execution of the software
After a user downloads the agents from an agent server,

he can begin to execute them. Since privileged agents are
forced to be executed by the proxies, the user has to bind
these agents first before execution. In the binding phase, the
user sends his execution license to the proxy server he wants
the execution to be delegated. The user and the proxy
mutually authenticate execution license of the other. The
execution then proceeds by executing the agents corre-
sponding to the capabilities listed in user’s execution
license.

If there are more than one proxy participating in the
execution, the user will be required to explicitly make
connections to each of them and authenticate with each
other. For using the software for the first time, the user
requests the software vendor for a list of available proxies.
He then chooses the proxy for computational service and
registers himself at this proxy. Registration for execution
licenses will be discussed in the next section.

2.4. License registration and revocation

Once an execution license has been issued to a user, the
user can use the software with the capabilities listed in the
license. However, sometimes the software vendor may wish
to revoke the license of a user if illegal behavior of the user
has been found. Moreover, with the registration and revoca-
tion support, it is desirable to record in a license the number
of executions granted to a user. The proxy records the
number of executions invoked by the user, and if it exceeds
the limitation recorded in the user’s execution license,
subsequent execution will be rejected.

Registration is required for the first time when a user
wants to use the service provided by a proxy. The execution
license will only be valid for the proxy if there is a corre-

S.-P. Shieh et al. / Computer Communications 22 (1999) 46–55 49

sponding registry�U;P;SNU�Ds
(signed by the software

vendor, whereU is the user’s identity,P the proxy’s iden-
tity, Ds the software vendor’s private key, andSNU the serial
number of the license) in the proxy. When a user wants to
delegate the execution to a proxy, the proxy checks both the
user’s execution license and the registry. The license with-
out a corresponding registry will be considered invalid. The
registration steps are described as follows:

Step 1 A user sends a request along with his execution
license to the software vendor for registration at a
proxy.

Step 2 The software vendor checks validity of the user’s
license. Go to Step 3 if valid, otherwise stop.

Step 3 The software vendor sends a message
�U;P;SNU�Ds

(signed by the software vendor) to
the new proxy to add user’s record at the proxy.

Step 4 The software vendor updates its own registry for
the user.

To revoke an execution license of a user in a proxy, the
software vendor simply tells the proxy to remove the regis-
try for the user and then removes the registry located at the
software vendor itself. Then the user’s execution license
will be revoked because no registries can be found in the
proxy. In addition, the vendor can also inform the user that
the license is revoked.

3. Software partitioning

Software partitioning means separating agents such that a

user cannot benefit from holding only a subset of agents of a
program. The goal is to partition the software in such a way
that a user holding a single agent or a subset of the agents
will not be able to get an acceptable result if acquiring the
result requires the help of other agents.

In Fig. 3, we compare two different ways of software
partitioning. Assume that each area in the graph represents
a code fragment, that is, an agent. The execution of an agent
depends on the execution of adjacent agents, that is, there
will be message passing between the adjacent code frag-
ments. There are two partitions in the graph, where a
light-color area represents an agent to be executed by a
user, and a dark-color area represents an agent to be
executed by a trusted computational proxy. It is clear that
the partitioning on the right of Fig. 3 provides better protec-
tion than the partitioning on the left. The method of parti-
tioning in the left graph simply cut the program into two
halves, where the left half will be given to the user and the
right half will be given to the proxy. If an authorized user
acquires any half of the program, he can still execute partial
functions of the software and get some results. Contrarily,
the method on the right divides the program into small
pieces, and distributes them to the user and proxy server.
In case either one of them is compromised, an intruder can
benefit little from the compromised agents, because many of
the agents he received relies on execution of the other
agents.

The execution of an agent may disclose some information
to the user. The more agents the user can get, the more
information may be gained from the user. If the user gets
all the agents, we can say that the whole software is compro-
mised. However, for two nonadjacent compromised agents,
since they are not directly dependent, the intruder can only
acquire two small pieces of information from them, but
cannot find the relationship between the two pieces.
However, for two adjacent agents, the intruder can find
their relationship and merge the two pieces of information
to acquire more information.

3.1. Proposed partitioning model

A program in the mobile code system can be represented
as an undirected dependency graphG � (V, E), where a
vertex represents an agent and an edge represents the depen-
dency between two agents. If an agent may communicate
with another agent, they are dependent. For two dependent
agents in execution, there will be messages passing between
them.

In the software, we assume that the user can get more
acceptable result from it if he can get a larger subset of the
connected agents. Giving the user two independent agents
will provide better protection than two dependent agents,
because the user cannot benefit from two independent
agents directly if they depend on other agents executed in
the proxy. Based on the assumption, we proposed a

S.-P. Shieh et al. / Computer Communications 22 (1999) 46–5550

Fig. 3. Example of partitioning.

Fig. 4. The proposed partitioning model.

partitioning model, in which any two agents executed by the
user are independent, as shown in Fig. 4.

In the scheme, each agent on the user’s machine depends
on the agents executed by the proxy. The partitioning model
considers the security only at the agent level, and the inter-
nal structure of an agent will not be covered in this paper.
An agent is a basic element in the model. For a small soft-
ware with only several agents, a heuristic partitioning may
work well. However, for a large software composed of many
agents, our model gives a good protection by partitioning
the software into pieces which will be assigned to different
participants to acquire better security. In the assignment, we
consider the following two issues:

1. Performance and
2. software protection.

For the first issue, we wish to achieve good performance
by reducing the computational load of the proxy and distri-
buting more agents to the user. Since the proxy provides the
computation services for many users, its load is usually
rather heavy and it may become a bottleneck. The computa-
tion load on the proxy should be an important factor for the
overall performance. To reduce the computation load on the
computation proxy, it is desirable to distribute as many
agents to the user as possible. Contrarily, for the second
issue, it is desirable to distribute as few agents to the user
as possible to reduce the possibility of software piracy. To
balance the two requirements, a possible approach is to
assign as many agents to the user as possible under the
constraint that all agents executed by the user are indepen-
dent. Further, if each agent has a different computational
cost, it is also desirable to find an assignment that minimizes
the computation load on the proxy. In Section 3.3, we will
also take the communication load between any two agents
into consideration, and find the optimal assignment for redu-
cing both computation cost and communication load.

3.2. Assignment of agents

In this section, we will discuss the method for assigning
agents to participants, including the user and the proxy. In
the dependency graph for a program, the agents assigned to

be executed by the user is marked number 0, and those
executed by the proxy are marked number 1 or greater.
Not all agents of the program will be freely assigned.
Some agents may have special properties and have to be
assigned at specific locations. Before partitioning, we find
these kind of agents and assigned them first. The steps for
the initial assignment are described as follows, and an
example is shown in Fig. 5.

Step 1: Mark the nodes that have to be placed at specific
locations
Some agents have to be executed at specific locations. For
example, some agents may be designed for reading data
from the user’s keyboard, displaying data to the user’s
monitor, or reading/writing data from the user’s hard disk.
These agents have to be executed by the user, and marked
number 0. Some agents have to open some network
connections from a proxy (in a firewall, for example) or
reading/writing something from the proxy’s file system.
These agents should be placed in the proxy, and marked
number 1. In this step, all special nodes (agents) are marked
a number depending on the location the agents has to be
assigned.
Step 2: The nodes adjacent to nodes with 0 are marked 1
Since the agents executed by the user must be independent,
all agents adjacent to agents with number 0 cannot be
marked number 0 again. These agents have to be marked
number 1.

Here are some examples for these kind of agents that have
to be initially assigned.

1. User

• Reading from keyboard,
• Reading or writing from user’s hard disk,
• Displaying on the monitor, and
• Communicating with network with user’s identity.

2. Proxy

• Reading or writing from proxy’s file systems,
• Execution from behind the firewall, and
• Agents consisting of critical codes.

S.-P. Shieh et al. / Computer Communications 22 (1999) 46–55 51

Fig. 5. An example for initial agent assignment.

In addition, the security concerns is also an important
factor for the initial assignment of agents. In the network
environment, sometimes an agent may invoke some opera-
tions on a specific principle, and the correct execution must
be assured. For example, the software vendor may want to
record execution states of the software provided for users.
Sometimes a database can be only accessed by a trusted
party. If the execution of the agent is performed by the
user, he may modify the code to deviate from prescribed
execution and creates faulty results. Thus these agents have
to be assigned to the proxy to ensure correct results.

3.3. Partitioning for performance considerations

If the proxies are trusted and protected, the assignment of
adjacent agents to the same proxy will not be a problem.
Since the unauthorized users cannot access agents in the
proxies, we just need to assign the nodes in such a way
that all agents in the user are independent. The assignment
problem is thus reduced to finding the maximum indepen-
dent set in a dependency graph. Since each agent usually
need different execution time, we assign a weight to each
agent, where an agent with heavy weight imposes more
computation cost than an agent with light weight. Since
each agent has a different computation cost, the assignment
problem is reduced to finding the maximum weighted inde-
pendent set in an arbitrary graph.

3.3.1. Finding maximum weighted independent set
In a graphG � (V, E), and each vertexvi has a positive

weightwi. Let S to be the independent set for the graphG if
for all vi ; vj [S;ViVj Ó E The maximum weighted inde-
pendent set for the graphG is to maximize W�S� �P

vi [Swi : A clique of graphG � (V, E) is the subsetC #
V; whereG(C) is a complete graph. Finding the maximum
weighted independent set inG is equivalent to finding the
maximum weighted clique in �G; where a maximum
weighted clique is a clique that the sum of all of its weighted
vertices is maximal.

The problem of finding the maximum weighted or
unweighted independent set in an arbitrary undirected

graph, has been proven to be NP-hard [16]. The problem
is notoriously hard even if vertices of the graph are
unweighted. For the unweighted case, an efficient algorithm
for finding maximum independent set has been presented by
[30], which takesO(2n/3) times. Many heuristic algorithms
have been proposed for finding maximum weighted inde-
pendent set or maximum weighted clique in an arbitrary
graph [2,24,26,36]. Polynomial time algorithms for many
other restricted classes of graphs have also been proposed.
If the graph is a tree, the maximum weighted independent
set can be found inO(n) [8].

With the algorithms for finding maximum weighted inde-
pendent set, the optimal partitioning for the software that the
computation load of the proxy is minimum and agents
executed by user are independent can be found.

3.3.2. Considering both computation and communication
load

Now we consider that the network bandwidth between
user and proxy may be limited, and the computing power
of the proxy may be also limited. We want to partition the
software that gives optimal assignment of load under such
limitations. In the agent dependency graph, we define each
edge to be the network communication loads between two
agents. The communication load is often measured as the
average number of messages in an execution session
between two agents, and it is defined to be zero if:

1. the two agents are nonadjacent, or
2. the two agents are adjacent but assigned to the same

location.

Then we define communication degree of an agent to be
the total communication load between the agent and all
other adjacent agents. Here are the steps for calculating
the communication degree of an agent.

Step 1 Measure the communication load between any two
agents and define it as weight of the edge in the
graph.

Step 2 Add the weights of all incident edges of a node to

S.-P. Shieh et al. / Computer Communications 22 (1999) 46–5552

Fig. 6. Calculating communication degree.

be its communication degree, if the adjacent node
has not been marked the same number as the node.

An example of the procedure for calculating the commu-
nication degrees of each agent is given in Fig. 6. In the graph
preceding the arrow, each agent is labeled its computation
load and each edge is labeled its communication load. In the
graph following the arrow, each vertex (agent)vi is labeled
the pair (mi,ni), wheremi represents computation load of the
agent, andni represents the communication degree of the
agent. Since the two dark agents have been initially marked
the same number and assigned to the same host, commu-
nication load of the edge between them is not added to
communication degrees of both agents.

Consider that the computing power of proxy or the
network bandwidth may be limited. We can formulate the
problem for partitioning. First we define some variables that
will be used in the problem.

mi computation cost of agentvi,
Mall total computation cost of all agents,
ni communication degree of agentvi,
Nall total communication degree of all agents,
P computing power of the proxy, and
B the network bandwidth.

The problem for partitioning under different limitations
becomes:

Minimize the computation cost under limited network
bandwidth between the proxy and user
Maximize y� P

vi[Smi subject to the constraint
that

P
vi[Sni # B; whereSis an independent set for graphG.

Minimize the communication load under limited computing
power of the proxy
Maximize z� Nall 2

P
vi[Sni subject to the constraint thatP

vi[Smi # Mall 2 P; whereS is an independent set for
graphG.

The independent setS contains the agents that will be
executed by the user. The two problems are equivalent,
and we formulate our problem as follows. According to
the description of Section 3.3.1, the problem is to find the
subsetSof vertices such thatM�S� � P

vi[Smi is maximum
under the constraint

P
vi [Sni # k; wherek is a given upper

bound and 0# k # B. Here we present a heuristic method
to solve this problem recursively. The algorithm is able to
find, under a given network bandwidth constraint, the inde-
pendent set with maximum computation weight for graphG.

3.3.2.1. Algorithm for finding the independent set with
maximum computation weight

Step 1 (1) SetS� Ø, M � 0, N� 0; (2) SetS0� Ø, M0�
0, N0 � 0; and (3) SetS1 � Ø, M1 � 0, N1 � 0.

Step 2 IfG ± Ø choose a vertexi in graphG, otherwise
stop.

Step 3 For the chosen vertexvi, if ni . k or vertexvi is
initially assigned 1, go to Step 5.

Step 4 SetG0 � G 2 { vi} 2 {vertices adjacent tovi} and
k0� k 2 ni. FindM0, N0, S0 by calling the algorithm
for graphG0. If vertex vi is initially assigned 0, go
to Step 6.

Step 5 SetG1 � G 2 { vi} and FindM1, N1, S1 by calling
the algorithm for graphG1.

Step 6 IfM0 . M1

thenM ← M0 1 mi ;N ← N0 1 ni ;S← S0 < vi :

OtherwiseM ← M;N ← N1;S← Si :

After executing the heuristic algorithm, the setSconsists
of the agents to be assigned to the user. Note that in the
beginning if

P
vi ,I ni . k} where I is the initially assigned

set of independent vertices inG, the process should be
stopped because no valid solution satisfying the constraint
in graphG can be found. Further, ifk is large enough to
support all possible communication between the user and
proxy, the partitioning problem is reduced to finding the
independent set with maximum computation weight.

3.4. Partitioning agents among multiple proxies

In the previous section, we investigate the methods for
partitioning agents between a user and a proxy. In the
section, we will investigate the partitioning method for the
network environment with multiple proxies, where each
proxy may be compromised. To reduce the risk of software
piracy, we assign the agents to the proxies in the way that
each proxy gets independent agents. Thus, the disclosure of
software information can be minimized. The problem of
assigning independent agents to each proxy can be formu-
lated as the vertex coloring problem. We discuss the vertex
coloring as follows.

Let G be a graph. A vertex coloring ofG assigns colors,
usually denoted by 1, 2, 3,…, to the vertices ofG, one color
per vertex, so that adjacent vertices are assigned different
colors. The minimum numbern for which there is ann-
coloring of the graphG is called the chromatic number of
G and is denoted byx (G). If x (G) � k we say thatG is k-
chromatic.

The problem of coloring vertices in an undirected graph
has been shown to be NP complete, i.e., no algorithm has yet
been proposed to find the optimal coloring in polynomial
time [1]. However, there are a number of coloring algo-
rithms which give approximations to minimal coloring.
These heuristic graph coloring algorithms can be used to
find good approximations to the chromatic number of
those graphs that are too large for the coloring [11]. We
will discuss both approximate vertex coloring and exact
vertex coloring in the following sections and give the guide-
lines for partitioning with these algorithms.

3.4.1. Approximate partitioning
If there are enough proxies available on the network, we

can use the approximate coloring algorithms for partition-
ing, which solve the problem in polynomial time. In this
section, we discuss the coloring algorithms that give

S.-P. Shieh et al. / Computer Communications 22 (1999) 46–55 53

approximation to minimal coloring. One of the coloring
algorithm is the simple sequential algorithm [33]. The algo-
rithm starts with any ordering of the vertices of the graphG,
say V1,…,Vn. It first assigns color 1 toV1; then moves to
vertexV2 and colors it 1 if it is not adjacent toV1; otherwise,
colors it 2. Proceeding toV3, color it 1 if it is not adjacent
toV1; color it 2 if it is adjacent toV1, but not adjacent toV2;
otherwise, color it 3. Proceed in this manner, coloring each
vertex with the first available color that has not been used
by any of its adjacent vertices. In the following, we
proposed a new smallest-last sequential assigning algorithm
to solve the assigning problem with some vertices initially
assigned.

3.4.1.1. The smallest-last sequential assigning
algorithm Assume that the agents executed by user are
assigned color number 0, and agents executed by proxies
are assigned color number greater than 0 which each color
number represents a proxy. In the initial assignment, some
agents may have been assigned to designated locations. For
the initially assigned proxies, the color numbers are chosen
from 1, and increasingly. We first delete the vertices that
initially assigned number 0 and solve the reduced subgraph.
The smallest-last sequential assigning algorithm is
described as follows:

1. Step 1

• Let U be the set of vertices initially assigned color
number 0.

• Let P be the set of vertices initially assigned color
numbers greater than 0.

• Let H�G 2 U, whereH is the subgraph ofG with all
vertices inU deleted.

2. Step 2

• List the vertices ofP asx1,…, xa.
• Choosexn to be a vertex of minimum degree inH 2 P.
• For i � n 2 1,n 2 2,…,a 1 1, chooseXi to be a vertex

of minimum degree in the subgraphH 2 P 2
{ xn; xn21;…;xa11

} :
• List the vertices ofH asx1,…,xn.
• List the colors available as 1,2,…,r.

3. Step 3

• For all xi, i � 1,…,a, let Ci � { Pi} where Pi is the
initially assigned color forxi.

• For allxi, i � a 1 1,…,n, letCi � {1,2,…,r}, which is
the list of colors that can color vertexxi.

4. Step 4

• Set i � 1.

5. Step 5

• If i . a, let Ci be the first color inCi and assign it to
vertexxi.

6. Step 6

• SetCj � Cj 2 { ci} for each Xj in H, j . i, andxj

adjacent toxi.

7. Step 7

• Set i larr; i 1 1 and go to Step 5 ifi # n.

8. Step 8

• For i � 1,…,n, ci is the color assigned to vertexxi.

After executing the algorithm, the agents can be parti-
tioned such that

1. The user gets an independent set of agents.
2. Agents in each proxy are independent.
3. At most maxxi[H�d�xi��1 1 proxies are required, where

d(xi) is the degree for vertexxi.

3.4.2. Optimal partitioning
In this section, we discuss the exact vertex coloring,

which gives partitioning with minimal number of proxies.
A graph can be colored optimally by coloring with the first
color a maximum independent setM1 in G, and then color-
ing with the second color with another maximum indepen-
dent setM2 in G1�G 2 M1, and so on until all vertices have
been colored. Such kind of coloring algorithms are called
optimal independent colorings [9,10]. With the algorithms
for maximum independent set discussed earlier, we can
partition the software and assign them with minimal number
of proxies.

3.5. Guideline for partitioning among proxies

Partitioning is easier if there are enough proxies available
on the network. The smallest-last sequential assigning algo-
rithm proposed earlier can be applied. If the number of
colors used by the approximate algorithm exceeds the
number of proxies, the exact coloring algorithms can be
applied. Exact coloring algorithms give the solution to parti-
tion with minimal number of proxies. If the number of
proxies available is fewer than the chromatic number (mini-
mal number of coloring) for the graph, an ideal partitioning
cannot be achieved. In this case, we can use the exact color-
ing algorithm by assigning an maximum independentM1 in
G to the first proxy, and assignM2 in G1 � G 2 M1to the
second proxy, and so on, untiln 2 1 proxies inn have been
used. The remaining agents (which may not be independent)
are assigned to the last proxy. Therefore, agents on each
proxy are independent, except the last one. And we can
concentrate on protecting the last proxy.

4. Conclusions

In this paper, a model for software authorization and
protection in mobile code systems is proposed. To achieve
flexible and global security for the rapid growing network

S.-P. Shieh et al. / Computer Communications 22 (1999) 46–5554

environment, the protection for both the software property
and principles in the network environment have been taken
into consideration. In the proposed model, a software
consists of agents. The privileges to access these agents are
separated and distributed to a number of trusted computa-
tional proxies. The execution of a software are conducted by
cooperation of the agents and the proxies containing them.
The user holding part of agents of the software will not be
able to use the software without the help of these proxies.

Methods for software partitioning in this environment are
also proposed. Independent agents are assigned to the user,
which provide little information without cooperation with
agents on the proxies. To improve the performance in this
environment, computation load of the proxies and commu-
nication load between proxies and user should be mini-
mized. An optimal assignment of agents for the software
is also proposed to minimize, under the security considera-
tions, the computation load of proxies and the communica-
tion load between proxies and user. To reduce the risk of
proxies being attacked, vertex coloring has been applied to
the partitioning. In the case that a proxy is compromised,
little information can be acquired by the intruder.

For further reading

See Refs. [4,23,34].

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA, 1974 pp.
364–404.

[2] E. Balas, J. Xue, Weighted and unweighted maximum clique algo-
rithms with upper bounds from fractional coloring, Algorithmica 15
(1996) 397–412.

[3] W.C. Barker, Use of privacy-enhanced mail for software distribution,
Fifth Annual Computer Security Applications Conference, 1989, pp.
344–347.

[4] R. Best, Microprossor for executing encrypted programs, US Patent 4,
168396, 1979.

[5] L.F. Bic, M. Fukuda, M.B. Dillencourt, Distributed computing using
autonomous objects, IEEE Computer August (1996).

[6] A. Carzaniga, G.P. Picco, G. Vigna, Designing distributed applications
with a mobile code paradigm, in: Proceedings of the 19th International
Conference on Software Engineering, Boston, MA, May 1997.

[7] P. Ciancarini, D. Rossi, Jada – coordination and communication for
Java agents, in: Mobile Object Systems: Towards the Programmable
Internet, Lecture Notes in Computer Science No. 1222, Springer-
Verlag, Berlin, 1997, pp. 213–228.

[8] G.H. Chen, M.T. Kuo, J.P. Sheu, An optimal time algorithm for
finding a maximum weight independent set in a tree, BIT 28 (1988)
353–356.

[9] N. Christofides, An algorithm for the chromatic number of a graph,
The Computer Journal 14 (1971) 1971.

[10] N. Christofides, Graph Theory, Academic Press, London, 1975.
[11] J. Clark, D.A. Holton, A First Look at Graph Theory, World Scien-

tific, Singapore, 1991.

[12] D. Curtis, Software Privacy and Copyright Protection, WESCON/94,
Idea/Microelectronics, Conference record, pp. 199–203.

[13] K.J. Dakin, Do you know what your license allows?, IEEE Software
(1995) 82–83.

[14] D. Dean, E. Felten, D. Wallach, Java security: from HotJava to Nets-
cape and beyond, Proc. IEEE Symp. Security and Privacy, May 1996,
pp. 190–200.

[15] S. Donovan, Patent, copyright and trade secret protection for soft-
ware, IEEE Potentials August/September (1994) 20–24.

[16] M.R. Garey, D.S. Johnson, Computers and Intractability: A guide to
the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.

[17] C. Ghezzi, G. Vigna, Mobile code paradigms and technologies: a case
study, in: Proceedings of the First International Workshop on Mobile
Agents, Berlin, Germany, April 1997.

[18] L. Gong, New security architectural directions for Java (extended
abstract), in: Proceedings of IEEE COMPCON, San Jose, California,
February 1997, 97–102.

[19] J. Gosling, H. McGilton, The Java Language Environment, Sun Micro-
systems, May 1996,khttp://java.sun.com/doc/language_environment/l.

[20] R.S. Gray, Agent Tcl: a transportable agent system, in: Proceedings of
the CIKM Workshop on Intelligent Information Agents, Baltimore,
MD, December 1995.

[21] L. Harn, H.Y. Lin, S. Yang, A software authentication system for
information integrity, Computers and Security 11 (4) (1992) 747–
752.

[22] G. Karjoth, D.B. Lange, M. Oshima, A security model for aglets,
IEEE Internet Computing, 1997.

[23] S.T. Kent, Protecting externally supplied software in small compu-
ters, Ph.D. Dissertation, MIT/LCS/TR-255. MIT, Cambridge, MA,
1980.

[24] R. Kopf, G. Ruhe, A computational study of the weighted indepen-
dent set problem for general graphs, Foundations of Control Engi-
neering (1987) 167–180.

[25] R.E. Neff, Software piracy: international copyright overview,
WESCON/94, Idea/Microelectronics, Conference record, pp. 190–
195.

[26] P.M. Pardalos, N. Desai, An algorithm for finding a maximum
weighted independent set in an arbitrary graph, Int. J. Comput.
Math. 38 (1991) 163–175.

[27] A.D. Rubin, Trusted distribution of software over the internet, Proc.
IEEE Symp. on Network and Distributed System Security, pp. 47–53,
1995.

[28] Remote Method Invocation Specification, Sun Microsystems Inc.
khttp://www.javasoft.com/products/jdk/1.1/docs/guide/rmi/spec/
rmiTOC.doc.htmll.

[29] Signed Applets and Digital Signatures, Sun Microsystems Inc.khttp://
java.sun.com/products/JDK/1.1/docs/guide/signingl.

[30] R.E. Tarjan, A.E. Trojanowski, Finding a maximum independent set,
SIAM J. Comput. 6 (3) (1977) 537–546.

[31] B. Venners, The Architecture of Aglets, Java World,khttp://
www.java-world.com/javaworld/jw-04-1997/jw-04-hood.htmll,
April 1997.

[32] J. Voelker, P. Wallich, How disks are ‘padlocked’, IEEE Spectrum
(1986) 32.

[33] D.J.A. Welsh, M.B. Powell, An upper bound for the chromatic
number of a graph and its application to timetabling problems,
Comput. J. 10 (1967) 85–86.

[34] S.R. White, L. Comerford, ABYSS: architecture for software protection,
IEEE Transactions on Software Engineering 16 (6) (1990) 619–629.

[35] A. Wilson, Software security and the DirectPlay API, Dr. Dobb’s
Journal (1997) 66.

[36] J. Xue, Edge-maximal triangulated subgraphs and heuristics for maxi-
mum clique problem, Networks 24 (1994) 109–120.

[37] X.N. Zhang, Secure code distribution, IEEE Computer 30 (6) (1997)
76–79.

S.-P. Shieh et al. / Computer Communications 22 (1999) 46–55 55

