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Abstract. Consider the partition of a set of integers into parts. Various partition properties have been proposed
in the literature to facilitate the restriction of the focus of attention to some small class of partitions. Recently,
Hwang, Rothblum and Yao defined and studied the sortability of these partition properties as a tool to prove the
existence of a partition with such a property in a given family. In this paper we determine the sortability indices
of the seven most interesting properties of partitions providing a complete solution to the sortability issue.
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1. Introduction

Consider the set of integets={1, 2, ..., n}. A partitionz of |, is a finite collection of
disjoint setsry, ma, ..., mp Whose union id,,, pis called thesizeof 7 andny, 7, ..., 7y
thepartsof . Further, ifny, ny, ..., np are the sizes ofy, my, . . ., p, respectively, then
{n1, Ny, ..., np} is called theshapeof 7. Different types of restrictions can be imposed
onm. 7 is referred to as ahape-partitionif its shape is given, aize-partitionif p is
given, and arpen partitionif neither its shape nor its size is given. We may also write an
{ny, ny, ..., ny}-partition or ap-partition to highlight the shape or the size. For a partition
and anelemerite |, definer (j) as the part of that containg. Thernr can be represented
in the formt (;r) which is the sequence(1)(2) - - - w(n) oriy, i, ..., iy for short where

j €mi forallj € In. Forinstance, apartitionof Iswith 7y = {1, 3}, 72 = {2, 5}, 73 = {4}
can be represented lbyr) asmymomwam, or 12132 for short.

A partition property is a univariate relation over partitions. A set of partitions is said to
satisfya propertyQ if it contains a partition with propert®). Seven such properties have
been proposed in the literature; each occurs in optimal partitions for a corresponding clas:
of problems thereby allowing one to restrict attention to partitions with that property in
search for our optimal partition. An underlying relation between two disjoint subséts of
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which characterizes each of these seven properties ist &rtl J be two disjoint subsets
of I,,. | is said topenetrate Jwritten| — J, if there exista, cin J andb in | such that
a<b<c.

We now define the seven propertiesis

N (nested): mi — mj impliesw; 4 m;.

F (fully nested): Forall andj, eitherm; — mj, w; 4> m; or vice versa.

A (almost fully nested): F except that parts of size 1 do not have to penetrate other
parts.

C (consecutive): Forallandj, m A m;.

S(size-consecutive):  C plus the condition that larger elements go to parts of larger
sizes.

E (extremal): A special case &with p — 1 parts of size 1.

|y foralli.

O (order-consecutive):  Parts can be indexed suchrthat
(See (Hwang et al., 1996) for referenceshnF, C, O. Awas proposed in (Gal and Klots,
1995),Sin (Hwang et al., 1985) an# in (Anily and Federgruen, 1991).)

It was shown (Hwang and Mallow, 1995; Kreweras, 1972; Yeh et al., 1998) that the
number of open partitions, the number of size partitions for general size and the number ¢
shape partitions for general shape are all exponential but the corresponding numbers
of partitions satisfyind, foranyQ € {N, F, A, C, S, E, O}, is polynomial. Therefore, in
an optimal partition problem it would be very helpful if we can prove the existence of an
optimal partition satisfyind to limit the scope of search. A typical way of proving such
an existence is to show that any optimal partittomot satisfyingQ can be step-by-step
locally sorted into an optimal partition satisfyiri@. In this paper, “locally sorted” means
that for some fixed, a setK of k parts ofr not satisfyingQ are sorted into a partition
7', with the same restrictions as such thatr/ = r; for 7; ¢ K and the restriction o’ to
U ek 7i satisfiesQ. We refer to such a sorting agsorting ofK. Note that optimality
must be preserved in a local sorting. The reason of doing local sortings instead of on
global sorting is because the preservation of optimality is much easier to maneuver at tf
local level.

Instead of associating the sortability notion with optimality, we associate it with families
[T of partitions satisfying certain conditions (the reader can think of these families as fam
ilies of optimal partitions). Therefore, optimality preservation means keeping the derivec
partitions after local sorting in the same family. Note that for a gikethere could be
many choices of whiclk parts to sort, and for givek parts, there could be many ways
to Q-sort. We define four different levels of coveragtrong part-specifi¢ sort-specifi¢
weak depending on which local sortings must yield partitions staying in the family. More
specifically, for giverk and type of restriction, a familil is called:

(i) strongly Q-sortablef IT contains allQ-sorting of allK;

(i) part-specific Q-sortablé@ IT contains allQ-sorting of a specifid;
(i) sort-specific Q-sortablé IT contains a specifiQ-sorting for allK ;
(iv) weakly Q-sortabléf IT contains a specifiQ-sorting of a specifid.
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PropertyQ is calledweakly; sort-specific-part-specific; strongly-k sortablef IT satisfies
Q for any family IT satisfying (i), (i), (i) and (iv), respectively. We can also describe
the sortability ofQ by associating with it a triplé, k, t), wherel is the level of coverage
((i), (ii), (i) and (iv) above) and is the type of restriction (shape, size, open)lbnNote
that the stronger is the coverage of the faniilythe easier is fofl to satisfyQ. It was
shown in (Hwang et al., 1996) that it suffices to find a partition stats$tig which is either
strictly decreasing durin@-sorting ands(rr) is lower bounded, or strictly increasing and
s(rr) is upper bounded (noting that the number of partitions is finite). In particular, to show
the propertyQ is (i) strongly- (ii) part-specific- (iii) sort-specific- (iv) weaklysortable, it
suffices to show thasi(rr) is decreasing (or increasing) during (i) @tsorting for allK, (ii)
all Q-sorting of a specifi&, (iii) a specificQ-sorting for allK, (iv) a specificQ-sorting of a
specificK. Itshould be noted that when we sort a sulsef k parts byk-open-sorting into a
subseK’ of k' parts, all parts iik’ must be distinct from the partsin\ K. The reasonis iK’
includes a particr\ K, thenitis not clear whether we are doixgorting or(k + 1)-sorting.
Currently, it is known (Hwang et al., 1996) that

C is strongly-2-open-sortable.

N is part-specific-2-open-sortable.

O is not weakly-2- or 3-shape-sortable.
F is not part-specific-2-shape-sortable.

Although the sortabilities o€ and N were proved in (Hwang et al., 1996) only for
“size”, the proofs are good for “open”. Hence we state them in the more general version.
In this paper, we also study the sortability®fE and A and completely solve th@, k, t)-
sortability issue.

2. Some preliminary results
In talking about the(l, k, t)-sortability, any missing variable in the triple will be inter-

preted as that the statement is valid for all choices of that variable. It is easily verified the
implications among the four types of levels:

< Part-specific
strong 3 weak
“ sort-specific

Lemma 2.1. When the level is strong or part-specifiopen-sortability implies size-
sortability implies shape-sortability.

Proof: A weak or sort-specifi@Q-shape-sortable family is also@-size- andQ-open-
sortable family. Thus any such family not satisfyi@grovides an example against shape-
or size- or open-sortability all. a
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Lemma 2.2. Let Q and Q be two partition properties such that 8 Q' (Q'=Q
allowed. If every(l, k, t')-Q’-sortable family contains a subfamily which(s k, t)-Q-
sortable then Q is(l, k, t)-sortable implies Qis (I, k, t’)-sortable.

Proof: Let IT’' be an(l, k, t’)-Q’-sortable family which contains afh, k, t)-Q-sortable
subfamilyI1. The(l, k, t)-sortability of Q implies thatl1 satisfieQ, and hencél’ satisfies
Q/, sinceQ= Q.. m]

Corollary 2.3. For | =weak or sort-specifiql, k, shapg-sortability implies( ,k, size-
sortability implies(l, k, open sortability.

Proof: SetQ = QinLemma 2.2 and note that for the giverevery(l, k, p)-Q-sortable
family contains ar(l, k, {ny, ..., np})-Q-sortable family. O

Corollary2.4. For Q = Q/, Q'isk-consistent andd= weak or sort-specifi@Q is(, k, t)-
sortable implies Qis (I, k, t)-sortable.

Proof: Every Q-sorting is aQ’-sorting. Hence for the giveh a Q’-sortable family
contains aQ-sortable subfamily. a

The implications among the partition propertsF, C, O were given in (Hwang et al.,
1996). It is easily verified that addingy, S, E yields the following partial order:

The implications among the levels and Lemma 2.1 and Corollary 2.3 immediately lead to
Theorem 2.5. For fixed k, we have the following implications among sortabilities:

strong-open = strong-size => strong-shape => sort-sp.-shape = sort-sp.-size = sort-sp.-open

U U U U U U

part-sp.-open = part-sp.-size => part-sp.-shape = weak-shape = weak-size => weak-open

In subsequent sections we will present #isortability of a propertyQ with respect
to the 12 classifications given in Theorem 2.5 by :a & matrix where celli, j) has the
level-type modifier as listed above. An entyor k) meansQ is (or is not) sortable with
respect to that modifier.

Next we give a sortability implication for differekts.
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Theorem 2.6. Let Qe{N, F, A,C, S E, O}. If Q is not strongly(or sort-specifig k-
sortable then Q is not stronglyor sort-specifig k’-sortable for K > k.

Proof: We only prove the theorem for strong shape-sortability, the other cases are similar.
SinceQ is not stronghk-shape-sortable, there exists a faniilyand a shapén; } such that
IT is weaklyk-Q-shape-sortable, buit does not satisf@Q.

SupposeQ € {N, C, S, E, O}. Constructll’ from IT by adding the prefiXp + k' — k)
(p+kK —-k—=1)---(p+1)toevery(x) e I1. Suppos&) € {F, A}. Then also add the suffix
(p+1(p+2)---(p+k —k) to eacht (;r). In either case it is easily verified that every
t(x") € I1" has the same shape and preserve®tsatisfiability of the correspondinge IT;
hencell’ does not satisff). Furthermore[T’ is weaklyk'-Q-shape-sortable, sinee' is a
k-Q-shape-sorting of ° implies that(r!)’ is ak-Q-shape-sorting ofz°)’. Therefore IT’
is not stronghk’-Q-shape-sortable. a

The following is needed in Section 5. But because its general nature, we give it here.

Theorem 2.7. LetII be an |-2-Q-size-sortable family not satisfying Q dmdninimizes
(p, |I1]) lexicographically. Then no parts can stay put throughBut

Proof:  Sincell is minimal, every partitioniilisinacycler* — 7?2 — ... — 7" — 71,
wherer' — 7'+1 meanst'*+! is obtained fromr' through 2Q-size-sorting. LetA be a
part which stays throughoti. If one of these 29-size-sorting involve®\, say A with B,
then A remains unchanged impligsis so too, violating the definition of 2-sorting. If we
removeA from eachr', thenr' is still 2-Q-size-sortable, and hence still not satisfyiQg
Thus, we obtain a neWw2-Q-size-sortable family not satisfyin@ but having a smallep,

a contradiction to the definition af. a

Note that the argument that no part stays put in a counterexample family is good only
for 2-sortability, as the counterexample in Theorem 4.1 has two parts 2 and 3 staying put
Also, the argument is good only for size-sortability, as the counterexample in Theorem 5.5
has part 3 staying put.

3. The sortability of extremalness

For any subse§ of |,, denoted by mir) the minimum ofS and maxg) the maximum.
Extremalness is a partition property with a single shape arared p are given. Therefore,
it is not defined for shape-sortability.

Theorem 3.3. E is strongly-k-open-sortable for all* 2.

Proof: For any partitionr of |,, defines(r) = (s, Sh—1, . . ., S1) Wheres; is the number
of non-singleton parts; that does not contain elemepbut contains at least one element
less thanj. SupposeK is a set ofk parts ofr that does not satisfi; andrz’ is aK-E-
open-sorting ofr by E-sortingK into K’. Letr;, be the part oK’ that contains the largest
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Table 1

all k all k not applicable not applicable all k all k

all k all k not applicable not applicable all k all k

elementinX = (U, ¢ 7i. Writes(rr) = u() + v(r),i.e., foreachk j <n,sj=u; +vj,
whereu; (v;) is the number of non-singleton partsin K (in 7\ K) that does not contain
j but contains at least one element less thaNote thatv () = v(rr’); andu(rr) restricted
to X is a non-zero vector but(zr") restricted toX is zero. Moreoven); <1 foranyj ¢ X
with min(rr{)) < j andu; =0 otherwise. Alsou; > 1 for all j > max(r;).

Supposei(r) is lexicographically less than or equalitor’). Sinceu(r) # u(r’), there
exists an element” in I, such thatj. < uj. andu; =uj for all j > j*. This is possible
only whenuj. =0 anduj. =1, which impliesj* ¢ X and mir(z{)) < j* < max(r},). Since
uj- =0, any element oK less thanj* forms a singleton part if<. As K does not satisfy
E, u; > 0=uj for at least ongj € X with j > j*, a contradiction. Thereforej(z’) is
lexicographically less tham(r); and sos(rr’) is lexicographically less thas(). m]

We summarize the sortability & in Table 1.

4. The sortability of consecutiveness

Recall thatr (j) is the part elemenit belongs tor. It was shown (Hwang et al., 1996) that
C is strongly-2-open-sortable.

Theorem 4.1. C is not strongly k-shape-sortable for albk3.
Proof: Note that by Theorem 2.6, we only need to consider the cade=0B. Let
IM={r', 7%} ={12134 42131, wherep =4 and the shape i, 1, 1, 1}. ThenII is wea-
kly 3-C-shape-sortable, since we c@rsort parts 1, 2, 4 of* into 72, and parts 1, 3, 4 of
72 into 71. But IT contains no partition satisfying. O
Theorem 4.2. C is part-specific-k-open-sortable for albk2.
Proof: Suppose that does not satisiC. Defines(z) = min{j € l,:7(j) penetrates
7 (j —1)}. Choosetwo elementsandy suchthak <s(7) — 1< s(7) < yandK = {m(X),
a(X+1),...,7(y)}is of sizek. C-sortK to obtain a partitionr’. Clearly,s(rr) < s(t’).
a
Theorem 4.3. C is sort-specific-k-shape sortable for alp.

Proof: Follows from Corollary 2.4 and the sort-specikeshape sortability oE (refer to
Theorems 3.3 and 2.5). ]

We summarize the sortability & with Table 2.
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Table 2

2,k k>3 2,k: k>3 2,k k>3 all k all k all k

all k all k all k all k all k all k

5. The sortability of size-consecutiveness
Recall that ming;) is the minimum ofr; and maxf;) the maximum.
Theorem 5.1. S is strongly k-shape-sortable for albk2.

Proof: Defines(r) = Zi"zl max(r;). Suppose that;,, 7i,, ..., 7, arek parts not sat-
isfying S. Letn’ be anyf{iy, i, ..., ik}-Sshape-sorting of. Without loss of generality,
assume that

max(ri,) < max(m,) < - -- < max(m;, ), and

max(z/ ) < max(z] ) < --- < max(x/ ).

Thenitis easily verified that max;, ) > max(yri’t) for 1 <t <k and there exists at least one

t satisfying maxr;,) > max(yri’t). HenceZ{‘:1 max(r;, ) > Z{‘Zl max(ni’l). Consequently,
s(mr) is decreasing in ank-S-sorting. O

Theorem 5.2. S is strongly2-size-sortable.

Proof: Suppose tothe contrary that there exists a weak8s2ze-sortable family not sat-

isfying S. LetlT = {n!— 72— ... — 7" — 7'} be such a family which minimize®, r)

lexicographically. Letr' be the part ofr' containing the first element of. By Lemma 2.7,
there existst} such that maxt},) is smallest among all max{ ) andx}, ;én“’l where

indext +1is assumed to be modu10Assume thatr'+1 is obtained from! by Ssortlng
parts;rtft andB. We only need to consider the following two cases:

Case 1 B does not penetrate .

It must be|z} | > |B| and hence max ™) < max(r} ), a contradiction.

fria

Case2 B penetratesr‘ft (saybin B andc, d in n‘ft withc<b <d).

We note thatrt+1 contains maxt ) for otherwise ma&rf“) < max(y ) contrary to the
choice ofr} . It forcesb € mtt, Letnf“ be the firstr} afterrr“rl suchthab ¢ ', . Then

it |s obtained fromr*+i—1 by S—SOI‘tlngntH ~and a parC. Slncerrf is consecutive in

L tuc, max(nf“) <b< maxzt), a contradiction. Thus wh foralli contradicting

firj-1

the assumption thatgé nft O
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Theorem 5.3. S is not strongly k-size-sortable for albk3.

Proof: Note that by Theorem 2.6, we only need to consider the cade=08. Let
M= {rn', 7%} ={1123344411233244, wherep = 4. ThenlIl is weakly 3S-size-sortable,
since we carS-sort parts 1, 2, 4 ofr! into 72, and parts 2, 3, 4 of? into 71. But IT
contains no partition satisfying. |

Theorem 5.4. S is part-specifi@-size-sortable.

Proof: LetII be a sort-specific-B-sortable family ofp-partitions. Suppose € IT does

not satisfyS. We could assume that satisfiesC because we can always use the part-
specific-3-size-sortability o€ (noting that anS-sorting is also a-sorting) to obtain a
partition satisfyingC. So, we need only to look at the sub§EtC IT of partitions satisfying

C. Form € IT, label the parts in increasing order as the elements are increasingr(thus
would consist of the smallest elements). We shall prove by induction the claim that for
anyr € IT" and 3<i < p, there existsr’ e IT" such than} <n, <-.. <n; andn} =m; for

j =1+ 1. And thusIT’ satisfiesS.

Fori =3, eithernr’=x or a{l, 2, 3-Ssortingx’ of = is as desired. Suppose the
claim holds fori. For anyzr € IT" andi + 1, by the induction hypothesis, there exists a
n'eIl’ such thamn) <n, <--- <nj andxj =x; for j >i +1. If nf < n;,, then ther’
is as desired. Assurm{ >ni ;. We may assume tha:t’ is chosen such tha\'ljJrl is as
large as possible. $-sortn]_,, 7}, n{H into 7" v ', . Supposean |+1 Then
N_1=N_q + N+ Ny =N =y =0 =N ,=n, sincen; >ni; >ni,; =n.
Son” is as desired. Suppos€+1> ni,,. By the induction hypotheS|s there exists a
r”ell’withny <ny’ <-..<n” andr{; =n{; andn{" =n{=n; =mx; for j >i +2.

i+1—
Butn” ,=n’,>n; Contradlctmg the choice of’. 0

i+17

Theorem 5.5. S is not part-specifi@open-sortable.

Proof: LetIl={x?, n? 73} be the family of partitions defined in Table 3, which is read
as follows. The Oth row specmes subpartltlohsof w, e.g.,m =n\{m} which gives
771 = {712, } 771 = {7[2, } and 771 = {nz, 713, 714} T2, m3 = \{m2, w3} which gives

ny, w3 ={ni}, 73, nf={x?}, andn3, 7§ ={n} nJ}. The entryz! at row' and col-

umnK means that' is K-S-2-open-sorted inta ! . Typ|caIIy, the first row should be read
as: wt =1112233 and we caiiz-S-2-open-sortr! into 2. It is straightforward to verify

thatIl is sort-specific-25-open-sortable anH does not satisfyb. |
Table 3
K =m\{mi} or w\{mi, 7} 71 w3 | 72,73
71 =11111222233333 2
72 =11122222233333 7
73 = 11144222233333 7l
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Table 4
K=m\{mi}or w\{mi, 7} L T | T3 74 73,74 | T2, 7m4 | 72,73
7l =1122333334444 2 73
72 = 1152223334444 a4 75 78
73 = 1122133334444 7| !
4 = 1122223334444 7? 7t
75 = 1132223334444 72 7l
76 = 1142223334444 72 75 74
77 =1122433334444 7% | =8

Theorem 5.6. S is not part-specifi@-open-sortable.

Proof: Consider a family of partitionsl = {z*, 72, ..., 7’} defined in Table 4, whose
meaning is as described in the proof of Theorem 5.5. It is straightforward to chedk that
is sort-specific-35-open-sortable anl does not satisf. m|

Theorem 5.7. S is not part-specific-k-size-sortable for at-kd.

Proof: Let'N={*z',%z? ..., *x'!} be afamily of 5-partitions ofys defined in Table 5,
in which 7' stands fof'z'. Itis straightforward to check th&fl is sort-specificS-4-size-
sortable andIT does not satisf.

Table 5
K=m\{m} 0 T T2 T3 T4
71 =001122133334444 72 ° a1
72 = 001222233334444 78 | b it
73 = 001102223334444 70| =4 it
74 = 001122223334444 7? 73 ol

7% = 001122433334444 72 3 7l

78 =001222213334444 72 a7 a4 a1
77 =001022213334444 78 72 P all
78 = 001022233334444 7° 7 it
79 = 001122213334444 7? 4 Tl
710 =001132223334444 72 73 711

711 =001122333334444 72 73 wl
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Table 6

k: all k 2,k k>3 all k all k all k all k

x|

callk 2,3, kik>4 all k all k all k all k

Note that in this construction, eatlrr') contains 0, i.e.qr' = (), 7}, 7b, 7k, 7}}.
Fork > 5, we definéTl = {Kz1, kn2, ... KgZ+3} from k-1 as follows:

Kl =" 1gik.. .k forl<j<2k+1,
———
k
Ko 2kt+2 _ k=1_2K+1 1y _ oy . (e _ _ _ T
w22 Skl 2l oy (k= 2)k—3)(k—3) (K—1)--- (k—Dk---k,

k-2) k=D K
kp2ktd K12l (k—2) - (k=2 (k—1)--- (K= D)k-- -k,
k-2) (k+1) K

wherek—1721 is the shortest prefix subsequence of the sequierieg?“** that contains

allelementsif0, 1,2, 3, ..., k—3}. Forexamplér}l=001122. Fok > 5 it can readily
be seen thdt 172%% is of the form

0011223334444 . (k—3)---(k — 3)
—_— ——
(k=3)

with length 3+ $2=3 ‘and hencgrrl| = 154 &9 for 1 < j <2k 43,

Then it is straightforward to verify by induction dnthatTT is sort-specifik-S-size-
sortable andIT does not satisfs. For instance, if 17} is 7;-S-(k — 1)-size-sorted into
K=171"ink=11T, where 1< j <2k + 1 and O<i <k — 1, thenfs! is ;- S-k-size-sorted into
kK 1" inkTT; if k-7 %41 s 77- S (k— 1)-size-sorted int6~ 11" in *~111 for some O<i <k—3,
thenXz 2+3 js 777-S-k-size-sorted intézJ' in KIT; X7 2+2 js 77.- S-k-size sorted int§x 2+3
in KIT; and*7r %+3 is 7 5-S-k-size-sorted intéz 2+2 in K1, O

We summarize the sortability & with Table 6.
6. The sortability of nestedness
Recall that (Hwang et al., 1996) was shown to be part-specific-2-open-sortable.
Theorem 6.1. N is not strongly-k-shape-sortable foek2.
Proof: Note that by Theorem 2.6, we only need to consider the cake=#. LetI1 =
(mt, 72, 73, 7%} = {131123322211332312221122231332132223311p, where p=3
and the shape i§3, 4, 3}. ThenTIl is weakly-2N-shape-sortable, since we cahsort

parts 1, 3 ofrt into 72, parts 2, 3 ofr? into 73, parts 1, 3 ofr® into #, and parts 1, 2 of
w4 into . ButIT contains no partition satisfyinty. O
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Theorem 6.2. N is part-specific-k-open-sortable for alkbk?2.

Proof: Supposer is a partition which is not nested. ®olation of = is a quadruple
(a, b, c,d) with a<b<c<d, wherea andc are in a part andb andd in another. Let
s(r) = (d(r), c(ir)) be alexicographic minimizer of ordered paids c) where(a, b, c, d)
is a violation. Lef{a(r), c()} € and{b(r), d(w)} C ;.

Consider theU-restricted penetratiorrelation on the parts oft using elements in
U={L12 ...,d(x) — 1}. More preciselyA—Y B if there existx, ze B andy € A such
thatx <y < z<d(r). By the definition ofs(r), we have that-V is a partial order on the
parts ofr, or equivalentlyz" = {m NU : m € = andm NU # @} is a nested partition of
U. Let

12401 5 not nestef

I () ={m € m:{m,mj
Note that for anyr, € | (r), we haver; —Y 7. On the other hand, supposg —Y =.
Thenx <y <z<d(r) for somex, z e m andy em;. Thus K, y, z, d(;r)) is a violation
and som| € | (), i.e.,

[ () ={m en:m —Y m).

By the fact “for any two distinct parts penetrated by a common part in a nested partition,
one is penetrated by the other” (Lemma 4.5(a) of (Hwang et al., 1996)), we have that
J(m)=1(m) U {m;} is totally ordered under the relatienV, i.e.,

u u u
J) ={mj =m), >~ mj, >~ - =" 7w}

Moreover, eachr; NU is the disjoint union of two non-empty setg andB; (2<i <r)
such that

A< <MAs<PA<@mNU)<By<B3<---<B <{d(m)}, (%)

where A < B meansx < y for any x € A and anyy € B. Note that using this notation,
7 = mj, andc(rr) = min B. Also, A-YBforany Ae J() and anyB e 7 — J().

For the case of >k, let mx ={nj,, w,, ..., wj}. Clearly,7x does notU-restricted
penetrate any part in — J(;r) by the definition ofl (7). For the case aof < k, choose&k —r
parts fromr — J(;r) such that any un-chosen partof- J(;r) is notU -restricted penetrated
by any chosen part, e.g., a lower set with respect to the partial esdeworks. In this
case, letrx be the union of thesk —r parts andJ(;r). Then no part intx U-restricted
penetrates a part in — i .

Now k-N-sortk into my, to getm’. Supposes(n’) = (d(x'), c(x')) is lexicographi-
cally less than or equal &(rr), wherefa(r"), c(z’)} C nj, and{b(x’), d(n")} € nj Then,
d(z’) <d(w). By the minimality ofs(xr), at least one ofr/, andrj. is in 7y,. However,
asmy, is nested, butr{, andxj, penetrate each other, the othersgf andr;, is some
my € m — k. We consider two cases.
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Table 7

k:allk | k:allk k: all k all k all k all k

all k all k all k all k all k all k

Casel f{a(n'),c(n)}Cn/ eny and{b(r’),d(x")} Cm e — k.

As my, is aresorting ofrk , ¢(') € mp € mk anda(rn’) € mq € k. Sincerr, —Y 7, our
choice ofr dictatesr > k andn, =}, , 7q = 7j, andm; = 7;j, for somex <k <z and
y<k<z Also, b(r’) € A;, d(7’) € B, anda(r’) € Ay with y < z, which contradict the
ordering in §).

Case 2 {a(n'),c(n)} Cnen —nk and{b(x’), d(7")} S n/, € ..

As my, is a resorting ofrk, b(n') e mp e 1k andd(z’) € mq e k. Sincemwp Y 7,
our choice ofrk dictatesr > k andnp =mj,, mqg =mj, andm =, for somex <k <z
andy <k <z If y>1, the argument for a contradiction is same as Case 1. Whkeh,
thend(n’) =d(rr). But, ask > 2, we have that > 2 andc(zx’) > min B, > min B, =c(7),

contradicting the assumpti@tr’) < s(ir).
Thus we conclude thai(zz’) is lexicographically greater thasgr). |

Theorem 6.3. N is sort-specific-k-shape-sortable for alHe.
Proof: Follows from Corollary 2.4 and the sort-specikieshape-sortability oE. a

We summarize the sortability & with Table 7.

7. The sortability of fully nestedness and almost fully nestedness
Recall that (Hwang et al., 1996) is not part-specific-2-shape-sortable.
Theorem 7.1. F is not part-specific-k-shape-sortable for al.

Proof: Foranyk>2,leth=4k+2, p=k+1 ni=2k+2 ny=nz=--- =nNg;1=2.
Consider the familyT of all {ny, n, ..., np}-partitionss of I, that begins with 1-- 1«1

I
or ends with & 1---1 for somei >1 anda =j or jj’ with j, ]’ >2. Itis clear thatll
N——

does not satisfy a{s for the above, eitherr, andr; penetrate each other when= j or
] #]', ormj and somer; are not fully nested whea= jj’ with j = j’.

Let K =x\{n;} be a set ok parts ofr €I that does not satisff. If r =1, any
K-k-F-sorting induces a partition’ in I1, since the beginning (or ending) segment of
7’ has the same form as that af excepta. Supposer > 2, sayn, ={i < j}. Either
i <n/2 or j>n/2. For the case when<n/2=n; —1, we cank-F-sort K into K’ so
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Table 8

k: all k k: all k k: all k all k all k all k

k: all k k: all k k: all k all k all k all k
that{1,2,...,i —1,i + B} Sy, whereg=1if j>i+1andg=2if j=i+1. Inthis
case,r’ € I1. Similarly, for the case whep>n/2, we canK-k-F-sortz into 7’ € II.
ThusII is sort-specifid- F-sortable bufl does not satisfy. |

Corollary 7.2. Ais not part-specific-k-shape-sortable for al-k2.

Proof: The above example fdf is also an example foh since the given family is also
part-specifick- A-shape sortable but does not satigfy m|

Theorem 7.3. F is sort-specific-k-shape-sortable for albk2.

Proof: Define sec mifr;) to be the second smallest elementrjn Defines() = Zip:l
(max(r;) — sec mir(r;)). Consider th&- F-shape-sorting which recursively fills a part with

all the largest element plus the smallest element. Therfrashape-sorting on a sét’ of
elements is equivalent tokaC-shape-sorting on the shit\ {the smallesk elements irN’}
ands() is like the sum of range on the truncated parts (except the innermost part may
become empty if it contained a single element). Hes(@e strictly decreases. |
Corollary 7.4. A'is sort-specific-k-shape-sortable for alH.

Proof: By Theorem 7.3 and Corollary 2.4. O

We summarize the sortabilities 6f and A by Table 8.

8. The sortability of order-consecutiveness

Recall that (Hwang et al., 1996) is not part-specifid-shape-sortable fdc=2, 3.
Theorem 8.1. O is not part-specific-k-shape-sortable for af-id.

Proof: Foranyk > 4,letn=2k+1, p=k+1,ni=Kkn,=2n3=---=ng1 = 1.
Consider the familyT of all {ny, n,, ..., ny}-partitionsz of two patterns as follows. In
the first pattern, the first 3 positions tfr) are 232, positionk + 1 and the last 3 are 1,

and from positiork + 2 to position X — 2, all but one elements are 1:

232non 1 all 1 except for one positiohl1
——

k-3 k-3
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Table 9

k: all k k: all k

X

callk all k all k all k

=

k: all k k: all k sallk all k all k all k

The second pattern is a reverse of the first pattern. Forrapiythe first pattern, let; be
the part penetrating;. Partsry, 72, 3, 7 maker not satisfyO.

Let K = \{n;} be a set ok parts not satisfyin@. Thenr € {4,5, ..., k+ 1}\{i}. We
canK-k-O-sortr into a partition” of the second pattern with, = {r }; this can always be
done sinca; = k andr, which stays during the sorting, is in the fikgbositions. Similarly,
for anyx of the second pattern and aKynot satisfyingO, we can sort it into a partition
of the first pattern. Thereforé] is part-specifid-O-sortable. But neither pattern satisfies
O; hencell does not satisfyD. Theorem 8.1 follows immediately. O

Theorem 8.2. O is sort-specific-k-shape-sortable for albk4.
Proof: Follows from Corollary 2.4 and the sort-specikieshape-sortability of. ]

We summarize the sortability @ in Table 9.

9. Other types of restriction

Chakravarty et al. (1991) considered the size partition problem except that empty parts a
allowed. We will call this thédounded-size partition problenBarnes et al. (1991) consid-
ered the shape-partition problem except eadles in arangdy <n; <u;. We will call this
thebounded-shape-partition probler€learly, forl = strong or part-specific, open-sortable
implies bounded-size-sortable and size-sortable implies bounded-shape sortable; while f
| =weak or sort-specific, bounded-size sortable implies open-sortable and bounded-shay
sortable implies size-sortable. But the reverse implications are also true. For the firs
case, letll be an operR-sortable family, which does not satisfy, and letp be the
maximum partition size. Theill is also an example against the boungedertabil-

ity. Similarly, let IT be a sizeQ-sortable family which does not satisfp and whose

n; varies froml; to u;. ThenIl is also an example against the boundlkdu; : 1 <i < p}-
sortability.
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