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Abstract. Consider the partition of a set of integers into parts. Various partition properties have been proposed
in the literature to facilitate the restriction of the focus of attention to some small class of partitions. Recently,
Hwang, Rothblum and Yao defined and studied the sortability of these partition properties as a tool to prove the
existence of a partition with such a property in a given family. In this paper we determine the sortability indices
of the seven most interesting properties of partitions providing a complete solution to the sortability issue.
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1. Introduction

Consider the set of integersIn={1, 2, . . . ,n}. A partitionπ of In is a finite collection of
disjoint setsπ1, π2, . . . , πp whose union isIn, p is called thesizeof π andπ1, π2, . . . , πp

thepartsof π . Further, ifn1, n2, . . . ,np are the sizes ofπ1, π2, . . . , πp, respectively, then
{n1, n2, . . . ,np} is called theshapeof π . Different types of restrictions can be imposed
on π . π is referred to as ashape-partitionif its shape is given, asize-partitionif p is
given, and anopen partitionif neither its shape nor its size is given. We may also write an
{n1, n2, . . . ,np}-partition or ap-partition to highlight the shape or the size. For a partitionπ

and an elementj ∈ In, defineπ( j )as the part ofπ that containsj . Thenπ can be represented
in the formt (π) which is the sequenceπ(1)π(2) · · ·π(n) or i1, i2, . . . , i n for short where
j ∈πi j for all j ∈ In. For instance, a partitionπ of I5 withπ1 = {1, 3}, π2 = {2, 5}, π3 = {4}
can be represented byt (π) asπ1π2π1π3π2 or 12132 for short.

A partition property is a univariate relation over partitions. A set of partitions is said to
satisfya propertyQ if it contains a partition with propertyQ. Seven such properties have
been proposed in the literature; each occurs in optimal partitions for a corresponding class
of problems thereby allowing one to restrict attention to partitions with that property in
search for our optimal partition. An underlying relation between two disjoint subsets ofIn
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which characterizes each of these seven properties is: LetI andJ be two disjoint subsets
of In. I is said topenetrate J, written I → J, if there exista, c in J andb in I such that
a< b< c.

We now define the seven properties:π is

N (nested): πi →π j impliesπ j →/ πi .
F (fully nested): For alli and j , eitherπi →π j , π j →/ πi or vice versa.
A (almost fully nested): F except that parts of size 1 do not have to penetrate other

parts.
C (consecutive): For alli and j , πi →/ π j .
S (size-consecutive): C plus the condition that larger elements go to parts of larger

sizes.
E (extremal): A special case ofSwith p− 1 parts of size 1.
O (order-consecutive): Parts can be indexed such thatπi →/

⋃i−1
j=1π j for all i .

(See (Hwang et al., 1996) for references onN, F,C,O. A was proposed in (Gal and Klots,
1995),S in (Hwang et al., 1985) andE in (Anily and Federgruen, 1991).)

It was shown (Hwang and Mallow, 1995; Kreweras, 1972; Yeh et al., 1998) that the
number of open partitions, the number of size partitions for general size and the number of
shape partitions for general shape are all exponential inn, but the corresponding numbers
of partitions satisfyingQ, for anyQ∈ {N, F, A,C, S, E,O}, is polynomial. Therefore, in
an optimal partition problem it would be very helpful if we can prove the existence of an
optimal partition satisfyingQ to limit the scope of search. A typical way of proving such
an existence is to show that any optimal partitionπ not satisfyingQ can be step-by-step
locally sorted into an optimal partition satisfyingQ. In this paper, “locally sorted” means
that for some fixedk, a setK of k parts ofπ not satisfyingQ are sorted into a partition
π ′, with the same restrictions asπ , such thatπ ′i =πi for πi /∈ K and the restriction ofπ ′ to⋃
πi∈K πi satisfiesQ. We refer to such a sorting as aQ-sorting ofK . Note that optimality

must be preserved in a local sorting. The reason of doing local sortings instead of one
global sorting is because the preservation of optimality is much easier to maneuver at the
local level.

Instead of associating the sortability notion with optimality, we associate it with families
5 of partitions satisfying certain conditions (the reader can think of these families as fam-
ilies of optimal partitions). Therefore, optimality preservation means keeping the derived
partitions after local sorting in the same family. Note that for a givenk, there could be
many choices of whichk parts to sort, and for givenk parts, there could be many ways
to Q-sort. We define four different levels of coverage:strong, part-specific, sort-specific,
weak, depending on which local sortings must yield partitions staying in the family. More
specifically, for givenk and type of restriction, a family5 is called:

(i) strongly Q-sortableif 5 contains allQ-sorting of allK ;
(ii) part-specific Q-sortableif 5 contains allQ-sorting of a specificK ;

(iii) sort-specific Q-sortableif 5 contains a specificQ-sorting for allK ;
(iv) weakly Q-sortableif 5 contains a specificQ-sorting of a specificK .
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PropertyQ is calledweakly-, sort-specific-, part-specific-, strongly-k sortableif 5 satisfies
Q for any family5 satisfying (i), (ii), (iii) and (iv), respectively. We can also describe
the sortability ofQ by associating with it a triple(l , k, t), wherel is the level of coverage
((i), (ii), (iii) and (iv) above) andt is the type of restriction (shape, size, open) on5. Note
that the stronger is the coverage of the family5, the easier is for5 to satisfyQ. It was
shown in (Hwang et al., 1996) that it suffices to find a partition statistics(π)which is either
strictly decreasing duringQ-sorting ands(π) is lower bounded, or strictly increasing and
s(π) is upper bounded (noting that the number of partitions is finite). In particular, to show
the propertyQ is (i) strongly- (ii) part-specific- (iii) sort-specific- (iv) weakly-k sortable, it
suffices to show thats(π) is decreasing (or increasing) during (i) allQ-sorting for allK , (ii)
all Q-sorting of a specificK , (iii) a specificQ-sorting for allK , (iv) a specificQ-sorting of a
specificK . It should be noted that when we sort a subsetK of k parts byk-open-sorting into a
subsetK ′ of k′ parts, all parts inK ′must be distinct from the parts inπ\K . The reason is ifK ′

includes a part inπ\K , then it is not clear whether we are doingk-sorting or(k+ 1)-sorting.
Currently, it is known (Hwang et al., 1996) that

• C is strongly-2-open-sortable.
• N is part-specific-2-open-sortable.
• O is not weakly-2- or 3-shape-sortable.
• F is not part-specific-2-shape-sortable.

Although the sortabilities ofC and N were proved in (Hwang et al., 1996) only for
“size”, the proofs are good for “open”. Hence we state them in the more general version.
In this paper, we also study the sortability ofS, E andA and completely solve the(l , k, t)-
sortability issue.

2. Some preliminary results

In talking about the(l , k, t)-sortability, any missing variable in the triple will be inter-
preted as that the statement is valid for all choices of that variable. It is easily verified the
implications among the four types of levels:

strong weak

part-specific

sort-specific

Lemma 2.1. When the level is strong or part-specific, open-sortability implies size-
sortability implies shape-sortability.

Proof: A weak or sort-specificQ-shape-sortable family is also aQ-size- andQ-open-
sortable family. Thus any such family not satisfyingQ provides an example against shape-
or size- or open-sortability all. 2
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Lemma 2.2. Let Q and Q′ be two partition properties such that Q⇒ Q′ (Q′ = Q
allowed). If every(l , k, t ′)-Q′-sortable family contains a subfamily which is(l , k, t)-Q-
sortable, then Q is(l , k, t)-sortable implies Q′ is (l , k, t ′)-sortable.

Proof: Let 5′ be an(l , k, t ′)-Q′-sortable family which contains an(l , k, t)-Q-sortable
subfamily5. The(l , k, t)-sortability ofQ implies that5 satisfiesQ, and hence5′ satisfies
Q′, sinceQ⇒ Q′. 2

Corollary 2.3. For l =weak or sort-specific, (l , k, shape)-sortability implies(l ,k, size)-
sortability implies(l , k, open) sortability.

Proof: SetQ′ = Q in Lemma 2.2 and note that for the givenl , every(l , k, p)-Q-sortable
family contains an(l , k, {n1, . . . ,np})-Q-sortable family. 2

Corollary 2.4. For Q⇒ Q′, Q′ is k-consistent and l=weak or sort-specific, Q is(l , k, t)-
sortable implies Q′ is (l , k, t)-sortable.

Proof: Every Q-sorting is aQ′-sorting. Hence for the givenl , a Q′-sortable family
contains aQ-sortable subfamily. 2

The implications among the partition propertiesN, F,C,O were given in (Hwang et al.,
1996). It is easily verified that addingA, S, E yields the following partial order:

A

F

O

N

CSE

The implications among the levels and Lemma 2.1 and Corollary 2.3 immediately lead to

Theorem 2.5. For fixed k, we have the following implications among sortabilities:

strong-open⇒ strong-size⇒ strong-shape⇒ sort-sp.-shape⇒ sort-sp.-size⇒ sort-sp.-open

⇓ ⇓ ⇓ ⇓ ⇓ ⇓
part-sp.-open⇒ part-sp.-size⇒ part-sp.-shape⇒ weak-shape⇒ weak-size⇒ weak-open

In subsequent sections we will present thek-sortability of a propertyQ with respect
to the 12 classifications given in Theorem 2.5 by a 2× 6 matrix where cell(i, j ) has the
level-type modifier as listed above. An entryk (or k̄) meansQ is (or is not) sortable with
respect to that modifier.

Next we give a sortability implication for differentk’s.
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Theorem 2.6. Let Q∈ {N, F, A,C, S, E,O}. If Q is not strongly(or sort-specific) k-
sortable, then Q is not strongly(or sort-specific) k′-sortable for k′> k.

Proof: We only prove the theorem for strong shape-sortability, the other cases are similar.
SinceQ is not stronglyk-shape-sortable, there exists a family5 and a shape{ni } such that
5 is weaklyk-Q-shape-sortable, but5 does not satisfyQ.

SupposeQ∈ {N,C, S, E,O}. Construct5′ from5 by adding the prefix(p+ k′ − k)
(p+ k′ − k− 1) · · · (p+ 1) to everyt (π)∈5. SupposeQ∈ {F, A}. Then also add the suffix
(p+ 1)(p+ 2) · · · (p+ k′ − k) to eacht (π). In either case it is easily verified that every
t (π ′)∈5′ has the same shape and preserves theQ-satisfiability of the correspondingπ ∈5;
hence5′ does not satisfyQ. Furthermore,5′ is weaklyk′-Q-shape-sortable, sinceπ1 is a
k-Q-shape-sorting ofπ0 implies that(π1)′ is ak-Q-shape-sorting of(π0)′. Therefore,5′

is not stronglyk′-Q-shape-sortable. 2

The following is needed in Section 5. But because its general nature, we give it here.

Theorem 2.7. Let5 be an l-2-Q-size-sortable family not satisfying Q and5 minimizes
(p, |5|) lexicographically. Then no parts can stay put throughout5.

Proof: Since5 is minimal, every partition in5 is in a cycleπ1→π2→ · · · →π r →π1,
whereπ i →π i+1 meansπ i+1 is obtained fromπ i through 2-Q-size-sorting. LetA be a
part which stays throughout5. If one of these 2-Q-size-sorting involvesA, sayA with B,
then A remains unchanged impliesB is so too, violating the definition of 2-sorting. If we
removeA from eachπ i , thenπ i is still 2-Q-size-sortable, and hence still not satisfyingQ.
Thus, we obtain a newl -2-Q-size-sortable family not satisfyingQ but having a smallerp,
a contradiction to the definition of5. 2

Note that the argument that no part stays put in a counterexample family is good only
for 2-sortability, as the counterexample in Theorem 4.1 has two parts 2 and 3 staying put.
Also, the argument is good only for size-sortability, as the counterexample in Theorem 5.5
has part 3 staying put.

3. The sortability of extremalness

For any subsetS of In, denoted by min(S) the minimum ofS and max(S) the maximum.
Extremalness is a partition property with a single shape oncen andp are given. Therefore,
it is not defined for shape-sortability.

Theorem 3.3. E is strongly-k-open-sortable for all k≥ 2.

Proof: For any partitionπ of In, defines(π)= (sn, sn−1, . . . , s1) wheresj is the number
of non-singleton partsπi that does not contain elementj but contains at least one element
less thanj . SupposeK is a set ofk parts ofπ that does not satisfyE; andπ ′ is a K -E-
open-sorting ofπ by E-sortingK into K ′. Letπ ′i ′ be the part ofK ′ that contains the largest
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Table 1.

all k all k not applicable not applicable all k all k

all k all k not applicable not applicable all k all k

element inX= ⋃πi∈K πi . Writes(π)= u(π)+ v(π), i.e., for each 1≤ j ≤ n, sj = u j + v j ,
whereu j (v j ) is the number of non-singleton partsπi in K (in π\K ) that does not contain
j but contains at least one element less thanj . Note thatv(π)= v(π ′); andu(π) restricted
to X is a non-zero vector butu(π ′) restricted toX is zero. Moreover,u′j ≤ 1 for any j /∈ X
with min(π ′i ′)< j andu′j = 0 otherwise. Also,u j ≥ 1 for all j > max(π ′i ).

Supposeu(π) is lexicographically less than or equal tou(π ′). Sinceu(π) 6= u(π ′), there
exists an elementj ∗ in In such thatu j ∗ < u′j ∗ andu j = u′j for all j > j ∗. This is possible
only whenu j ∗ = 0 andu′j ∗ = 1, which impliesj ∗ /∈ X and min(π ′i ′)< j ∗< max(π ′i ′). Since
u j ∗ = 0, any element ofX less thanj ∗ forms a singleton part inK . As K does not satisfy
E, u j > 0= u′j for at least onej ∈ X with j > j ∗, a contradiction. Therefore,u(π ′) is
lexicographically less thanu(π); and sos(π ′) is lexicographically less thans(π). 2

We summarize the sortability ofE in Table 1.

4. The sortability of consecutiveness

Recall thatπ( j ) is the part elementj belongs toπ . It was shown (Hwang et al., 1996) that
C is strongly-2-open-sortable.

Theorem 4.1. C is not strongly k-shape-sortable for all k≥ 3.

Proof: Note that by Theorem 2.6, we only need to consider the case ofk= 3. Let
5={π1, π2}= {12134, 42131}, wherep= 4 and the shape is{2, 1, 1, 1}. Then5 is wea-
kly 3-C-shape-sortable, since we canC-sort parts 1, 2, 4 ofπ1 into π2, and parts 1, 3, 4 of
π2 into π1. But5 contains no partition satisfyingC. 2

Theorem 4.2. C is part-specific-k-open-sortable for all k≥ 2.

Proof: Suppose thatπ does not satisfyC. Defines(π)= min{ j ∈ In :π( j ) penetrates
π( j − 1)}. Choose two elementsx andy such thatx≤ s(π)− 1< s(π)≤ y andK ={π(x),
π(x+ 1), . . . , π(y)} is of sizek. C-sort K to obtain a partitionπ ′. Clearly,s(π)< s(π ′).

2

Theorem 4.3. C is sort-specific-k-shape sortable for all k≥ 2.

Proof: Follows from Corollary 2.4 and the sort-specific-k-shape sortability ofE (refer to
Theorems 3.3 and 2.5). 2

We summarize the sortability ofC with Table 2.
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Table 2.

2, k̄: k ≥ 3 2, k̄: k ≥ 3 2, k̄: k ≥ 3 all k all k all k

all k all k all k all k all k all k

5. The sortability of size-consecutiveness

Recall that min(πi ) is the minimum ofπi and max(πi ) the maximum.

Theorem 5.1. S is strongly k-shape-sortable for all k≥ 2.

Proof: Defines(π)= ∑p
i=1 max(πi ). Suppose thatπi1, πi2, . . . , πi k arek parts not sat-

isfying S. Let π ′ be any{i1, i2, . . . , i k}-S-shape-sorting ofπ . Without loss of generality,
assume that

max
(
πi1

)
< max

(
πi2

)
< · · · < max

(
πi k

)
, and

max
(
π ′i1
)
< max

(
π ′i2
)
< · · · < max

(
π ′i k
)
.

Then it is easily verified that max(πi t )≥ max(π ′i t ) for 1≤ t ≤ k and there exists at least one

t satisfying max(πi t )> max(π ′i t ). Hence
∑k

t=1 max(πi t ) >
∑k

t=1 max(π ′i t ). Consequently,
s(π) is decreasing in anyk-S-sorting. 2

Theorem 5.2. S is strongly2-size-sortable.

Proof: Suppose to the contrary that there exists a weakly-2-S-size-sortable family not sat-
isfying S. Let5={π1→π2→· · ·→π r →π1} be such a family which minimizes(p, r )
lexicographically. Letπ i

fi
be the part ofπ i containing the first element ofIn. By Lemma 2.7,

there existsπ t
ft

such that max(π t
ft
) is smallest among all max(π i

fi
) andπ t

ft
6=π t+1

ft+1
where

indext + 1 is assumed to be modulor . Assume thatπ t+1 is obtained fromπ t by S-sorting
partsπ t

ft
andB. We only need to consider the following two cases:

Case 1. B does not penetrateπ t
ft
.

It must be|π t
ft
|> |B| and hence max(π t+1

ft+1
)< max(π t

ft
), a contradiction.

Case 2. B penetratesπ t
ft

(sayb in B andc, d in π t
ft

with c< b< d).

We note thatπ t+1
ft+1

contains max(π t
ft
) for otherwise max(π t+1

ft+1
)< max(π t

ft
) contrary to the

choice ofπ t
ft
. It forcesb∈π t+1

ft+1
. Letπ t+ j

ft+ j
be the firstπ i

fi
afterπ t+1

ft+1
such thatb /∈π i

fi
. Then

π t+ j is obtained fromπ t+ j−1 by S-sortingπ t+ j−1
ft+ j−1

and a partC. Sinceπ t+ j
ft+ j

is consecutive in
π

t+ j−1
ft+ j−1
∪C, max(π t+ j

ft+ j
)<b< max(π t

ft
), a contradiction. Thusb∈π i

fi
for all i contradicting

the assumption thatb /∈π t
ft
. 2
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Theorem 5.3. S is not strongly k-size-sortable for all k≥ 3.

Proof: Note that by Theorem 2.6, we only need to consider the case ofk= 3. Let
5={π1, π2}= {11233444, 11233244}, wherep= 4. Then5 is weakly 3-S-size-sortable,
since we canS-sort parts 1, 2, 4 ofπ1 into π2, and parts 2, 3, 4 ofπ2 into π1. But 5
contains no partition satisfyingS. 2

Theorem 5.4. S is part-specific-3-size-sortable.

Proof: Let5 be a sort-specific-3-S-sortable family ofp-partitions. Supposeπ ∈5 does
not satisfyS. We could assume thatπ satisfiesC because we can always use the part-
specific-3-size-sortability ofC (noting that anS-sorting is also aC-sorting) to obtain a
partition satisfyingC. So, we need only to look at the subset5′ ⊆5 of partitions satisfying
C. Forπ ∈5′, label the parts in increasing order as the elements are increasing (thusπ1

would consist of the smallest elements). We shall prove by induction the claim that for
anyπ ∈5′ and 3≤ i ≤ p, there existsπ ′ ∈5′ such thatn′1≤ n′2≤ · · · ≤n′i andπ i

j =π j for
j ≥ i + 1. And thus5′ satisfiesS.

For i = 3, eitherπ ′ =π or a {1, 2, 3}-S-sortingπ ′ of π is as desired. Suppose the
claim holds fori . For anyπ ∈5′ and i + 1, by the induction hypothesis, there exists a
π ′ ∈5′ such thatn′1≤ n′2≤ · · · ≤n′i andπ ′j =π j for j ≥ i + 1. If n′i ≤ n′i+1, then theπ ′

is as desired. Assumen′i > n′i+1. We may assume thatπ ′ is chosen such thatn′i+1 is as
large as possible. 3-S-sortπ ′i−1, π ′i , π

′
i+1 into π ′′i−1, π ′′i , π ′′i+1. Supposen′′i+1≤ n′i+1. Then

n′′i−1= n′i−1 + n′i + n′i+1 − n′′i − n′′i+1≥ n′i−1≥ n′i−2= n′′i−2 sincen′i > n′i+1≥ n′′i+1≥ n′′i .
So π ′′ is as desired. Supposen′′i+1> n′i+1. By the induction hypothesis, there exists a
π ′′′ ∈5′ with n′′′1 ≤ n′′′2 ≤ · · · ≤n′′′i andπ ′′′i+1=π ′′i+1 andπ ′′′j =π ′′j =π ′j =π j for j ≥ i + 2.
But n′′′i+1= n′′i+1> n′i+1, contradicting the choice ofπ ′. 2

Theorem 5.5. S is not part-specific-2-open-sortable.

Proof: Let5={π1, π2, π3} be the family of partitions defined in Table 3, which is read
as follows. The 0th row specifies subpartitionsK of π , e.g.,π1=π\{π1} which gives
π1

1 ={π1
2 , π

1
3}, π2

1 ={π2
2 , π

2
3}, andπ3

1 ={π3
2 , π

3
3 , π

3
4}; π2, π3=π\{π2, π3} which gives

π1
2 , π

1
3 ={π1

1}, π2
2 , π

2
3 ={π2

1}, andπ3
2 , π

3
3 ={π3

1 , π
3
4}. The entryπ j at row π i and col-

umnK means thatπ i is K -S-2-open-sorted intoπ j . Typically, the first row should be read
as: π1= 1112233 and we canπ3-S-2-open-sortπ1 into π2. It is straightforward to verify
that5 is sort-specific-2-S-open-sortable and5 does not satisfyS. 2

Table 3.

K = π\{πi } or π\{πi , π j } π1 π3 π2, π3

π1 = 11111222233333 π2

π2 = 11122222233333 π3

π3 = 11144222233333 π1
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Table 4.

K = π\{πi } or π\{πi , π j } π1 π2 π3 π4 π3, π4 π2, π4 π2, π3

π1 = 1122333334444 π2 π3

π2 = 1152223334444 π4 π5 π6

π3 = 1122133334444 π7 π1

π4 = 1122223334444 π2 π1

π5 = 1132223334444 π2 π1

π6 = 1142223334444 π2 π5 π4

π7 = 1122433334444 π2 π3

Theorem 5.6. S is not part-specific-3-open-sortable.

Proof: Consider a family of partitions5={π1, π2, . . . , π7} defined in Table 4, whose
meaning is as described in the proof of Theorem 5.5. It is straightforward to check that5

is sort-specific-3-S-open-sortable and5 does not satisfyS. 2

Theorem 5.7. S is not part-specific-k-size-sortable for all k≥ 4.

Proof: Let 45={4π1, 4π2, . . . , 4π11} be a family of 5-partitions ofI15 defined in Table 5,
in whichπ i stands for4π i . It is straightforward to check that45 is sort-specific-S-4-size-
sortable and45 does not satisfyS.

Table 5.

K = π\{πi } π0 π1 π2 π3 π4

π1 = 001122133334444 π2 π5 π11

π2 = 001222233334444 π6 π5 π11

π3 = 001102223334444 π10 π4 π11

π4 = 001122223334444 π2 π3 π11

π5 = 001122433334444 π2 π3 π1

π6 = 001222213334444 π2 π7 π4 π11

π7 = 001022213334444 π8 π9 π4 π11

π8 = 001022233334444 π9 π5 π11

π9 = 001122213334444 π2 π4 π11

π10 = 001132223334444 π2 π3 π11

π11 = 001122333334444 π2 π3 π1
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Table 6.

k̄: all k 2, k̄: k ≥ 3 all k all k all k all k

k̄: all k 2, 3, k̄: k ≥ 4 all k all k all k all k

Note that in this construction, eacht (π i ) contains 0, i.e.,π i ={π i
0, π

i
1, π

i
2, π

i
3, π

i
4}.

For k≥ 5, we definek5={kπ1, kπ2, · · · , kπ2k+3} from k−15 as follows:

kπ j = k−1π j k · · · k︸ ︷︷ ︸
k

for 1≤ j ≤ 2k+ 1,

kπ2k+2 = k−1π2k+1
0:k−3 (k− 2) · · · (k− 2)︸ ︷︷ ︸

(k−2)

(k− 3)(k− 3) (k− 1) · · · (k− 1)︸ ︷︷ ︸
(k−1)

k · · · k︸ ︷︷ ︸
k

,

kπ2k+3 = k−1π2k+1
0:k−3 (k− 2) · · · (k− 2)︸ ︷︷ ︸

(k−2)

(k− 1) · · · (k− 1)︸ ︷︷ ︸
(k+1)

k · · · k︸ ︷︷ ︸
k

,

wherek−1π2k+1
0:k−3 is the shortest prefix subsequence of the sequencek−1π2k+1 that contains

all elements in{0, 1, 2, 3, . . . , k−3}. For example4π11
0:2= 001122. Fork≥ 5 it can readily

be seen thatk−1π2k+1
0:k−3 is of the form

0011223334444· · · (k− 3) · · · (k− 3)︸ ︷︷ ︸
(k−3)

with length 3+ (k−2)(k−3)
2 , and hence|kπ j | =15+ (k+5)(k−4)

2 for 1≤ j ≤ 2k+ 3.
Then it is straightforward to verify by induction onk that k5 is sort-specific-k-S-size-

sortable andk5 does not satisfyS. For instance, ifk−1π j is πi -S-(k − 1)-size-sorted into
k−1π j ′ in k−15, where 1≤ j ≤ 2k+ 1 and 0≤ i ≤ k−1, thenkπ j isπi -S-k-size-sorted into
kπ j ′ in k5; if k−1π2k+1 isπi -S-(k−1)-size-sorted intok−1π j ′ in k−15 for some 0≤ i ≤ k−3,
thenkπ2k+3 is πi -S-k-size-sorted intokπ j ′ in k5; kπ2k+2 is πk-S-k-size sorted intokπ2k+3

in k5; andkπ2k+3 is πk−2-S-k-size-sorted intokπ2k+2 in k5. 2

We summarize the sortability ofSwith Table 6.

6. The sortability of nestedness

Recall that (Hwang et al., 1996)N was shown to be part-specific-2-open-sortable.

Theorem 6.1. N is not strongly-k-shape-sortable for k≥ 2.

Proof: Note that by Theorem 2.6, we only need to consider the case ofk= 2. Let5=
{π1, π2, π3, π4}= {1311233222, 1133231222, 1122231332, 1322233112}, where p= 3
and the shape is{3, 4, 3}. Then5 is weakly-2-N-shape-sortable, since we canN-sort
parts 1, 3 ofπ1 into π2, parts 2, 3 ofπ2 into π3, parts 1, 3 ofπ3 into π4, and parts 1, 2 of
π4 into π1. But5 contains no partition satisfyingN. 2
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Theorem 6.2. N is part-specific-k-open-sortable for all k≥ 2.

Proof: Supposeπ is a partition which is not nested. Aviolation of π is a quadruple
(a, b, c, d) with a< b< c< d, wherea andc are in a part andb andd in another. Let
s(π)= (d(π), c(π)) be a lexicographic minimizer of ordered pairs(d, c)where(a, b, c, d)
is a violation. Let{a(π), c(π)}⊆πi and{b(π), d(π)}⊆π j .

Consider theU -restricted penetrationrelation on the parts ofπ using elements in
U ={1, 2, . . . ,d(π) − 1}. More precisely,A→U B if there existx, z∈ B andy∈ A such
thatx< y< z< d(π). By the definition ofs(π), we have that→U is a partial order on the
parts ofπ , or equivalently,πU = {πl ∩U : πl ∈ π andπl ∩U 6= ∅} is a nested partition of
U . Let

I (π) = {πl ∈ π : {πl , π j }{1,2,...,d(π)} is not nested}.

Note that for anyπl ∈ I (π), we haveπ j →U πl . On the other hand, supposeπ j →U πl .
Thenx< y< z< d(π) for somex, z ∈ πl andy∈π j . Thus (x, y, z, d(π)) is a violation
and soπl ∈ I (π), i.e.,

I (π) = {πl ∈ π : π j →U πl }.

By the fact “for any two distinct parts penetrated by a common part in a nested partition,
one is penetrated by the other” (Lemma 4.5(a) of (Hwang et al., 1996)), we have that
J(π)= I (π) ∪ {π j } is totally ordered under the relation→U , i.e.,

J(π) = {π j = π j1 →U π j2 →U · · · →U π jr }.

Moreover, eachπ ji ∩ U is the disjoint union of two non-empty setsAi andBi (2≤ i ≤ r )
such that

Ar < · · ·< A3< A2 < (π j1 ∩U )< B2< B3< · · ·< Br < {d(π)}, (∗)

where A< B meansx< y for any x ∈ A and anyy∈ B. Note that using this notation,
πi =π j2 andc(π)= min B2. Also, A→/ U B for any A∈ J(π) and anyB∈π − J(π).

For the case ofr ≥ k, let πK ={π j1, π j2, . . . , π jk}. Clearly,πK does notU -restricted
penetrate any part inπ − J(π) by the definition ofI(π). For the case ofr < k, choosek− r
parts fromπ − J(π) such that any un-chosen part ofπ − J(π) is notU -restricted penetrated
by any chosen part, e.g., a lower set with respect to the partial order→U works. In this
case, letπK be the union of thesek− r parts andJ(π). Then no part inπK U -restricted
penetrates a part inπ −πK .

Now k-N-sortπK into π ′K ′ to getπ ′. Supposes(π ′)= (d(π ′), c(π ′)) is lexicographi-
cally less than or equal tos(π), where{a(π ′), c(π ′)}⊆π ′i ′ and{b(π ′), d(π ′)}⊆π ′j ′ . Then,
d(π ′)≤ d(π). By the minimality ofs(π), at least one ofπ ′i ′ andπ j ′ is in π ′K ′ . However,
asπ ′K ′ is nested, butπ ′i ′ andπ ′j ′ penetrate each other, the other ofπ ′i ′ andπ ′j ′ is some
πt ∈π −πK . We consider two cases.
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Table 7.

k̄: all k k̄: all k k̄: all k all k all k all k

all k all k all k all k all k all k

Case 1. {a(π ′), c(π ′)}⊆π ′r ′ ∈π ′K ′ and{b(π ′), d(π ′)}⊆πt ∈π −πK .

Asπ ′K ′ is a resorting ofπK , c(π ′)∈πp ∈πK anda(π ′)∈πq ∈πK . Sinceπp→U πt , our
choice ofπK dictatesr ≥ k andπp=π jx , πq=π j y andπt =π jz for somex≤ k< z and
y≤ k< z. Also, b(π ′)∈ Az, d(π ′)∈ Bz anda(π ′)∈ Ay with y< z, which contradict the
ordering in (∗).

Case 2. {a(π ′), c(π ′)}⊆πt ∈π −πK and{b(π ′), d(π ′)}⊆π ′r ′ ∈π ′K ′ .

As π ′K ′ is a resorting ofπK , b(π ′)∈πp ∈πK andd(π ′)∈πq ∈πK . Sinceπp →U πt ,
our choice ofπK dictatesr ≥ k andπp=π jx , πq=π j y andπt =π jz for somex≤ k< z
andy≤ k< z. If y> 1, the argument for a contradiction is same as Case 1. Wheny= 1,
thend(π ′)= d(π). But, ask≥ 2, we have thatz> 2 andc(π ′)≥ min Bz> min B2= c(π),
contradicting the assumptions(π ′)< s(π).

Thus we conclude thats(π ′) is lexicographically greater thans(π). 2

Theorem 6.3. N is sort-specific-k-shape-sortable for all k≥ 2.

Proof: Follows from Corollary 2.4 and the sort-specific-k-shape-sortability ofE. 2

We summarize the sortability ofN with Table 7.

7. The sortability of fully nestedness and almost fully nestedness

Recall that (Hwang et al., 1996)F is not part-specific-2-shape-sortable.

Theorem 7.1. F is not part-specific-k-shape-sortable for all k≥ 2.

Proof: For anyk≥ 2, letn= 4k+ 2, p= k+ 1, n1= 2k+ 2, n2= n3= · · · = nk+1= 2.
Consider the family5 of all {n1, n2, . . . ,np}-partitionsπ of In that begins with 1· · ·1︸ ︷︷ ︸

i

α1

or ends with 1α 1 · · ·1︸ ︷︷ ︸
i

for somei ≥ 1 andα= j or j j ′ with j, j ′ ≥ 2. It is clear that5

does not satisfyF as for the aboveπ , eitherπ1 andπ j penetrate each other whenα= j or
j 6= j ′, orπ j and someπi are not fully nested whenα= j j ′ with j = j ′.

Let K =π\{πr } be a set ofk parts ofπ ∈5 that does not satisfyF. If r = 1, any
K -k-F-sorting induces a partitionπ ′ in 5, since the beginning (or ending) segment of
π ′ has the same form as that ofπ exceptα. Supposer ≥ 2, sayπr ={i < j }. Either
i ≤ n/2 or j ≥ n/2. For the case wheni ≤ n/2= n1− 1, we cank-F-sort K into K ′ so
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Table 8.

k̄: all k k̄: all k k̄: all k all k all k all k

k̄: all k k̄: all k k̄: all k all k all k all k

that {1, 2, . . . , i − 1, i +β}⊆π ′1, whereβ = 1 if j > i + 1 andβ = 2 if j = i + 1. In this
case,π ′ ∈ 5. Similarly, for the case whenj ≥ n/2, we canK -k-F-sortπ into π ′ ∈ 5.
Thus5 is sort-specific-k-F-sortable but5 does not satisfyF . 2

Corollary 7.2. A is not part-specific-k-shape-sortable for all k≥ 2.

Proof: The above example forF is also an example forA since the given family is also
part-specific-k-A-shape sortable but does not satisfyA. 2

Theorem 7.3. F is sort-specific-k-shape-sortable for all k≥ 2.

Proof: Define sec min(πi ) to be the second smallest element inπi . Defines(π)= ∑p
i=1

(max(πi )− sec min(πi )). Consider thek-F-shape-sorting which recursively fills a part with
all the largest element plus the smallest element. Then ak-F-shape-sorting on a setN ′ of
elements is equivalent to ak-C-shape-sorting on the setN ′\{the smallestk elements inN ′}
ands(π) is like the sum of range on the truncated parts (except the innermost part may
become empty if it contained a single element). Hences(π) strictly decreases. 2

Corollary 7.4. A is sort-specific-k-shape-sortable for all k≥ 2.

Proof: By Theorem 7.3 and Corollary 2.4. 2

We summarize the sortabilities ofF andA by Table 8.

8. The sortability of order-consecutiveness

Recall that (Hwang et al., 1996)O is not part-specific-k-shape-sortable fork= 2, 3.

Theorem 8.1. O is not part-specific-k-shape-sortable for all k≥ 4.

Proof: For anyk ≥ 4, letn = 2k+1, p = k+1, n1 = k, n2 = 2, n3 = · · · = nk+1 = 1.
Consider the family5 of all {n1, n2, . . . ,np}-partitionsπ of two patterns as follows. In
the first pattern, the first 3 positions oft (π) are 232, positionsk+ 1 and the last 3 are 1,
and from positionk+ 2 to position 2k− 2, all but one elements are 1:

232 non 1︸ ︷︷ ︸
k−3

1 all 1 except for one position︸ ︷︷ ︸
k−3

111.
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Table 9.

k̄: all k k̄: all k k̄: all k all k all k all k

k̄: all k k̄: all k k̄: all k all k all k all k

The second pattern is a reverse of the first pattern. For anyπ of the first pattern, letπi be
the part penetratingπ1. Partsπ1, π2, π3, πi makeπ not satisfyO.

Let K =π\{πr } be a set ofk parts not satisfyingO. Thenr ∈ {4, 5, . . . , k+ 1}\{i }. We
canK -k-O-sortπ into a partitionπ ′ of the second pattern withπ ′i ′ = {r }; this can always be
done sincen1= k andr , which stays during the sorting, is in the firstk positions. Similarly,
for anyπ of the second pattern and anyK not satisfyingO, we can sort it into a partition
of the first pattern. Therefore,5 is part-specific-k-O-sortable. But neither pattern satisfies
O; hence5 does not satisfyO. Theorem 8.1 follows immediately. 2

Theorem 8.2. O is sort-specific-k-shape-sortable for all k≥ 4.

Proof: Follows from Corollary 2.4 and the sort-specific-k-shape-sortability ofC. 2

We summarize the sortability ofO in Table 9.

9. Other types of restriction

Chakravarty et al. (1991) considered the size partition problem except that empty parts are
allowed. We will call this thebounded-size partition problem. Barnes et al. (1991) consid-
ered the shape-partition problem except eachni lies in a rangebi ≤ ni ≤ ui . We will call this
thebounded-shape-partition problem. Clearly, forl = strong or part-specific, open-sortable
implies bounded-size-sortable and size-sortable implies bounded-shape sortable; while for
l =weak or sort-specific, bounded-size sortable implies open-sortable and bounded-shape-
sortable implies size-sortable. But the reverse implications are also true. For the first
case, let5 be an open-Q-sortable family, which does not satisfyQ, and let p be the
maximum partition size. Then5 is also an example against the bounded-p sortabil-
ity. Similarly, let 5 be a size-Q-sortable family which does not satisfyQ and whose
ni varies froml i to ui . Then5 is also an example against the bounded-{l i , ui : 1≤ i ≤ p}-
sortability.
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